256
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flow and Heat Transfer in Two-Phase Flow Immiscible Droplets in Microchannels

, , &
Pages 1-27 | Received 15 May 2023, Accepted 13 Oct 2023, Published online: 24 Oct 2023

References

  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett., vol. 2, no. 5, pp. 126–129, May. 1981. DOI: 10.1109/EDL.1981.25367.
  • Y. S. Muzychka, E. J. Walsh, and P. Walsh, “Heat transfer enhancement using laminar gas-liquid segmented plug flows,” J. Heat Transfer, vol. 133, no. 4, pp. 041902, Apr. 2011. DOI: 10.1115/1.4002807.
  • N. Shao, A. Gavriilidis, and P. Angeli, “Flow regimes for adiabatic gas–liquid flow in microchannels.” Chem. Eng. Sci., vol. 64, no. 11, pp. 2749–2761, Jun. 2009. DOI: 10.1016/J.CES.2009.01.067.
  • J. Jovanović, et al., “Liquid–liquid slug flow: hydrodynamics and pressure drop,” Chem. Eng. Sci., vol. 66, no. 1, pp. 42–54, Jan. 2011. DOI: 10.1016/J.CES.2010.09.040.
  • R. Gupta, D. F. Fletcher, and B. S. Haynes, “Taylor Flow in microchannels: a review of experimental and computational work,” J. Comput. Multiph. Flows, vol. 2, no. 1, pp. 1–31, Mar. 2010. DOI: 10.1260/1757-482X.2.1.1.
  • K. A. Triplett, S. M. Ghiaasiaan, S. I. Abdel-Khalik, and D. L. Sadowski, “Gas–liquid two-phase flow in microchannels part I: two-phase flow patterns,” Int. J. Multiphas. Flow, vol. 25, no. 3, pp. 377–394, Apr. 1999. DOI: 10.1016/S0301-9322(98)00054-8.
  • F. Fairbrother and A. E. Stubbs, “119. Studies in electro-endosmosis. Part VI. The ‘bubble-tube’ method of measurement.” J. Chem. Soc, no. 0, pp. 527–529, Jan. 1935. DOI: 10.1039/JR9350000527.
  • G. I. Taylor, “Deposition of a viscous fluid on the wall of a tube,” J. Fluid Mech, vol. 10, no. 2, pp. 161, Mar. 1961. DOI: 10.1017/S0022112061000159.
  • F. P. Bretherton, “The motion of long bubbles in tubes,” J. Fluid Mech, vol. 10, no. 2, pp. 166, Mar. 1961. DOI: 10.1017/S0022112061000160.
  • M. Suo and P. Griffith, “Two-phase flow in capillary tubes,” J. Basic Eng., vol. 86, no. 3, pp. 576, Sep. 1964. DOI: 10.1115/1.3653176.
  • S. Irandoust and B. Andersson, “Liquid film in Taylor flow through a capillary,” Ind. Eng. Chem. Res., vol. 28, no. 11, pp. 1684–1688, Nov. 1989. DOI: 10.1021/ie00095a018.
  • P. Aussillous and D. Quéré, “Quick deposition of a fluid on the wall of a tube,” Phys. Fluids, vol. 12, no. 10, pp. 2367, Sep. 2000. DOI: 10.1063/1.1289396.
  • M. Heil, “Finite Reynolds number effects in the Bretherton problem,” Phys. Fluids, vol. 13, no. 9, pp. 2517–2521, Sep. 2001. DOI: 10.1063/1.1389861.
  • Y. Han and N. Shikazono, “Measurement of the liquid film thickness in micro tube slug flow.” Int. J. Heat Fluid Flow, vol. 30, no. 5, pp. 842–853, Oct. 2009. DOI: 10.1016/J.IJHEATFLUIDFLOW.2009.02.019.
  • A. Etminan, Y. S. Muzychka, and K. Pope, “Liquid film thickness of two-phase slug flows in capillary microchannels: a review paper,” Can J Chem Eng, vol. 100, no. 2, pp. 325–348, Feb. 2022. DOI: 10.1002/CJCE.24068.
  • R. Mattos dos Sanstos and M. Kawaji, “Effect of contact angle on gas slug formation, shape and flow in a microchannel T-junction by numerical simulation,” 19th Int. Congr. Chem. Proc. Eng., 2010.
  • S. M. Mousavi, F. Sotoudeh, B. J. Lee, M. R. Paydari, and N. Karimi, “Effect of hybrid wall contact angles on slug flow behavior in a T-junction microchannel: a numerical study,” Colloids Surf. A Physicochem. Eng. Asp, vol. 650, pp. 129677, Oct. 2022. DOI: 10.1016/J.COLSURFA.2022.129677.
  • T. S. Zhao and Q. C. Bi, “Co-current air-water two-phase flow patterns in vertical triangular microchannels,” Int. J. Multiphas. Flow, vol. 27, no. 5, pp.765–782, 2001. DOI: 10.1016/S0301-9322(00)00051-3.
  • R. (. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles. Cambridge University Press: Academic Press, 1978.
  • M. T. Kreutzer, F. Kapteijn, J. A. Moulijn, C. R. Kleijn, and J. J. Heiszwolf, “Inertial and interfacial effects on pressure drop of Taylor flow in capillaries,” AIChE J., vol. 51, no. 9, pp. 2428–2440, Sep. 2005. DOI: 10.1002/aic.10495.
  • X. Xuan, W. Lan, J. Yuan, J. Xu, and S. Li, “Study of the pressure drop of liquid-liquid slug flow in a circular microchannel,” Ind. Eng. Chem. Res., vol. 61, no. 48, pp. 17686–17696, Dec. 2022. DOI: 10.1021/acs.iecr.2c03066.
  • L. Ma, Z. Yan, C. Du, J. Deng, and G. Luo, “Effect of viscosity on liquid-liquid slug flow in a step T-Junction microchannel.” Ind. Eng. Chem. Res., vol. 61, no. 23, pp. 8333–8345, Jun. 2022. DOI: 10.1021/acs.iecr.2c01338.
  • A. Ładosz and P. Rudolf von Rohr, “Pressure drop of two-phase liquid-liquid slug flow in square microchannels,” Chem. Eng. Sci., vol. 191, pp. 398–409, Dec. 2018. DOI: 10.1016/J.CES.2018.06.057.
  • P. Urbant, A. Leshansky, and Y. Halupovich, “On the forced convective heat transport in a droplet-laden flow in microchannels,” Microfluid Nanofluidics, vol. 4, no. 6, pp. 533–542, Jun. 2008. DOI: 10.1007/s10404-007-0211-2.
  • M. Fischer, D. Juric, and D. Poulikakos, “Large convective heat transfer enhancement in microchannels with a train of coflowing immiscible or colloidal droplets,” J. Heat Transfer, vol. 132, no. 11, pp. 112402, Nov. 2010. DOI: 10.1115/1.4002031.
  • R. Gupta, D. F. Fletcher, and B. S. Haynes, “On the CFD modelling of Taylor flow in microchannels.” Chem. Eng. Sci., vol. 64, no. 12, pp. 2941–2950, Jun. 2009. DOI: 10.1016/J.CES.2009.03.018.
  • A. Bordbar, R. Kamali, and A. Taassob, “Thermal performance analysis of slug flow in square microchannels.” Heat Transfer. Eng., vol. 41, no. 1, pp. 84–100, May. 2019. DOI: 10.1080/01457632.2018.1513630.
  • D. Liu, X. Ling, H. Peng, J. Li, and L. Duan, “Experimental and numerical analysis on heat transfer performance of slug flow in rectangular microchannel.” Int. J. Heat Mass. Transf. vol. 147, pp. 118963, Feb 2020. DOI: 10.1016/J.IJHEATMASSTRANSFER.2019.118963.
  • A. Abdollahi, S. E. Norris, and R. N. Sharma, “Fluid flow and heat transfer of liquid-liquid Taylor flow in square microchannels,” Appl. Therm. Eng., vol. 172, pp. 115123, May. 2020. DOI: 10.1016/J.APPLTHERMALENG.2020.115123.
  • M. Bayareh, M. N. Esfahany, N. Afshar, and M. Bastegani, “Numerical study of slug flow heat transfer in microchannels”., Int. J. Therm. Sci., 147, Jan, 2020, 10.1016/j.ijthermalsci.2019.106118
  • C. Wang, M. Tian, J. Zhang, G. Zhang, and Y. Zhang, “Numerical study on pressure drop and heat transfer characteristics of gas-liquid Taylor flow in a microchannel based on FFR method.” Int. Commun. Heat Mass Transfer. vol. 117, pp. 104802, Oct 2020. DOI: 10.1016/J.ICHEATMASSTRANSFER.2020.104802.
  • M. P. Vasilev, B. A. Rusakov, and R. S. Abiev, “Gas–liquid slug flow in microfluidic heat exchanger: effect of gas hold-up and bubble size on pressure drop and heat transfer,” Int. J. Therm. Sci., vol. 173, pp. 107395, Mar. 2022. DOI: 10.1016/J.IJTHERMALSCI.2021.107395.
  • C. Wang, M. Tian, G. Zhang, and J. Zhang, “Experimental analysis on the heat transfer performance of gas-liquid Taylor flow in a square microchannel,” Appl. Therm. Eng., vol. 228, pp. 120537, Jun. 2023. DOI: 10.1016/J.APPLTHERMALENG.2023.120537.
  • A. Etminan, Y. S. Muzychka, and K. Pope, “Experimental and numerical analysis of heat transfer and flow phenomena in Taylor flow through a straight mini-channel.” ASME J. Heat Mass Transf, vol. 145, no. 8, Aug 2023. DOI: 10.1115/1.4062175.
  • V. Talimi, Y. S. Muzychka, and S. Kocabiyik, “A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels,” Int. J. Multiphas. Flow, vol. 39, pp. 88–104, Mar. 2012. DOI: 10.1016/J.IJMULTIPHASEFLOW.2011.10.005.
  • T. Bandara, N.-T. Nguyen, and G. Rosengarten, “Slug flow heat transfer without phase change in microchannels: a review.” Chem. Eng. Sci. vol. 126, pp. 283–295, Apr 2015. DOI: 10.1016/J.CES.2014.12.007.
  • A. Bordbar, A. Taassob, A. Zarnaghsh, and R. Kamali, “Slug flow in microchannels: numerical simulation and applications.” J. Ind. Eng. Chem. vol. 62, pp. 26–39, Jun 2018. DOI: 10.1016/J.JIEC.2018.01.021.
  • E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys., vol. 210, no. 1, pp. 225–246, Nov. 2005. DOI: 10.1016/J.JCP.2005.04.007.
  • E. Olsson, G. Kreiss, and S. Zahedi, “A conservative level set method for two phase flow II,” J. Comput. Phys., vol. 225, no. 1, pp. 785–807, Jul. 2007. DOI: 10.1016/J.JCP.2006.12.027.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, Jun. 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • A. N. Asadolahi, R. Gupta, S. S. Y. Leung, D. F. Fletcher, and B. S. Haynes, “Validation of a CFD model of Taylor flow hydrodynamics and heat transfer.” Chem. Eng. Sci., vol. 69, no. 1, pp. 541–552, Feb. 2012. DOI: 10.1016/J.CES.2011.11.017.
  • E. Roumpea, et al., “Experimental studies on droplet formation in a flow-focusing microchannel in the presence of surfactants.” Chem. Eng. Sci. vol. 195, pp. 507–518, Feb 2019. DOI: 10.1016/J.CES.2018.09.049.
  • H. Jiang, G. Wang, C. Zhu, T. Fu, and Y. Ma, “Dynamics of droplet formation and mechanisms of satellite droplet formation in T-junction microchannel.” Chem. Eng. Sci. vol. 248, pp. 117217, Feb 2022. DOI: 10.1016/J.CES.2021.117217.
  • C. A. Stan, S. K. Y. Tang, and G. M. Whitesides, “Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate.” Anal. Chem., vol. 81, no. 6, pp. 2399–2402, Mar. 2009. DOI: 10.1021/ac8026542.
  • Y. Han and N. Shikazono, “Measurement of liquid film thickness in micro square channel,” Int. J. Multiphas. Flow, vol. 35, no. 10, pp. 896–903, Oct. 2009. DOI: 10.1016/J.IJMULTIPHASEFLOW.2009.06.006.
  • P. A. Walsh, E. J. Walsh, and Y. S. Muzychka, “Heat transfer model for gas–liquid slug flows under constant flux,” Int. J. Heat Mass. Transf., vol. 53, no. 15–16, pp. 3193–3201, Jul. 2010. DOI: 10.1016/J.IJHEATMASSTRANSFER.2010.03.007.
  • F. Guo and B. Chen, “Numerical study on Taylor bubble formation in a micro-channel t-junction using vof method.” Microgravity Sci. Technol, vol. 21, no. SUPPL. 1, pp. 51–58, Aug. 2009. DOI: 10.1007/s12217-009-9146-4.
  • S. Kumari, N. Kumar, and R. Gupta, “Flow and heat transfer in slug flow in microchannels: effect of bubble volume.” Int. J. Heat Mass. Transf. vol. 129, pp. 812–826, Feb 2019. DOI: 10.1016/J.IJHEATMASSTRANSFER.2018.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.