79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

MHD Mixed Convection of Developing Slip Flow in a Vertical Porous Microchannel Under Local Thermal Non–Equilibrium Conditions

, ORCID Icon, &
Pages 28-45 | Received 20 Jun 2022, Accepted 31 Aug 2023, Published online: 28 Sep 2023

References

  • F. Hai, W. Zhu, S. Liang, X. Yang, and Y. Deng, “Enhanced pool boiling performance of microchannel patterned surface with extremely low wall superheat through capillary feeding of liquid.” Nanoscale Microscale Thermophys. Eng., vol. 24, no. 2, pp. 66–79, 2020. DOI: 10.1080/15567265.2020.1744776.
  • C. Ji, Z. Liu, M. Lv, and J. Li, “Experimental investigation on flow past an isolated micro pin fin embedded in a microchannel.” Nanoscale Microscale Thermophys. Eng., vol. 26, no. 1, pp. 17–39, 2022. DOI: 10.1080/15567265.2021.2019861.
  • V. Goodarzi, S. H. Jafarbeygi, R. A. Taheri, M. Sheremet, and M. Ghalambaz, “Numerical investigation of mixing by induced electrokinetic flow in T–micromixer with conductive curved arc plate,” Symmetry, vol. 13, no. 6, pp.915, 2021. DOI: 10.3390/sym13060915.
  • R. Choudhari, et al., “Electro-kinetically modulated peristaltic mechanism of Jeffrey liquid through a micro-channel with variable viscosity,” Thermal Sci., vol. 25, no. Spec. issue 2, pp.271–277, 2021. DOI: 10.2298/TSCI21S2271C.
  • S. Bazkhane and I. Zahmatkesh. “Taguchi–based sensitivity analysis of hydrodynamics and heat transfer of nanofluids in a microchannel heat sink (MCHS) having porous substrates.” Int. Commun. Heat Mass Transfer., vol. 118, pp. 104885, 2020. DOI:10.1016/j.icheatmasstransfer.2020.104885.
  • I. Zahmatkesh, M. M. Alishahi, and H. Emdad, “New velocity–slip and temperature–jump boundary conditions for navier–Stokes computation of gas mixture flows in microgeometries.” Mech. Res. Commun., vol. 38, no. 6, pp. 417–424, 2011. DOI: 10.1016/j.mechrescom.2011.06.001.
  • I. Zahmatkesh, H. Emdad, and M. M. Alishahi, “Multifluid description of rarefied gas mixture flows.” J. Therm. Eng., vol. 6, no. 3, pp. 405–421, 2020. DOI: 10.18186/thermal.712678.
  • M. Akbari and M. Ghasemi, “A novel kinetic–based slip velocity boundary condition suitable for compressible gas flows in micro–/nanochannels,” Acta Mech., vol. 229, no. 11, pp.4471–4484, 2018. DOI: 10.1007/s00707–018–2236–x.
  • N. T. Le, N. H. Tran, T. N. Tran, and T. T. Tran, “New slip boundary condition in high–speed rarefied gas flow simulations,” Proc. IMechE, Part G: J Aero. Eng., vol. 234, no. 3, pp.840–856, 2020. DOI: 10.1177/0954410019886955.
  • M. A. Thani and M. A. Ismael, “Numerical study of jet impingement on heated sink covered by a porous layer,” Basrah J. Eng. Sci., vol. 22, no. 2, pp.1–9, 2022. DOI: 10.33971/bjes.22.2.1.
  • M. A. Ismael, O. Younes, M. Fteiti, M. Ghalambaz, and R. Z. Homod. “Impingement jets on a confined assembly of rotating hot cylinder covered by a surface porous layer.” Appl. Therm. Eng., vol. 229, pp. 120470, 2023. DOI:10.1016/j.applthermaleng.2023.120470.
  • Z. Haddad, F. Iachachene, M. A. Sheremet, and E. Abu–Nada. “Numerical investigation and optimization of melting performance for thermal energy storage system partially filled with metal foam layer: new design configurations.” Appl. Therm. Eng., vol. 223, pp. 119809, 2023. DOI:10.1016/j.applthermaleng.2022.119809.
  • S. Hussain, M. A. Qureshi, and S. E. Ahmed. “Impact of wavy porous layer on the hydrodynamic forces and heat transfer of hybrid nanofluid flow in a channel with cavity under the effect of partial magnetic field.” J. Non–Equilib. Thermodyn., vol. 48, pp. 255–269, 2023. DOI:10.1515/jnet-2022-0070.
  • O. M. Haddad, M. A. Al–Nimr, and Y. Taamneh, “Hydrodynamic and thermal behavior of gas flow in microchannels filled with porous media.” J. Porous Med., vol. 9, no. 5, pp. 403–414, 2006. DOI: 10.1615/JPorMedia.v9.i5.20.
  • O. M. Haddad, M. A. Al–Nimr, and M. S. Sari, “Forced convection gaseous slip flow in circular porous micro–channels,” Transp. Porous. Med., vol. 70, no. 2, pp.167–179, 2007. DOI: 10.1007/s11242–006–9093–0.
  • A. Goli and I. Zahmatkesh. “Slip flow in porous micro–tubes under local thermal non–equilibrium conditions.” Transp. Phenom. Nano Micro Scales, vol. 6, pp. 79–87, 2018. DOI:10.22111/TPNMS.2018.4034.
  • H. Shokouhmand, A. H. M. Isfahani, and E. Shirani, “Friction and heat transfer coefficient in micro and nano channels filled with porous media for wide range of Knudsen number,” Int. Commun. Heat Mass Transfer., vol. 37, no. 7, pp.890–894, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.04.008.
  • D. A. Neild and A. V. Kuznetsov, “Forced convection with slip–flow in a channel or duct occupied by hyper–porous medium saturated by rarefied gas,” Transp. Porous Med., vol. 64, no. 2, pp.161–170, 2006. DOI: 10.1007/s11242–005–2341–x.
  • K. Hooman, “Heat and fluid flow in rectangular microchannel filled with a porous medium,” Int. J. Heat Mass Transfer., vol. 51, no. 25–26, pp.5804–5810, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.05.010.
  • K. Wang, F. Tavakkoli, S. Wang, and K. Vafai. “Forced convection gaseous slip flow in a porous circular microtube: an exact solution.” Int. J. Therm. Sci., vol. 97, pp. 152–162, 2015. DOI:10.1016/j.ijthermalsci.2015.06.003.
  • Y. Mahmoudi. “Constant wall heat flux boundary condition in micro–channels filled with porous medium with internal heat generation under local thermal non–equilibrium condition.” Int. J. Heat Mass Transfer., vol. 85, pp. 524–542, 2015. DOI:10.1016/j.ijheatmasstransfer.2015.01.134.
  • B. Buonomo, O. Manca, and G. Lauriat. “Forced convection in micro–channels filled with porous media in local thermal non–equilibrium conditions.” Int. J. Heat Mass Transfer., vol. 77, pp. 206–222, 2014. DOI:10.1016/j.ijthermalsci.2013.11.003.
  • B. Buonomo, O. Manca, and G. Lauriat. “Forced convection in porous microchannels with viscous dissipation in local thermal non–equilibrium conditions.” Int. Commun. Heat Mass Transfer., vol. 76, pp. 46–54, 2016. DOI:10.1016/j.icheatmasstransfer.2016.05.004.
  • H. Xu, C. Zhao, and K. Vafai. “Analytical study of flow and heat transfer in an annular porous medium subject to asymmetrical heat fluxes.” Heat Mass Transfer., vol. 53, pp. 2663–2676, 2017. DOI:10.1007/s00231–017–2011–x.
  • M. Ghalambaz, T. Groşan, and I. Pop. “Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano–encapsulated phase change materials.” J. Mol. Liq., vol. 293, pp. 111432, 2019. DOI:10.1016/j.molliq.2019.111432.
  • I. Zahmatkesh and S. A. Naghedifar, “Oscillatory mixed convection in jet impingement cooling of a horizontal surface immersed in a nanofluid–saturated porous medium.” Numer. Heat Transfer, Part A, vol. 72, no. 5, pp. 401–416, 2017. DOI: 10.1080/10407782.2017.1376961.
  • M. R. Habibi and I. Zahmatkesh, “Double–diffusive natural and mixed convection of binary nanofluids in porous cavities,” J. Porous Med., vol. 23, no. 10, pp.955–967, 2020. DOI: 10.1615/JPorMedia.2020027144.
  • U. Khan, A. Zaib, M. Sheikholeslami, A. Wakif, and D. Baleanu, “Mixed convective radiative flow through a slender revolution bodies containing molybdenum–disulfide graphene oxide along with generalized hybrid nanoparticles in porous media,” Crystals, vol. 10, no. 9, pp.771, 2020. DOI: 10.3390/cryst10090771.
  • Y. Wang and G. Qin, “Accurate numerical simulation for non–Darcy double–diffusive mixed convection in a double lid–driven porous cavity using SEM.” Numer. Heat Transfer, Part A, vol. 75, no. 9, pp. 598–615, 2019. DOI: 10.1080/10407782.2019.1608764.
  • M. Avci and O. Aydin, “Mixed convection in a vertical parallel plate microchannel.” J. Heat Transfer, vol. 129, no. 2, pp. 162–166, 2007. DOI: 10.1115/1.2422741.
  • M. Moslehi and M. Saghafian, “MHD mixed convection slip flow in a vertical parallel plate microchannel heated at asymmetric and uniform heat flux.” J. Mech. Sci. Technol., vol. 29, no. 12, pp. 5317–5324, 2015. DOI: 10.1007/s12206–015–0739–0.
  • A. A. Avramenko, et al. “Mixed convection in a vertical circular microchannel.” Int. J. Therm. Sci., vol. 121, pp. 1–12, 2017. DOI:10.1016/j.ijthermalsci.2017.07.001.
  • A. N. Altunkaya, M. Avci, and O. Aydin. “Effects of viscous dissipation on mixed convection in a vertical parallel–plate microchannel with asymmetric uniform wall heat fluxes: the slip regime.” Int. J. Heat Mass Transfer., vol. 111, pp. 495–499, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.03.099.
  • B. K. Jha and B. Aina, “Role of suction/injection on steady fully developed mixed convection flow in a vertical parallel plate microchannel.” Ain. Shams Eng. J., vol. 9, no. 4, pp. 747–755, 2018. DOI: 10.1016/j.asej.2016.05.001.
  • B. K. Jha, D. Daramola, and A. O. Ajibade, “Steady fully developed mixed convection flow in a vertical parallel plate micro–channel with bilateral heating and filled with porous material,” Proc. IMechE, Part E: J. Process Mech. Eng., vol. 227, no. 1, pp.56–66, 2013. DOI: 10.1177/0954408912457622.
  • V. Leela, K. N. Seetharamu, N. Kotloni, and R. G. Reddy, “Effect of asymmetrical wall heat flux and wall temperature ratio on mixed convection in a vertical micro–porous–channel with internal heat generation,” Propuls. Power Res., vol. 9, no. 4, pp.394–407, 2020. DOI: 10.1016/j.jppr.2020.10.003.
  • A. J. Chamkha, A. M. Rashad, M. A. Mansour, T. Armaghani, and M. Ghalambaz, “Effects of heat sink and source and entropy generation on MHD mixed convection of a cu–water nanofluid in a lid–driven square porous enclosure with partial slip,” Phys. Fluids, vol. 29, no. 5, pp.052001, 2017. DOI: 10.1063/1.4981911.
  • I. Zahmatkesh and M. R. H. Shandiz, “Optimum constituents for MHD heat transfer of nanofluids within porous cavities: a Taguchi analysis in natural and mixed convection configurations.” J. Therm. Anal. Calorim, vol. 138, no. 2, pp. 1669–1681, 2019. DOI: 10.1007/s10973–019–08191–y.
  • I. Zahmatkesh and M. R. H. Shandiz, “MHD double-diffusive mixed convection of binary nanofluids through a vertical porous annulus considering Buongiorno’s two-phase model,” J. Therm. Anal. Calorim, vol. 147, no. 2, pp.1793–1807, 2022. DOI: 10.1007/s10973–020–10439–x.
  • B. K. Jha and B. Aina, “MHD mixed convection flow in an inclined porous channel having time–periodic boundary condition (MHD mixed convection flow in an inclined porous channel,” J. Porous. Med., vol. 24, no. 6, pp.69–91, 2021. DOI: 10.1615/JPorMedia.v24.i6.50.
  • A. T. Akinshilo. “Mixed convective heat transfer analysis of MHD fluid flowing through an electrically conducting and non–conducting walls of a vertical micro–channel considering radiation effect.” Appl. Therm. Eng., vol. 156, pp. 506–513, 2019. DOI:10.1016/j.applthermaleng.2019.04.100.
  • R. Rabhi, B. Amami, H. Dhahri, and A. Mhimid. “Entropy generation for an axisymmetric MHD flow under thermal non–equilibrium in porous micro duct using a modified lattice Boltzmann method.” J. Mag. Mag. Mat., vol. 419, pp. 521–532, 2016. DOI:10.1016/j.jmmm.2016.06.068.
  • M. Torabi and G. P. Peterson. “Effect of velocity slip and temperature jump on the heat transfer and entropy generation in micro porous channels under magnetic field.” Int. J. Heat Mass Transfer., vol. 102, pp. 585–595, 2016. DOI:10.1016/j.ijheatmasstransfer.2016.06.080.
  • D. Neild and A. Bejan, Convection in Porous Media. New York: Springer, 2006.
  • R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. New York: Academic Press, 1978.
  • A. Hooshmand, I. Zahmatkesh, M. Karami, and S. Delfani. “Porous foams and nanofluids for thermal performance improvement of a direct absorption solar collector: an experimental study.” Environ. Prog. Sustain. Energy, vol. 40, pp. 13684, 2021. DOI:10.1002/ep.13684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.