112
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Coupling of Surface Plasmon Polaritons and Hyperbolic Phonon Polaritons on the Near-Field Radiative Heat Transfer Between Multilayer Graphene/hBN Structures

, , , , &
Received 11 Jul 2023, Accepted 31 Jan 2024, Published online: 20 Feb 2024

References

  • Z. Zhang, Nano/Microscale Heat Transfer. Switzerland: Springer Nature, 2020.
  • K. Shi, et al., “Colossal enhancement of near-field thermal radiation across hundreds of nanometers between millimeter-scale plates through surface plasmon and phonon polaritons coupling,” Nano Lett., vol. 19, no. 11, pp. 8082–8088, 2019. DOI: 10.1021/acs.nanolett.9b03269.
  • T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B, vol. 95, pp. 125307, 2017. DOI: 10.1103/PhysRevB.95.125307.
  • L. Tang, J. DeSutter, and M. Francoeur, “Near-field radiative heat transfer between dissimilar materials mediated by coupled surface phonon- and plasmon-polaritons,” ACS. Photonics, vol. 7, no. 5, pp. 1304–1311, 2020. DOI: 10.1021/acsphotonics.0c00404.
  • D. Xu, J. Zhao, and L. Liu, “Electrically tuning near-field heat flux using metal–oxide–semiconductor structure considering gradient dielectric function distribution,” Appl. Phys. Lett., vol. 121, no. 18, pp. 181112, 2022. DOI: 10.1063/5.0123623.
  • X. Liu, L. Wang, and Z. Zhang, “Near-field thermal radiation: recent progress and outlook,” Nanoscale Microscale Thermophys. Eng., vol. 19, no. 2, pp. 98–126, 2015. DOI: 10.1080/15567265.2015.1027836.
  • C. Lucchesi, et al., “Near-field thermophotovoltaic conversion with high electrical power density and cell efficiency above 14%,” Nano Lett., vol. 21, no. 11, pp. 4524–4529, 2021. DOI: 10.1021/acs.nanolett.0c04847.
  • M. Luo, J. Zhao, L. Liu, and M. Antezza, “Radiative heat transfer and radiative thermal energy for two-dimensional nanoparticle ensembles,” Phys. Rev. B, vol. 102, no. 2, pp. 024203, 2020. DOI: 10.1103/PhysRevB.102.024203.
  • R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat Nanotechnol, vol. 11, no. 6, pp. 515–519, 2016. DOI: 10.1038/nnano.2016.20.
  • X. H. Wu and C. J. Fu, “Near-field radiative heat transfer between uniaxial hyperbolic media: role of volume and surface phonon polaritons,” J. Quant. Spectrosc. Radiat. Transfer, vol. 258, pp. 107337, 2021. DOI: 10.1016/j.jqsrt.2020.107337.
  • X. Wu and C. Fu, “Hyperbolic volume and surface phonon polaritons excited in an ultrathin hyperbolic slab: connection of dispersion and topology,” Nanoscale Microscale Thermophys. Eng., vol. 25, no. 1, pp. 64–71, 2021. DOI: 10.1080/15567265.2021.1883165.
  • X. Liu, R. Zhang, and Z. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer, vol. 73, pp. 389–398, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.02.021.
  • K. Shi, et al., “Near-field radiative heat transfer modulation with an ultrahigh dynamic range through mode mismatching,” Nano Lett., vol. 22, no. 19, pp. 7753–7760, 2022. DOI: 10.1021/acs.nanolett.2c01286.
  • P. Ben-Abdallah and S. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett., vol. 112, no. 4, pp. 044301, 2014. DOI: 10.1103/PhysRevLett.112.044301.
  • Y. Yang, P. Sabbaghi, and L. Wang, “Effect of magnetic polaritons in SiC deep gratings on near-field radiative transfer,” Int. J. Heat Mass Transfer, vol. 108, pp. 851–859, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.061.
  • J. Song, et al., “Many-body near-field radiative heat transfer: methods, functionalities and applications,” Rep. Prog. Phys., vol. 84, no. 3, pp. 036501, 2021. DOI: 10.1088/1361-6633/abe52b.
  • M. Luo, J. Zhao, L. Liu, B. Guizal, and M. Antezza, “Many-body effective thermal conductivity in phase-change nanoparticle chains due to near-field radiative heat transfer,” Int. J. Heat Mass Transfer, vol. 166, pp. 120793, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120793.
  • W. Zhang, B. Wang, and C. Zhao, “Active control and enhancement of near-field heat transfer between dissimilar materials by strong coupling effects,” Int. J. Heat Mass Transfer, vol. 188, pp. 122588, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122588.
  • M. Lim, J. Song, S. Lee, and B. Lee, “Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons,” Nat. Commun., vol. 9, no. 1, pp. 1–9, 2018. DOI: 10.1038/s41467-018-06795-w.
  • S. Biehs, et al., “Near-field radiative heat transfer in many-body systems,” Rev Mod Phys, vol. 93, no. 2, pp. 025009, 2021. DOI: 10.1103/RevModPhys.93.025009.
  • J. Dong, J. Zhao, and L. Liu, “Long-distance near-field energy transport via propagating surface waves,” Phys. Rev. B, vol. 97, no. 7, pp. 075422, 2018. DOI: 10.1103/PhysRevB.97.075422.
  • M. Francoeur, M. P. Mengüç, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett., vol. 93, pp. 043109, 2008. DOI: 10.1063/1.2963195.
  • M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two tin films supporting surface phonon polaritons,” J. Appl. Phys., vol. 107, no. 3, pp. 034313, 2010. DOI: 10.1063/1.3294606.
  • J. Zhang, H. Liu, K. Zhang, J. Cao, and X. Wu, “Radiative heat transfer between multilayer hyperbolic materials in both near-field and far-field,” Int. J. Heat Mass Transfer, vol. 202, pp. 123714, 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123714.
  • W. Zhang, C. Zhao, and B. Wang, “Enhancing near-field heat transfer between composite structures through strongly coupled surface modes,” Phys. Rev. B, vol. 100, no. 7, pp. 075425, 2019. DOI: 10.1103/PhysRevB.100.075425.
  • T. Low, et al., “Polaritons in layered two-dimensional materials,” Nat Mater, vol. 16, no. 2, pp. 182–194, 2017. DOI: 10.1038/nmat4792.
  • K. Shi, R. Liao, G. Cao, F. Bao, and S. He, “Enhancing thermal radiation by graphene-assisted hBN/SiO2 hybrid structures at the nanoscale,” Opt Express, vol. 126, no. 10, pp. A591–A60, 2018. DOI: 10.1364/OE.26.00A591.
  • Y. Hu, et al., “Rotation-induced significant modulation of near-field radiative heat transfer between hyperbolic nanoparticles,” Int. J. Heat Mass Transfer, vol. 189, pp. 122666, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122666.
  • D. Caldwell, et al., “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun., vol. 5, no. 1, pp. 5221, 2014. DOI: 10.1038/ncomms6221.
  • S. Dai, et al., “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science, vol. 343, no. 6175, pp. 1125–1129, 2014. DOI: 10.1126/science.1246833.
  • A. Ott, R. Messina, P. Ben-Abdallah, and S. Biehs, “Radiative thermal diode driven by nonreciprocal surface waves,” Appl. Phys. Lett., vol. 114, no. 16, pp. 163105, 2019. DOI: 10.1063/1.5093626.
  • K. Korzeb, M. Gajc, and A. Pawlak, “Compendium of natural hyperbolic materials,” Opt Express, vol. 23, no. 20, pp. 25406–25424, 2015. DOI: 10.1364/OE.23.025406.
  • C. Zhou, X. Wu, Y. Zhang, and H. Yi, “Amplification and modulation effect of elliptical surface polaritons on a thermal diode,” Int. J. Heat Mass Transfer, vol. 180, pp. 121794, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121794.
  • X. Wu and C. Fu, “Near-field radiative modulator based on dissimilar hyperbolic materials with in-plane anisotropy,” Int. J. Heat Mass Transfer, vol. 168, pp. 120908, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.120908.
  • H. Hajian, I. Rukhlenko, V. Erçağlar, G. Hanson, and E. Ozbay, “Epsilon-near-zero enhancement of near-field radiative heat transfer in BP/hBN and BP/α-MoO3 parallel-plate structures,” Appl. Phys. Lett., vol. 120, no. 11, pp. 112204, 2022. DOI: 10.1063/5.0083817.
  • W. Gu, G. H. Tang, and W. Q. Tao, “Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs,” Int. J. Heat Mass Transfer, vol. 82, pp. 429–434, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.058.
  • P. B. Abdallah and S. A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett., vol. 112, no. 4, pp. 044301, 2014. DOI: 10.1103/PhysRevLett.112.044301.
  • Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transfer, vol. 158, pp. 69–77, 2015. DOI: 10.1016/j.jqsrt.2014.12.002.
  • S. H. Fan and W. Li, “Photonics and thermodynamics concepts in radiative cooling,” Nat Photonics, vol. 16, no. 3, pp. 182–190, 2022. DOI: 10.1038/s41566-021-00921-9.
  • D. Zhao and M. Qiu, “Thermal photonics boosts radiative cooling, light,” Light Sci. Appl., vol. 11, no. 1, pp. 35, 2022. DOI: 10.1038/s41377-021-00691-7.
  • R. D. Buijs, N. J. Schilder, T. A. W. Wolterink, G. Gerini, and A. F. Koenderink, “Super-resolution without imaging: library-based approaches using near-to-far-field transduction by a nanophotonic structure,” ACS. Photonics, vol. 7, no. 11, pp. 3246–3256, 2020. DOI: 10.1021/acsphotonics.0c01350.
  • S. Biehs and M. Tschikin, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett., vol. 109, no. 10, pp. 104301, 2012. DOI: 10.1103/PhysRevLett.109.104301.
  • K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS. Photonics, vol. 4, no. 4, pp. 971–978, 2017. DOI: 10.1021/acsphotonics.7b00037.
  • B. Zhao, B. Guizal, Z. Zhang, S. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B, vol. 95, no. 24, pp. 245437, 2017. DOI: 10.1103/PhysRevB.95.245437.
  • B. Yang, D. Pan, X. Guo, H. Hu, and Q. Dai, “Substrate effects on the near-field radiative heat transfer between bi-planar graphene/hBN heterostructures,” Int. J. Therm. Sci., vol. 176, pp. 107493, 2022. DOI: 10.1016/j.ijthermalsci.2022.107493.
  • K. Shi, F. Bao, N. He, and S. He, “Near-field heat transfer between graphene-si grating heterostructures with multiple magnetic-polaritons coupling,” Int. J. Heat Mass Transfer, vol. 134, pp. 1119–1126, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.037.
  • C. Zhou, X. Wu, Y. Zhang, and H. Yi, “Super-planckian thermal radiation in borophene sheets,” Int. J. Heat Mass Transfer, vol. 183, pp. 122140, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122140.
  • Y. Sun, et al., “Negative differential thermal conductance between Weyl semimetals nanoparticles through vacuum,” Phys. Scr., vol. 97, no. 9, pp. 095506, 2022. DOI: 10.1088/1402-4896/ac8843.
  • K. Shi, Z. Chen, X. Xu, J. Evans, and S. He, “Optimized colossal near-field thermal radiation enabled by manipulating coupled plasmon polariton geometry,” Adv. Mater., vol. 33, no. 52, pp. 2106097, 2021. DOI: 10.1002/adma.202106097.
  • Y. Zhang, C. Wang, H. Yi, and H. Tan, “Multiple surface plasmon polaritons mediated near-field radiative heat transfer between graphene/vacuum multilayers,” J. Quant. Spectrosc. Radiat. Transfer, vol. 221, pp. 138–146, 2018. DOI: 10.1016/j.jqsrt.2018.09.029.
  • H. Iizuka and S. Fan, “Significant enhancement of near-field electromagnetic heat transfer in a multilayer structure through multiple surface-states coupling,” Phys. Rev. Lett., vol. 120, no. 6, pp. 063901, 2018. DOI: 10.1103/PhysRevLett.120.063901.
  • O. Miller, S. Johnson, and A. Rodriguez, “Effectiveness of thin films in lieu of hyperbolic metamaterials in the near field,” Phys. Rev. Lett., vol. 112, no. 15, pp. 157402, 2014. DOI: 10.1103/PhysRevLett.112.157402.
  • B. Zhao and Z. M. Zhang, “Enhanced photon tunneling by surface plasmon–phonon polaritons in graphene/hBN heterostructures,” J. Heat Transfer, vol. 139, no. 2, pp. 022701, 2017. DOI: 10.1115/1.4034793.
  • C. Feng, Z. Tang, and J. Yu, “A novel CMOS device capable of measuring near-field thermal radiation,” Chin. Phys. Lett., vol. 29, no. 3, pp. 038502, 2012. DOI: 10.1088/0256-307X/29/3/038502.
  • C. Feng, Z. Tang, J. Yu, and C. Sun, “A MEMS device capable of measuring near-field thermal radiation between membranes,” Sensors, vol. 13, no. 2, pp. 1998, 2013. DOI: 10.3390/s130201998.
  • R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, “Demonstration of strong near-field radiative heat transfer between integrated nanostructures,” Nano Lett., vol. 14, no. 12, pp. 6971–6975, 2014. DOI: 10.1021/nl503236k.
  • X. Ying, P. Sabbaghi, N. Sluder, and L. Wang, “Super-Planckian radiative heat transfer between macroscale surfaces with vacuum gaps down to 190 nm directly created by SU 8 posts and characterized by capacitance method,” ACS. Photonics, vol. 7, no. 1, pp. 190–196, 2020. DOI: 10.1021/acsphotonics.9b01360.
  • J. Yang, et al., “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun., vol. 9, no. 1, pp. 4033, 2018. DOI: 10.1038/s41467-018-06163-8.
  • L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett., vol. 92, no. 13, pp. 133106, 2008. DOI: 10.1063/1.2905286.
  • H. Salihoglu, et al., “Near-field thermal radiation between two plates with sub-10 nm vacuum separation,” Nano Lett., vol. 20, no. 8, pp. 6091–6096, 2020. DOI: 10.1021/acs.nanolett.0c02137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.