301
Views
5
CrossRef citations to date
0
Altmetric
Articles

A rail transit simulation system for multi-modal energy-efficient routing applications

ORCID Icon, , ORCID Icon &
Pages 187-202 | Received 04 Dec 2018, Accepted 16 Jan 2020, Published online: 13 Mar 2020

References

  • Akçelik, R., & Biggs, D. (1987). Acceleration profile models for vehicles in road traffic. Transportation Science, 21(1), 36–54. doi:10.1287/trsc.21.1.36
  • Andersen, D. R., Booth, G. F., Vithani, A. R., Singh, S. P., Prabhakaran, A., Stewart, M. F., & Punwani, S. J. (2012). Train energy and dynamics simulator (teds): A state-of-the-art longitudinal train dynamics simulator. In ASME 2012 Rail Transportation Division Fall Technical Conference, pp. 57–63. Omaha, Nebraska, USA: American Society of Mechanical Engineers. doi:10.1115/RTDF2012-9418
  • Asuka, M., & Komaya, K. (2007). A simulation method for rail traffic using microscopic and macroscopic models. In Proceedings OMRAIL Computers in Railways, Berlin, Germany, pp. 287–296.
  • Bahn, J. (2010). Simulation of railway and streetcar networks. Retrieved from http://www.jbss.de/hpg_eng.htm.
  • Baohua, M., Wenzheng, J., Shaokuan, C., & Jianfeng, L. (2007). A computer-aided multi-train simulator for rail traffic. In IEEE International Conference on Vehicular Electronics and Safety (ICVES), Beijing, China:IEEE. pp. 1–5.
  • Barth, M., Boriboonsomsin, K., & Vu, A. (2007). Environmentally-friendly navigation. In Intelligent Transportation Systems Conference ( ITSC), Seattle, WA, USA:IEEE. pp. 684–689.
  • Boriboonsomsin, K., Barth, M. J., Zhu, W., & Vu, A. (2012). Eco-routing navigation system based on multisource historical and real-time traffic information. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1694–1704. doi:10.1109/TITS.2012.2204051
  • Bosso, N., & Zampieri, N. (2017). Long train simulation using a multibody code. Vehicle System Dynamics, 55(4), 552–570. doi:10.1080/00423114.2016.1267373
  • Cantone, L. (2011). Traindy: The new union internationale des chemins de fer software for freight train interoperability. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(1), 57–70. doi:10.1243/09544097JRRT347
  • Carson, J. S., & Atala, O. M. (1990). Using computer simulation for rapid transit operating strategies. proceedings of the 1990 Winter Simulation Conferences, New Orleans, LA, USA: IEEE. pp. 798–801.
  • Chang, C., Guo, G., Wang, J., & Ma, Y. (2017). Study on longitudinal force simulation of heavy-haul train. Vehicle System Dynamics, 55(4), 571–582. doi:10.1080/00423114.2016.1269183
  • Cheli, F., Di Gialleonardo, E., & Melzi, S. (2017). Freight trains dynamics: Effect of payload and braking power distribution on coupling forces. Vehicle System Dynamics, 55(4), 464–479. doi:10.1080/00423114.2016.1246743
  • Cole, C. (2006). Longitudinal train dynamics. In S. Iwnicki (Ed.), Handbook of railway vehicle dynamics. Boca Raton, FL: CRC Press, pp. 239–277.
  • Espinosa-Aranda, J. L., & García-Ródenas, R. (2012). A discrete event-based simulation model for real-time traffic management in railways. Journal of Intelligent Transportation Systems, 16(2), 94–107. doi:10.1080/15472450.2012.671713
  • Fadhloun, K., Rakha, H., Loulizi, A., & Abdelkefi, A. (2015). Vehicle dynamics model for estimating typical vehicle accelerations. Transportation Research Record: Journal of the Transportation Research Board, 2491(1), 61–71. doi:10.3141/2491-07
  • Gbologah, F., Xu, Y., Rodgers, M., & Guensler, R. (2014). Demonstrating a bottom-up framework for evaluating energy and emissions performance of electric rail transit options. Transportation Research Record: Journal of the Transportation Research Board, 2428(1), 10–17. doi:10.3141/2428-02
  • Grube, P., Núñez, F., & Cipriano, A. (2011). An event-driven simulator for multi-line metro systems and its application to Santiago de Chile metropolitan rail network. Simulation Modelling Practice and Theory, 19(1), 393–405. doi:10.1016/j.simpat.2010.07.012
  • Hay, W. W. (1982). Railroad engineering, Vol. 1. National Research Council, Washington, D.C.: John Wiley & Sons.
  • Koutsopoulos, H., & Wang, Z. (2007). Simulation of urban rail operations: Application framework. Transportation Research Record: Journal of the Transportation Research Board, 2006(1), 84–91. doi:10.3141/2006-10
  • Nash, A., & Huerlimann, D. (2004). Railroad simulation using opentrack. WIT Transactions on the Built Environment, 74, 45–54.
  • Nie, Y. M., & Li, Q. (2013). An eco-routing model considering microscopic vehicle operating conditions. Transportation Research Part B: Methodological, 55, 154–170.
  • Paolucci, M., & Pesenti, R. (1999). An object-oriented approach to discrete-event simulation applied to underground railway systems. Simulation, 72(6), 372–383. doi:10.1177/003754979907200601
  • Pogorelov, D., Yazykov, V., Lysikov, N., Oztemel, E., Arar, O. F., & Rende, F. S. (2017). Train 3d: The technique for inclusion of three-dimensional models in longitudinal train dynamics and its application in derailment studies and train simulators. Vehicle System Dynamics, 55(4), 583–600. doi:10.1080/00423114.2016.1273532
  • Powell, J., & Palacín, R. (2015). Passenger stability within moving railway vehicles: Limits on maximum longitudinal acceleration. Urban Rail Transit, 1(2), 95–103. doi:10.1007/s40864-015-0012-y
  • Rakha, H. A., Ahn, K., & Moran, K. (2012). Integration framework for modeling eco-routing strategies: Logic and preliminary results. International Journal of Transportation Science and Technology, 1(3), 259–274. doi:10.1260/2046-0430.1.3.259
  • Rakha, H. A., Elbery, A., & Wang, J. (2017). Developing and field implementing a dynamic eco-routing system (No. N17-003). TranLIVE. University of Idaho.
  • Rakha, H., Lucic, I., Demarchi, S. H., Setti, J. R., & Aerde, M. V. (2001). Vehicle dynamics model for predicting maximum truck acceleration levels. Journal of Transportation Engineering, 127(5), 418–425. doi:10.1061/(ASCE)0733-947X(2001)127:5(418)
  • Rakha, H., Snare, M., & Dion, F. (2004). Vehicle dynamics model for estimating maximum light-duty vehicle acceleration levels. Transportation Research Record: Journal of the Transportation Research Board, 1883(1), 40–49. doi:10.3141/1883-05
  • Rizzoli, A. E., Fornara, N., & Gambardella, L. M. (2002). A simulation tool for combined rail/road transport in intermodal terminals. Mathematics and Computers in Simulation, 59(1-3), 57–71. doi:10.1016/S0378-4754(01)00393-7
  • Searle, J. (1999). Equations for speed, time and distance for vehicles under maximum acceleration. Technical report, SAE Technical Paper.
  • Sugawara, S., & Niemeier, D. (2002). How much can vehicle emissions be reduced?: exploratory analysis of an upper boundary using an emissions-optimized trip assignment. Transportation Research Record: Journal of the Transportation Research Board, 1815(1), 29–37. doi:10.3141/1815-04
  • Wang, J., Elbery, A., & Rakha, H. A. (2019). A real-time vehicle-specific eco-routing model for on-board navigation applications capturing transient vehicle behavior. Transportation Research Part C: Emerging Technologies, 104, 1–21. doi:10.1016/j.trc.2019.04.017
  • Wang, J., & Rakha, H. A. (2016a). Fuel consumption model for conventional diesel buses. Applied Energy, 170, 394–402. doi:10.1016/j.apenergy.2016.02.124
  • Wang, J., & Rakha, H. A. (2016b). Modeling fuel consumption of hybrid electric buses: Model development and comparison with conventional buses. Transportation Research Record: Journal of the Transportation Research Board, 2539(1), 94–102. doi:10.3141/2539-11
  • Wang, J., & Rakha, H. A. (2017a). Convex fuel consumption model for diesel and hybrid buses. Transportation Research Record: Journal of the Transportation Research Board, 2647(1), 50–60. doi:10.3141/2647-07
  • Wang, J., & Rakha, H. A. (2017b). Electric train energy consumption modeling. Applied Energy, 193, 346–355. doi:10.1016/j.apenergy.2017.02.058
  • Wang, J., & Rakha, H. A. (2017c). Fuel consumption model for heavy duty diesel trucks: Model development and testing. Transportation Research Part D: Transport and Environment, 55, 127–141. doi:10.1016/j.trd.2017.06.011
  • Wang, J., & Rakha, H. A. (2018). Longitudinal train dynamics model for a rail transit simulation system. Transportation Research Part C: Emerging Technologies, 86, 111–123. doi:10.1016/j.trc.2017.10.011
  • Wang, J. (2017). Multi-modal Energy Consumption Modeling and Eco-routing System Development (Doctoral dissertation). Virginia Tech, VA.
  • Wang, J., Elbery, A., & Rakha, H. A. (2018). A simulation-based framework for dynamic ecorouting system: Model development and testing. In Transportation Research Board 97th Annual Meeting, No. 18-1053, Washington D.C.
  • Wei, W., Hu, Y., Wu, Q., Zhao, X., Zhang, J., & Zhang, Y. (2017). An air brake model for longitudinal train dynamics studies. Vehicle System Dynamics, 55(4), 517–533. doi:10.1080/00423114.2016.1254261
  • Wu, Q., Luo, S., & Cole, C. (2014). Longitudinal dynamics and energy analysis for heavy haul trains. Journal of Modern Transportation, 22(3), 127–136. doi:10.1007/s40534-014-0055-x
  • Wu, Q., Spiryagin, M., Cole, C., Chang, C., Guo, G., Sakalo, A., … Wiersma, P., et al. (2018). International benchmarking of longitudinal train dynamics simulators: Results. Vehicle System Dynamics, 56(3), 343–365. doi:10.1080/00423114.2017.1377840
  • Xiao-Ming, X., Ke-Ping, L., & Li-Xing, Y. (2014). Discrete event model-based simulation for train movement on a single-line railway. Chinese Physics B, 23(8), 080205. doi:10.1088/1674-1056/23/8/080205

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.