0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermoelectric Phenomena in a Magnetic Heterostructure with AAH Modulation: Charge and Spin Figure of Merits

&
Received 07 Jun 2023, Accepted 08 May 2024, Published online: 12 Jul 2024

References

  • M. Leclerc and A. Nazari, “Green energy from a blue polymer,” Nat. Mater., vol. 10, no. 6, pp. 409, 2011. DOI: 10.1038/nmat3032.
  • W. Liu, K. Yin, Q. Zhang, C. Uher, and X. Tang, “Eco-friendly high-performance silicide thermoelectric materials,” Natl. Sci. Rev., vol. 4, no. 4, pp. 611, 2017. DOI: 10.1093/nsr/nwx011.
  • G. D. Mahan and J. O. Sofo, “The best thermoelectric,” Proc. Natl. Acad. Sci. U.S.A., vol. 93, no. 15, pp. 7436, 1996. DOI: 10.1073/pnas.93.15.7436.
  • J. He and T. M. Tritt, “Advances in thermoelectric materials research: Looking back and moving forward,” Science, vol. 357, no. 6358, pp. eaak9997, 2017. DOI: 10.1126/science.aak9997.
  • G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater., vol. 7, no. 2, pp. 105, 2008. DOI: 10.1038/nmat2090.
  • E. Zerah-Harush and Y. Dubi, “Enhanced thermoelectric performance of hybrid nanoparticle–single-molecule junctions,” Phys. Rev. Appl., vol. 3, no. 6, pp. 064017, 2015. DOI: 10.1103/PhysRevApplied.3.064017.
  • Y. Dubi and M. D. Ventra, “Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions,” Rev. Mod. Phys., vol. 83, no. 1, pp. 131, 2011. DOI: 10.1103/RevModPhys.83.131.
  • N. A. Zimbovskaya, “Seebeck effect in molecular junctions,” J. Phys.: Condens. Matter., vol. 28, no. 18, pp. 183002, 2016. DOI: 10.1088/0953-8984/28/18/183002.
  • J. Vacek, J. V. Chocholousova, I. G. Stara, I. Stary, and Y. Dubi, “Mechanical tuning of conductance and thermopower in helicene molecular junctions,” Nanoscale, vol. 7, no. 19, pp. 8793, 2015. DOI: 10.1039/C5NR01297J.
  • G. Chen, Nanoscale energy transport and conversion. New York: Oxford Univ. Press, 2005.
  • R. Franz and G. Wiedemann, “Ueber die Wärme-Leitungsfähigkeit der Metalle,” Ann. Phys., vol. 165, no. 8, pp. 497, 1853. DOI: 10.1002/andp.18531650802.
  • L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Phys. Rev. B, vol. 47, no. 24, pp. 16631, 1993. DOI: 10.1103/PhysRevB.47.16631.
  • B. Kubala, J. König, and J. Pekola, “Violation of the Wiedemann-Franz Law in a Single-Electron Transistor,” Phys. Rev. Lett., vol. 100, no. 6, pp. 066801, 2008. DOI: 10.1103/PhysRevLett.100.066801.
  • K. Khitun, L. Wang, and G. Chen, “Thermoelectric figure of merit enhancement in a quantum dot superlattice,” Nanotechnology, vol. 11, no. 4, pp. 327, 2000. DOI: 10.1088/0957-4484/11/4/327.
  • J. Liu, Q.-F. Sun, and X. C. Xie, “Enhancement of the thermoelectric figure of merit in a quantum dot due to the Coulomb blockade effect,” Phys. Rev. B, vol. 81, no. 24, pp. 245323, 2010. DOI: 10.1103/PhysRevB.81.245323.
  • A. Balandin and O. L. Lazarenkova, “Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices,” Appl. Phys. Lett., vol. 82, no. 3, pp. 415, 2003. DOI: 10.1063/1.1539905.
  • M. Wierzbicki and R. Swirkowicz, “Influence of interference effects on thermoelectric properties of double quantum dots,” Phys. Rev. B, vol. 84, no. 7, pp. 075410, 2011. DOI: 10.1103/PhysRevB.84.075410.
  • O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B, vol. 84, no. 11, pp. 113415, 2011. DOI: 10.1103/PhysRevB.84.113415.
  • M. Saiz-Bretin, A. V. Malyshev, P. A. Orellana, and F. Dominguez-Adome, “Enhancing thermoelectric properties of graphene quantum rings,” Phys. Rev. B, vol. 91, no. 8, pp. 085431, 2015. DOI: 10.1103/PhysRevB.91.085431.
  • X. Ni, G. Xiang, J.-S. Wang, and B. Li, “Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons,” Appl. Phys. Lett., vol. 95, no. 19, pp. 192114, 2009. DOI: 10.1063/1.3264087.
  • N. Mingo, “Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires,” Appl. Phys. Lett., vol. 84, no. 14, pp. 2652, 2004. DOI: 10.1063/1.1695629.
  • T. Zhang, S. Wu, J. Xu, R. Zheng, and G. Cheng, “High thermoelectric figure-of-merits from large-area porous silicon nanowire arrays,” Nano. Energy, vol. 13, pp. 433, 2015. DOI: 10.1016/j.nanoen.2015.03.011.
  • J. E. Cornett and O. Rabin, “Thermoelectric figure of merit calculations for semiconducting nanowires,” Appl. Phys. Lett., vol. 98, no. 18, pp. 182104, 2011. DOI: 10.1063/1.3585659.
  • H. Karbaschi, J. Lovén, K. Courteaut, A. Wacker, and M. Leijnse, “Nonlinear thermoelectric efficiency of superlattice-structured nanowires,” Phys. Rev. B, vol. 94, no. 11, pp. 115414, 2016. DOI: 10.1103/PhysRevB.94.115414.
  • P. Murphy, S. Mukherjee, and J. Moore, “Optimal thermoelectric figure of merit of a molecular junction,” Phys. Rev. B, vol. 78, no. 16, pp. 161406, 2008. DOI: 10.1103/PhysRevB.78.161406.
  • J. C. Klöckner, R. Siebler, J. C. Cuevas, and F. Pauly, “Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons,” Phys. Rev. B, vol. 95, no. 24, pp. 245404, 2017. DOI: 10.1103/PhysRevB.95.245404.
  • M. Bürkle, T. J. Hellmuth, F. Pauly, and Y. Asai, “First-principles calculation of the thermoelectric figure of merit for [2,2]paracyclophane-based single-molecule junctions,” Phys. Rev. B, vol. 91, no. 16, pp. 165419, 2015. DOI: 10.1103/PhysRevB.91.165419.
  • D. Nozaki, H. Sevincli, W. Li, R. Gutierrez, and G. Cuniberti, “Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes,” Phys. Rev. B, vol. 81, no. 23, pp. 235406, 2010. DOI: 10.1103/PhysRevB.81.235406.
  • M. Dey, S. F. Aman, and S. K. Maiti, “Can a helical molecule be an efficient functional element to meet the present requirement of thermoelectric efficiency?,” Europhys. Lett., vol. 126, no. 2, pp. 27003, 2019. DOI: 10.1209/0295-5075/126/27003.
  • H.-H. Fu, L. Gu, D.-D. Wu, and Z.-Q. Zhang, “Enhancement of the thermoelectric figure of merit in DNA-like systems induced by Fano and Dicke effects,” Phys. Chem. Chem. Phys, vol. 17, no. 16, pp. 11077, 2015. DOI: 10.1039/C4CP04382K.
  • X. Li and J. Yang, “First-principles design of spintronics materials,” Sci. Rev., vol. 3, no. 3, pp. 365, 2016. DOI: 10.1093/nsr/nww026.
  • P. Barla, V. K. Joshi, and S. Bhat, “Spintronic devices: a promising alternative to CMOS devices,” J. Comp. Electron, vol. 20, no. 2, pp. 805, 2021. DOI: 10.1007/s10825-020-01648-6.
  • M. Johnson and R. Silsbee, “Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals,” Phys. Rev. Lett., vol. 55, no. 17, pp. 1790, 1985. DOI: 10.1103/PhysRevLett.55.1790.
  • M. N. Baibich, et al. “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett., vol. 61, no. 21, pp. 2472, 1988. DOI: 10.1103/PhysRevLett.61.2472.
  • K. L. Wang, J. G. Alzate, and P. K. Amiri, “Low-power non-volatile spintronic memory: STT-RAM and beyond,” J. Phys. D: Appl. Phys., vol. 46, no. 7, pp. 074003, 2013. DOI: 10.1088/0022-3727/46/7/074003.
  • Y. Yang, R. Ramaswamy, and H. Yang, “FMR-related phenomena in spintronic devices,” J. Phys. D: Appl. Phys., vol. 51, no. 27, pp. 273002, 2018. DOI: 10.1088/1361-6463/aac7b5.
  • Q. Yang, et al. “Ionic gel modulation of RKKY interactions in synthetic anti-ferromagnetic nanostructures for low power wearable spintronic devices,” Adv. Mater. Weinheim, vol. 30, no. 22, pp. 1800449, 2018. DOI: 10.1002/adma.201800449.
  • B. Z. Rameshti and A. G. Moghaddam, “Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene,” Phys. Rev. B, vol. 91, no. 15, pp. 155407, 2015. DOI: 10.1103/PhysRevB.91.155407.
  • J. Li, B. Wang, F. Xu, Y. Wei, and J. Wang, “Spin-dependent Seebeck effects in graphene-based molecular junctions,” Phys. Rev. B, vol. 93, no. 19, pp. 195426, 2016. DOI: 10.1103/PhysRevB.93.195426.
  • Q.-B. Liu, D.-D. Wu, and H.-H. Fu, “Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons,” Phys. Chem. Chem. Phys., vol. 19, no. 39, pp. 27132, 2017. DOI: 10.1039/C7CP05621D.
  • S. O. Valenzuela and M. Tinkham, “Direct electronic measurement of the spin Hall effect,” Nature, vol. 442, no. 7099, pp. 176, 2006. DOI: 10.1038/nature04937.
  • E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, “Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect,” Appl. Phys. Lett., vol. 88, no. 18, pp. 182509, 2006. DOI: 10.1063/1.2199473.
  • J. Hu, S. Granville, and H. Yu, “Spin-dependent thermoelectric transport in cobalt-based heusler alloys,” Ann. Phys., vol. 532, no. 11, pp. 1900456, 2020. DOI: 10.1002/andp.201900456.
  • M. Zeng, W. Huang, and G. Liang, “Spin-dependent thermoelectric effects in graphene-based spin valves,” Nanoscale, vol. 5, no. 1, pp. 200, 2013. DOI: 10.1039/C2NR32226A.
  • P. Trocha and J. Barnas, “Spin-dependent thermoelectric phenomena in a quantum dot attached to ferromagnetic and superconducting electrodes,” Phys. Rev. B, vol. 95, no. 16, pp. 165439, 2017. DOI: 10.1103/PhysRevB.95.165439.
  • B. K. Nikolić and S. Souma, “Decoherence of transported spin in multichannel spin-orbit-coupled spintronic devices: Scattering approach to spin-density matrix from the ballistic to the localized regime,” Phys. Rev. B, vol. 71, no. 19, pp. 195328, 2005. DOI: 10.1103/PhysRevB.71.195328.
  • C. Wung and S.-C. Zhang, “Dynamic generation of spin-orbit coupling,” Phys. Rev. Lett., vol. 93, no. 3, pp. 036403, 2004. DOI: 10.1103/PhysRevLett.93.036403.
  • H. Nakamura and T. Kimura, “Electric field tuning of spin-orbit coupling in KTaO 3 field-effect transistors,” Phys. Rev. B, vol. 80, no. 12, pp. 121308, 2009. DOI: 10.1103/PhysRevB.80.121308.
  • Y.-H. Su, S.-H. Chen, C. D. Hu, and C.-R. Chang, “Competition between spin–orbit interaction and exchange coupling within a honeycomb lattice ribbon,” J. Phys. D: Appl. Phys., vol. 49, pp. 015005, 2016. DOI: 10.1088/0022-3727/49/1/015305.
  • S. Peng, et al. “Modulation of heavy metal/ferromagnetic metal interface for high-performance spintronic devices,” Adv. Electron. Mater., vol. 5, no. 8, pp. 1900134, 2019. DOI: 10.1002/aelm.201900134.
  • M. Tanaka, “Recent progress in ferromagnetic semiconductors and spintronics devices,” Jpn. J. Appl. Phys., vol. 60, no. 1, pp. 010101, 2021. DOI: 10.35848/1347-4065/abcadc.
  • S. Chakraborty and S. K. Maiti, “Possible routes for efficient thermo-electric energy conversion in a molecular junction,” Chem. Phys. Chem., vol. 20, no. 6, pp. 848, 2019. DOI: 10.1002/cphc.201900030.
  • R. Stadler and T. Markussen, “Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications,” J. Chem. Phys., vol. 135, no. 15, pp. 154109, 2011. DOI: 10.1063/1.3653790.
  • S. Ganguly, S. K. Maiti, and S. Sil, “Favorable thermoelectric performance in a Rashba spin-orbit coupled ac-driven graphene nanoribbon,” Carbon, vol. 172, pp. 302, 2021. DOI: 10.1016/j.carbon.2020.09.085.
  • M. Kohmoto and J. R. Banavar, “Quasiperiodic lattice: Electronic properties, phonon properties, and diffusion,” Phys. Rev. B, vol. 34, no. 2, pp. 563, 1986. DOI: 10.1103/PhysRevB.34.563.
  • G. Gumbs and M. K. Ali, “Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices,” Phys. Rev. Lett., vol. 60, no. 11, pp. 1081, 1988. DOI: 10.1103/PhysRevLett.60.1081.
  • S. Ganeshan, K. San, and S. Das Sarma, “Topological zero-energy modes in gapless commensurate Aubry-André-Harper models,” Phys. Rev. Lett., vol. 110, no. 18, pp. 180403, 2013. DOI: 10.1103/PhysRevLett.110.180403.
  • M. Dey, S. K. Maiti, and S. Karmakar, “Magnetic quantum wire as a spin filter: An exact study,” Phys. Lett. A, vol. 374, no. 13–14, pp. 1522, 2010. DOI: 10.1016/j.physleta.2010.01.055.
  • S. Sarkar and S. K. Maiti, “Spin-selective transmission through a single-stranded magnetic helix,” Phys. Rev. B, vol. 100, no. 20, pp. 205402, 2019. DOI: 10.1103/PhysRevB.100.205402.
  • S. Sil, S. K. Maiti, and A. Chakrabarti, “MetaL-insulator transition in an aperiodic ladder network: an exact result,” Phys. Rev. Lett., vol. 101, no. 7, pp. 076803, 2008. DOI: 10.1103/PhysRevLett.101.076803.
  • M. Rosignolo and L. Dell’anna, “Localization transitions and mobility edges in coupled Aubry-André chains,” Phys. Rev. B, vol. 99, no. 5, pp. 054211, 2019. DOI: 10.1103/PhysRevB.99.054211.
  • M. Patra and S. K. Maiti, “Externally controlled high degree of spin polarization and spin inversion in a conducting junction: Two new approaches,” Sci. Rep., vol. 7, no. 1, pp. 14313, 2017. DOI: 10.1038/s41598-017-14499-2.
  • A. Shokri and M. Mardaani, “Spin-flip effect on electrical transport in magnetic quantum wire systems,” Solid State Commun., vol. 137, no. 53, pp. 53–58, 2006. DOI: 10.1016/j.ssc.2005.10.011.
  • M. Shirdel-Havar and R. Farghadan, “Spin caloritronics in spin semiconducting armchair graphene nanoribbons,” Phys. Rev. B, vol. 97, no. 23, pp. 235421, 2018. DOI: 10.1103/PhysRevB.97.235421.
  • F. Ildarabadi and R. Farghadan, “Spin-thermoelectric transport in nonuniform strained zigzag graphene nanoribbons,” Phys. Rev. B, vol. 103, no. 11, pp. 115424, 2021. DOI: 10.1103/PhysRevB.103.115424.
  • K. A. Chao and M. Larsson, “Thermoelectric phenomena from macro-sysytems to nano-systems,” In Physics of Zero- and One-Dimensional Nanoscopic Systems, S. N. Karmakar et al, Ed. Berlin, Heidelberg: Springer, 151–186, 2007.
  • U. Peskin, “An introduction to the formulation of steady-state transport through molecular junctions,” J. Phys. B: At. Mol. Opt. Phys., vol. 43, no. 15, pp. 153001, 2010. DOI: 10.1088/0953-4075/43/15/153001.
  • S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge Univ. Press, 1997.
  • S. Datta, Quantum Transport: Atom to Transistor. Cambridge: Cambridge Univ. Press, 2005.
  • D. S. Fisher and P. A. Lee, “Relation between conductivity and transmission matrix,” Phys. Rev. B, vol. 23, no. 12, pp. 6851, 1981. DOI: 10.1103/PhysRevB.23.6851.
  • K. Mondal, S. Ganguly, and S. K. Maiti, “Spin-dependent transport in a driven non-collinear antiferromagnetic fractal network,” J. Phys.: Condens. Matter., vol. 34, no. 29, pp. 295802, 2022. DOI: 10.1088/1361-648X/ac6b0b.
  • Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, “Topological states and adiabatic pumping in quasicrystals,” Phys. Rev. Lett., vol. 109, no. 10, pp. 106402, 2012. DOI: 10.1103/PhysRevLett.109.106402.
  • L. An, et al. “Patterned magnetic rings fabricated by dewetting of polymer-coated magnetite nanoparticles solution,” J. Colloid. Interface Sc, vol. 288, no. 2, pp. 503, 2005. DOI: 10.1016/j.jcis.2005.03.013.
  • M. Jałochowski, T. Kwapinski, P. Łukasik, P. Nita, and M. Kopciuszynski, “Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface,” J. Phys.: Condens. Matter., vol. 28, no. 28, pp. 284003, 2016. DOI: 10.1088/0953-8984/28/28/284003.
  • M. Kopciuszynski, M. Krawiec, R. Zdyb, and M. Jałochowski, “Purely one-dimensional bands with a giant spin-orbit splitting: Pb nanoribbons on Si(553) surface,” Sci. Rep., vol. 7, no. 1, pp. 46215, 2017. DOI: 10.1038/srep46215.
  • G. I. Japaridze and E. Pogosyan, “Magnetization plateau in the spin ladder with alternating rung exchange,” J. Phys.: Condens. Matter., vol. 18, no. 40, pp. 9297, 2006. DOI: 10.1088/0953-8984/18/40/014.
  • H. Ding, et al, “Tuning interactions between spins in a superconductor.” Proc. Natl. Acad. Sci., vol. 118, pp. e2023837118, 2021. DOI: 10.1073/pnas.2024837118.
  • H. Tabata, K. Ueda, and T. Kawai, “Construction of ferroelectric and/or ferromagnetic superlattices by laser MBE and their physical properties,” Mater. Sci. Eng.: B, vol. 56, no. 2–3, pp. 140, 1998. DOI: 10.1016/S0921-5107(98)00232-3.
  • K. Ueda, H. Tabata, and T. Kawai, “Atomic arrangement and magnetic properties of LaFeO 3−LaMnO3 artificial superlattices,” Phys. Rev. B, vol. 60, no. 18, pp. R12561–R12564, 1999. DOI: 10.1103/PhysRevB.60.R12561.
  • K. Takanashi, et al. “Magnetic superlattices fabricated by monoatomic layer control,” Surf. Sci., vol. 493, no. 1–3, pp. 713, 2001. DOI: 10.1016/S0039-6028(01)01288-2.
  • S. Liu and G. Yu, “Fabrication, energy band engineering, and strong correlations of two-dimensional van der Waals moiré superlattices,” Nanotoday, vol. 50, pp. 101829, 2023. DOI: 10.1016/j.nantod.2023.101829.
  • Z. Li, et al. “Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice,” J. Am. Chem. Soc., vol. 139, no. 45, pp. 16398, 2017. DOI: 10.1021/jacs.7b10071.
  • E. M. Wright, J. Arlt, and K. Dholakia, “Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams,” Phys. Rev. A, vol. 63, no. 1, pp. 013608, 2000. DOI: 10.1103/PhysRevA.63.013608.
  • L. Timm, L. A. Rüffert, H. Weimer, L. Santos, and T. E. Mehlstubler, “Quantum nanofriction in trapped ion chains with a topological defect,” Phys. Rev. Res., vol. 3, no. 4, pp. 043141, 2021. DOI: 10.1103/PhysRevResearch.3.043141.
  • P. Reddy, S. Y. Jang, R. A. Segalman, and A. Majumder, “Thermoelectricity in Molecular Junctions,” Science, vol. 315, no. 5818, pp. 1568, 2007. DOI: 10.1126/science.1137149.
  • J. Balachandran, P. Reddy, B. D. Dunietz, and V. Gavini, “End-group-induced charge transfer in molecular junctions: Effect on electronic-structure and thermopower,” J. Phys. Chem. Lett., vol. 3, no. 15, pp. 1962, 2012. DOI: 10.1021/jz300668c.
  • Y. Kim, W. Jeong, K. Kim, W. Lee, and P. Reddy, “Electrostatic control of thermoelectricity in molecular junctions,” Nat. Nanotechnol., vol. 9, no. 11, pp. 881, 2014. DOI: 10.1038/nnano.2014.209.
  • T. Tsuji, Y. Sasai, and S. Kawano, “Thermophoretic manipulation of micro- and nanoparticle flow through a sudden contraction in a microchannel with near-infrared laser irradiation,” Phys. Rev. Appl., vol. 10, no. 4, pp. 044005, 2018. DOI: 10.1103/PhysRevApplied.10.044005.
  • E. Hansen, M. T. Björk, C. Fasth, C. Thelander, and L. Samuelson, “Spin relaxation in InAs nanowires studied by tunable weak antilocalization,” Phys. Rev. B, vol. 71, no. 20, pp. 205328, 2005. DOI: 10.1103/PhysRevB.71.205328.
  • J. A. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, “Enhanced spin coherence via mesoscopic confinement during acoustically induced transport,” New J. Phys., vol. 10, no. 9, pp. 093013, 2008. DOI: 10.1088/1367-2630/10/9/093013.
  • H. Flentje et al., “Coherent long-distance displacement of individual electron spins,” Nat. Commun., vol. 8, no. 1, pp. 501, 2017. DOI: 10.1038/s41467-017-00534-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.