50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Elasto-Thermodiffusive Microtemperature Model Induced by a Mechanical Ramp-Type of Nanoscale Photoexcited Semiconductor

, , &
Pages 69-85 | Received 09 Nov 2023, Accepted 08 Jan 2024, Published online: 22 Jan 2024

References

  • M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, no. 3, pp.240–253, 1956. DOI: 10.1063/1.1722351.
  • H. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp.299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elast., vol. 2, no. 1, pp.1–7, 1972. DOI: 10.1007/BF00045689.
  • D. S. Chandrasekharaiah, “Thermoelasticity with second sound: a review,” Appl. Mech. Rev, vol. 39, no. 3, pp.355–376, 1986. DOI: 10.1115/1.3143705.
  • D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity: a review of recent literature,” Appl. Mech. Rev., vol. 51, no. 12, pp.705–729, 1998. DOI: 10.1115/1.3098984.
  • J. N. Sharma, V. Kumar, and C. Dayal, “Reflection of generalized thermoelastic waves from the boundary of a half-space,” J. Therm. Stress, vol. 26, no. 10, pp.925–942, 2003. DOI: 10.1080/01495730306342.
  • K. Lotfy and S. Abo-Dahab, “Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem,” J. Comput. Theor. Nanosci, vol. 12, no. 8, pp.1709–1719, 2015. DOI: 10.1166/jctn.2015.3949.
  • M. Othman and K. Lotfy, “The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation,” J. Comput. Theor. Nanosci, vol. 12, no. 9, pp.2587–2600, 2015. DOI: 10.1166/jctn.2015.4067.
  • I. Abbas and M. Marin, “Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse,” Iran J. Sci Technol. Trans. Mech. Eng, vol. 42, no. 1, pp.57–71, 2018. DOI: 10.1007/s40997-017-0077-1.
  • S. Abo-Dahab and I. Abbas, “LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity, Appl,” Math. Model, vol. 35, no. 8, pp.3759–3768, 2011. DOI: 10.1016/j.apm.2011.02.028.
  • A. Hobiny and I. Abbas, “Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source,” Int. J. Heat Mass Trans, vol. 124, pp. 1011–1014, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.018.
  • I. Abbas, “Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity, Appl,” Math. Model, vol. 39, no. 20, pp.6196–6206, 2015. DOI: 10.1016/j.apm.2015.01.065.
  • I. Abbas, “A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation,” Sadhana, vol. 36, no. 3, pp.411–416, 2011. DOI: 10.1007/s12046-011-0025-5.
  • I. Abbas, “Analytical solution for a free vibration of a thermoelastic hollow sphere, Mech,” Based Desi. Struct. Mach, vol. 43, no. 3, pp.265–276, 2015. DOI: 10.1080/15397734.2014.956244.
  • B. Maruszewski, “Electro-magneto-thermo-elasticity of extrinsic semiconductors, classical irreversible thermodynamic approach,” Arch. Mech, vol. 38, pp. 71–82, 1986.
  • B. Maruszewski, “Electro-magneto-thermo-elasticity of Extrinsic Semiconductors, extended irreversible thermodynamic approach,” Arch. Mech, vol. 38, pp. 83–95, 1986.
  • B. Maruszewski, “Coupled evolution equations of deformable semiconductors,” Int. J. Engr. Sci, vol. 25, no. 2, pp.145–153, 1987. DOI: 10.1016/0020-7225(87)90002-4.
  • J. N. Sharma and N. Thakur Thakur, “Plane harmonic elasto-thermodiffusive waves in semiconductor materials.” J. Mech. Mater. Struct, vol. 1, pp. 813–835, 2006.
  • A. Mandelis, Photoacoustic and Thermal Wave Phenomena in Semiconductors. United States: Elsevier, 1987.
  • D. Almond and P. Patel, Photothermal Science and Techniques. Berlin, Germany: Springer Science & Business Media, 1996.
  • J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples.” J. Appl. Phys, vol. 36, no. 1, pp.3–8, 1965. DOI: 10.1063/1.1713919.
  • K. Lotfy, “Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium,” Silicon, vol. 11, no. 4, pp.1863–1873, 2019. DOI: 10.1007/s12633-018-0005-z.
  • K. Lotfy and R. S. Tantawi, “Photo-thermal-elastic interaction in a functionally graded material (FGM) and magnetic field,” Silicon, vol. 12, no. 2, pp.295–303, 2020. DOI: 10.1007/s12633-019-00125-5.
  • K. Lotfy, “A novel model of magneto photothermal diffusion (MPD) on polymer nano-composite semiconductor with initial stress,” Waves Random Complex Medium, vol. 31, no. 1, pp.83–100, 2019. DOI: 10.1080/17455030.2019.1566680.
  • K. Lotfy, E. S. Elidy, and R. Tantawi, “Piezo-photo-thermoelasticity transport process for hyperbolic two-temperature theory of semiconductor material,” Int. J. Mod. Phys., C, vol. 32, no. 7, pp.2150088, 2021. DOI: 10.1142/S0129183121500881.
  • A. Mahdy, K. Lotfy, A. El-Bary, and I. Tayel, “Variable thermal conductivity and hyperbolic two-temperature theory during magneto-photothermal theory of semiconductor induced by laser pulses,” Eur. Phys. J. Plus, vol. 136, no. 6, pp.651, 2021. DOI: 10.1140/epjp/s13360-021-01633-3.
  • A. Hobiny and I. Abbas, “Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material,” Results Phys, vol. 10, pp. 385–390, 2018. DOI: 10.1016/j.rinp.2018.06.035.
  • I. Abbas, F. Alzahrani, and A. Elaiw, “A DPL model of photothermal interaction in a semiconductor material,” Comp. Med., vol. 29, no. 2, pp.328–343, 2019. DOI: 10.1080/17455030.2018.1433901.
  • R. A. Grot, “Thermodynamics of a continuum with microstructure,” Int. J. Eng. Sci, vol. 7, no. 8, pp.801–814, 1969. DOI: 10.1016/0020-7225(69)90062-7.
  • P. Riha, “On the microcontinuum model of heat conduction in materials with inner structure,” Int. J. Eng. Sci, vol. 14, no. 6, pp.529–535, 1976. DOI: 10.1016/0020-7225(76)90017-3.
  • D. Iesan and R. Quintanilla, “On a theory of thermoelasticity with microtemperatures,” J. Thermal Stresses, vol. 23, no. 3, pp.199–215, 2000. DOI: 10.1080/014957300280407.
  • D. Iesan, “On a theory of micromorphic elastic solids with microtemperatures,” J. Thermal Stresses, vol. 24, pp. 737–752, 2001.
  • D. Iesan, “Thermoelasticity of bodies with microstructure and microtemperatures,” Int. J. Solids Struct, vol. 44, no. 25–26, pp.8648–8662, 2007. DOI: 10.1016/j.ijsolstr.2007.06.027.
  • K. Lotfy, R. Kumar, W. Hassan, and M. Gabr, “Thermomagnetic effect with microtemperature in a semiconducting photothermal excitation medium,” Appl. Math. Mech. Engl. Ed., vol. 39, no. 6, pp.783–796, 2018. DOI: 10.1007/s10483-018-2339-9.
  • A. C. Eringen, Nonlocal Continuum Field Theories. New York: Springer, 2002.
  • A. C. Eringen, “On Rayleigh surface waves with small wave lengths,” Lett. Appl. Eng. Sci, vol. 1, pp. 11–17, 1973.
  • A. C. Eringen, “Plane waves in nonlocal micropolar elasticity,” Inter. J. Eng. Sci, vol. 2, no. 8–10, pp.1113–1121, 1984. DOI: 10.1016/0020-7225(84)90112-5.
  • I. Roy, D. P. Acharya, and S. Acharya, “Rayleigh wave in a rotating nonlocal magnetoelastic half-plane,” J. Theor. Appl. Mech, vol. 45, no. 4, pp.61–78, 2015. DOI: 10.1515/jtam-2015-0024.
  • S. Narendra, “Spectral finite element and nonlocal continuum mechanics based formulation for torsional wave propagation in nanorods,” Finite Elem. Anal. Des., vol. 62, pp. 65–75, 2012. DOI: 10.1016/j.finel.2012.06.012.
  • S. Chirita, “Thermoelastic surface waves on an exponentially graded half-space,” Mech. Res. Commun, vol. 49, pp. 27–35, 2013. DOI: 10.1016/j.mechrescom.2013.01.005.
  • A. Khurana and S. K. Tomar, “Waves at interface of dissimilar nonlocal micropolar elastic half-spaces,” Mech. Adv. Mat. Struct, vol. 1, no. 10, pp.825–833, 2018. DOI: 10.1080/15376494.2018.1430261.
  • S. Mondal and A. Sur, “Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses,” Waves Random Complex Media, vol. 31, no. 6, pp.1835–1858, 2020. DOI: 10.1080/17455030.2019.1705426.
  • L. Brancik, Programs for fast numerical inversion of Laplace transforms in MATLAB language environment. Proc. 7th Conf, vol. 118. Purkynova, Brno, Cech Republic: MATLAB’99, 1999, pp. 27–39
  • G. Honig and U. Hirdes, “A method for the numerical inversion of Laplace Transforms,” Comp. Appl. Math., vol. 10, no. 1, pp.113–132, 1984. DOI: 10.1016/0377-0427(84)90075-X.
  • A. Mahdy, “Stability, existence, and uniqueness for solving fractional glioblastoma multiforme using a Caputo–Fabrizio derivative‏,” Math. Methods Appl. Sci.” 2023. DOI:10.1002/mma.9038.
  • A. Mahdy, “A numerical method for solving the nonlinear equations of Emden-Fowler models,” J. Ocean Eng. Sci., 2022. DOI: 10.1016/j.joes.2022.04.019.
  • A. Mahdy, Y. Amer, M. Mohamed, and E. Sobhy, “General fractional financial models of awareness with Caputo–Fabrizio derivative,” Adv. Mech. Eng, vol. 12, no. 11, pp.168781402097552, 2020. DOI: 10.1177/1687814020975525.
  • I. Abbas, F. Alzahranib, and A. Elaiwb, “A DPL model of photothermal interaction in a semiconductor material,” Comp. Med., vol. 29, no. 2, pp.328–343, 2019. DOI: 10.1080/17455030.2018.1433901.
  • K. Lotfy and R. Tantawi, “Photo-thermal-elastic interaction in a Functionally Graded Material (FGM) and magnetic field,” Silicon, vol. 12, no. 2, pp.295–303, 2020. DOI: 10.1007/s12633-019-00125-5.
  • M. Yasein, N. Mabrouk, K. Lotfy, and A. EL-Bary, “The influence of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type,” Results Phys, vol. 15, pp. 102766, 2019. DOI: 10.1016/j.rinp.2019.102766.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.