1,421
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Transforming road freight transportation from fossils to hydrogen: Opportunities and challenges

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 552-572 | Received 02 Jul 2021, Accepted 12 Apr 2022, Published online: 05 May 2022

References

  • Aarskog, F. G., Hansen, O. R., Strømgren, T., & Ulleberg, Ø. (2020). Concept risk assessment of a hydrogen driven high speed passenger ferry. International Journal of Hydrogen Energy, 45(2), 1359–1372. https://doi.org/10.1016/j.ijhydene.2019.05.128
  • Abronzini, U., Attaianese, C., D’Arpino, M., Monaco, M. D., & Tomasso, G. (2019). Cost minimization energy control including battery aging for multi-source EV charging station. Electronics, 8(1), 31. https://doi.org/10.3390/electronics8010031
  • Alves, J. J., & Towler, G. P. (2002). Analysis of refinery hydrogen distribution systems. Industrial & Engineering Chemistry Research, 41(23), 5759–5769. https://doi.org/10.1021/ie010558v
  • Anstrom, J. R. (2014). Hydrogen as a fuel in transportation. In Advances in hydrogen production, storage and distribution (pp. 499–524). Elsevier.
  • ARUP (2020). Hydrogen transport—fuelling the future. ARUP.
  • Ball, M., & Wietschel, M. (2009). The future of hydrogen - opportunities and challenges. International Journal of Hydrogen Energy, 34(2), 615–627. https://doi.org/10.1016/j.ijhydene.2008.11.014
  • Bartolozzi, I., Rizzi, F., & Frey, M. (2013). Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy. Applied Energy, 101, 103–111. https://doi.org/10.1016/j.apenergy.2012.03.021
  • Bie, H. Y., & Hao, Z. R. (2017). Simulation analysis on the risk of hydrogen releases and combustion in subsea tunnels. International Journal of Hydrogen Energy, 42(11), 7617–7624. https://doi.org/10.1016/j.ijhydene.2016.05.263
  • Block, D., Harrison, J., Brooker, P., & Dunn, M. D. (2015). Electric vehicle sales for 2014 and future projections. March 2015.
  • California Air Resources Board (2021). Advanced Clean Trucks Fact Sheet | California Air Resources Board. Retrieved February 02, 2022, from https://ww2.arb.ca.gov/resources/fact-sheets/advanced-clean-trucks-fact-sheet.
  • Canada Energy Regulator (2019). CER – Market Snapshot: Electric vehicle projection shows changes in electricity and fuel demand. Retrieved February 19, 2021, from https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/market-snapshots/2019/market-snapshot-electric-vehicle-projection-shows-changes-in-electricity-fuel-demand.html.
  • Canadian Fuels Association (2021). Fuel distribution. Retrived June 29, 2021, from https://www.canadianfuels.ca/our-industry/fuel-distribution/.
  • Candelaresi, D., Valente, A., Iribarren, D., Dufour, J., & Spazzafumo, G. (2021). Comparative life cycle assessment of hydrogen-fuelled passenger cars. International Journal of Hydrogen Energy, 46(72), 35961–35973. https://doi.org/10.1016/j.ijhydene.2021.01.034
  • Castillo, O., Álvarez, R., & Domingo, R. (2020). Opportunities and barriers of hydrogen–electric hybrid powertrain vans: A systematic literature review. Processes, 8(10), 1261. https://doi.org/10.3390/pr8101261
  • Cerniauskas, S., Chavez Junco, A. J., Grube, T., Robinius, M., & Stolten, D. (2020). Options of natural gas pipeline reassignment for hydrogen: Cost assessment for a Germany case study. International Journal of Hydrogen Energy, 45(21), 12095–12107. https://doi.org/10.1016/j.ijhydene.2020.02.121
  • Cetinkaya, E., Dincer, I., & Naterer, G. F. (2012). Life cycle assessment of various hydrogen production methods. International Journal of Hydrogen Energy, 37(3), 2071–2080. https://doi.org/10.1016/j.ijhydene.2011.10.064
  • Chehaly, M. E., Saadeh, O., Martinez, C., & Joos, G. (2009). Advantages and applications of vehicle to grid mode of operation in plug-in hybrid electric vehicles [Paper presentation]. https://doi.org/10.1109/EPEC.2009.5420958
  • Cheng, J., & Graham, P. W. (2009, July). Modelling hydrogen fuel distribution. 18th World IMACS Congr. MODSIM09 Int. Congr. Model. Simul. Interfacing Model. Simul. with Math. Comput. Sci. Proc (pp. 211–217). Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation.
  • Chitose, K., Ogushi, H., Kawai, K., Mizuno, Y., & Aoi, S. (2006, June). Risk assessment methodology for hydrogen refueling station [Paper presentation]. 16th World Hydrogen Energy Conference 2006, Lyon (pp. 1–8). Association Francaise pour l’Hydrogene et les Piles a Combustible (AFHYPAC).
  • Chong, H., Dahari, M., Yap, H., & Loong, Y. (2013). Fuzzy-based risk prioritization for a hydrogen refueling facility in Malaysia. Journal of Zhejiang University Science A, 14(8), 565–573. https://doi.org/10.1631/jzus.A1300114
  • Contadini, J. F., Moore, R. M., Sperling, D., & Sundaresan, M. (2000, March). Life-cycle emissions of alternative fuels for transportation: dealing with uncertanties [Paper presentation]. SAE Technical Papers no. 724. https://doi.org/10.4271/2000-01-0597
  • Cox, B., Bauer, C., Mendoza Beltran, A., van Vuuren, D. P., & Mutel, C. L. (2020). Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios. Applied Energy, 269, 115021. https://doi.org/10.1016/j.apenergy.2020.115021
  • Daimler Truck AG (2022). eMobility: The eActros and its services. Retrieved February 02, 2022, from https://www.mercedes-benz-trucks.com/en_GB/emobility/world/our-offer/eactros-and-services.html.
  • Davids, M. W., Lototskyy, M., Malinowski, M., van Schalkwyk, D., Parsons, A., Pasupathi, S., Swanepoel, D., & van Niekerk, T. (2019). Metal hydride hydrogen storage tank for light fuel cell vehicle. International Journal of Hydrogen Energy, 44(55), 29263–29272. https://doi.org/10.1016/j.ijhydene.2019.01.227
  • Demirbas, A. (2006). Alternative fuels for transportation.
  • Dewit, M., & Faaij, A. (2007). Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment. International Journal of Hydrogen Energy, 32(18), 4859–4870. https://doi.org/10.1016/j.ijhydene.2007.07.051
  • Du, X., Cao, Y., Yang, L., & Yang, Y. (2014). A characteristic investigation of a combined system of solar hydrogen production and a fuel cell. International Journal of Green Energy, 11(9), 918–935. https://doi.org/10.1080/15435075.2013.833513
  • Dufour, J., Serrano, D., Galvez, J., Moreno, J., & Garcia, C. (2009). Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions. International Journal of Hydrogen Energy, 34(3), 1370–1376. https://doi.org/10.1016/j.ijhydene.2008.11.053
  • EIHP (2003, February). Risk acceptance criteria for hydrogen refuelling stations. European Integrated Hydrogen Project.
  • Environment and Climate Change Canada (2019a). National inventory report 1990–2017 greenhouse gas sources and sinks in canada executive summary. Environment and Climate Change Canada.
  • Environment and Climate Change Canada (2020). Greenhouse gas emissions. Retrieved November 22, 2020, from https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/greenhouse-gas-emissions.html.
  • Environment and Climate Change Canada (2019b). Canadian environmental sustainability indicators progress towards Canada’s greenhouse gas emissions reduction target. Retrieved November 19, 2019, from www.canada.ca/en/environment-climate-change/services/environmental-.
  • Environment and Climate Change Canada (2019c). Canadian environmental sustainability indicators: Global greenhouse gas emissions. Retrieved November 14, 2019, from www.canada.ca/en/environment-climate-change/services/environmental-.
  • Feng, H., Liyanage, D. R., Karunathilake, H., Sadiq, R., & Hewage, K. (2020). BIM-based life cycle environmental performance assessment of single-family houses: Renovation and reconstruction strategies for aging building stock in British Columbia. Journal of Cleaner Production 250, 119543. https://doi.org/10.1016/j.jclepro.2019.119543
  • Finkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010). Towards life cycle sustainability assessment. Sustainability, 2(10), 3309–3322. https://doi.org/10.3390/su2103309
  • Fonseca, A., Sá, V., Bento, H., Tavares, M. L. C., Pinto, G., & Gomes, L. A. C. N. (2008). Hydrogen distribution network optimization: a refinery case study. Journal of Cleaner Production, 16(16), 1755–1763. https://doi.org/10.1016/j.jclepro.2007.11.003
  • Franco León, D. R., Nakao Cavaliero, C. K., & Peres da Silva, E. (2020). Technical and economical design of PV system and hydrogen storage including a sodium hypochlorite plant in a small community: Case of study of Paraguay. International Journal of Hydrogen Energy, 45(8), 5474–5480. https://doi.org/10.1016/j.ijhydene.2019.07.059
  • Galassi, M. C., Papanikolaou, E., Baraldi, D., Funnemark, E., & Tchouvelev, A. V. (2012). HIAD - hydrogen incident and accident database. International Journal of Hydrogen Energy, 37, 1–7. https://doi.org/10.1016/j.ijhydene.2012.06.018
  • Gardiner, M. R., Cunningham, J., & Moore, R. M. (2001). Compressed hydrogen storage for fuel cell vehicles [Paper presentation]. SAE Tech. Pap., no. 724. https://doi.org/10.4271/2001-01-2531
  • Government of Canada (2020). Seizing the opportunities for hydrogen a call to action hydrogen strategy for Canada. Government of Canada.
  • Granovskii, M., Dincer, I., & Rosen, M. (2006). Life cycle assessment of hydrogen fuel cell and gasoline vehicles. International Journal of Hydrogen Energy, 31(3), 337–352. https://doi.org/10.1016/j.ijhydene.2005.10.004
  • Hart, D., Anghel, A. T., Huijsmans, J., & Vuille, F. (2009). A quasi-Delphi study on technological barriers to the uptake of hydrogen as a fuel for transport applications—Production, storage and fuel cell drivetrain considerations. Journal of Power Sources, 193(1), 298–307. https://doi.org/10.1016/j.jpowsour.2008.12.122
  • Hetti, R. K., Karunathilake, H., Chhipi-Shrestha, G., Sadiq, R., & Hewage, K. (2020). Prospects of integrating carbon capturing into community scale energy systems. Renewable and Sustainable Energy Reviews, 133, 110193. https://doi.org/10.1016/j.rser.2020.110193
  • Hirotani, R., Terada, T., Tamura, Y., Mitsuishi, H., & Watanabe, S. (2007). Thermal behavior in hydrogen storage tank for fuel cell vehicle on fast filling [Paper presentation]. SAE Tech. Pap., no. 724. https://doi.org/10.4271/2007-01-0688
  • Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalyst Today, 139(4), 244–260. https://doi.org/10.1016/j.cattod.2008.08.039
  • Huang, W.-D., & Zhang, Y.-H P. (2011). Energy efficiency analysis: Biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems. PLoS One, 6(7), e22113. https://doi.org/10.1371/journal.pone.0022113
  • Hyundai Hydrogen Mobility AG (2022). Hyundai hydrogen mobility. Retrieved February 02, 2022, from https://hyundai-hm.com/en/unser-truck/.
  • Hyzon Motors (2022). Vehicle Catalog - Hyzon Motors. Retrieved February 02, 2022, from https://hyzonmotors.com/vehicle-catalog/.
  • Intergovernmental Panel on Climate Change (2014). Climate change 2014: Impacts, adaptation & vulnerability. Intergovernmental Panel on Climate Change.
  • International Energy Agency (2012). “Energy technology perspectives 2012. Pathways to a clean energy system. Retrieved November 21, 2019, from http://www.iea.org/termsandconditionsuseandcopyright/.
  • Ito, N., Takeuchi, K., & Managi, S. (2013). Willingness-to-pay for infrastructure investments for alternative fuel vehicles. Transportation Research Part D: Transport and Environment, 18(1), 1–8. https://doi.org/10.1016/j.trd.2012.08.004
  • Jamasb, T., & Pollitt, M. (2000). Benchmarking and regulation of electricity transmission and distribution utilities: Lessons from international experience, https://doi.org/10.17863/CAM.5398.
  • Javad, M., Zarei, E., & Badri, N. (2012). The quantitative risk assessment of a hydrogen generation unit. International Journal of Hydrogen Energy, 37(24), 19241–19249. https://doi.org/10.1016/j.ijhydene.2012.09.082
  • Julin, K. (2021). Hydrogen offers promising future for long-haul trucking industry. Lawrence Berkeley National Laboratory News Center.
  • Kalghatgi, G., Levinsky, H., & Colket, M. (2018). Future transportation fuels. Prog. Energy Combust. Sci, 69(November), 103–105. https://doi.org/10.1016/j.pecs.2018.06.003
  • Karunathilake, H., Hewage, K., Mérida, W., & Sadiq, R. (2019). Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty. Renewable Energy, 130, 558–573. https://doi.org/10.1016/j.renene.2018.06.086
  • Keshavarzzadeh, A. H., Ahmadi, P., & Safaei, M. R. (2019). Assessment and optimization of an integrated energy system with electrolysis and fuel cells for electricity, cooling and hydrogen production using various optimization techniques. International Journal of Hydrogen Energy, 44(39), 21379–21396. https://doi.org/10.1016/j.ijhydene.2019.06.127
  • Khalil, Y. F. (2018). Science-based framework for ensuring safe use of hydrogen as an energy carrier and an emission-free transportation fuel. Process Safety and Environmental Protection, 117, 326–340. https://doi.org/10.1016/j.psep.2018.05.011
  • Kikuchi, R. (2006). Penetration of hydrogen-based energy system and its potential for causing global environmental change: Scoping risk analysis based on life cycle thinking. Environmental Impact Assessment Review, 26(2), 206–218. https://doi.org/10.1016/j.eiar.2005.07.014
  • Kim, J. W., Boo, K. J., Cho, J. H., & Moon, I. (2014). Key challenges in the development of an infrastructure for hydrogen production, delivery, storage and use. In Advances in hydrogen production, storage and distribution (pp. 3–31). Woodhead Publishing.
  • Koppel, S., Charlton, J., Fildes, B., & Fitzharris, M. May (2008). How important is vehicle safety in the new vehicle purchase process? Accident; Analysis and Prevention, 40(3), 994–1004. https://doi.org/10.1016/j.aap.2007.11.006
  • Koroneos, C., Dompros, A., Roumbas, G., & Moussiopoulos, N. (2004). Life cycle assessment of hydrogen fuel production processes. International Journal of Hydrogen Energy, 29(14), 1443–1450. https://doi.org/10.1016/j.ijhydene.2004.01.016
  • Kouroussis, D., & Karimi, S. (2006). Alternative fuels in transportation. Bulletin of Science Technology & Society, 26(4), 346–355. https://doi.org/10.1177/0270467606292150
  • Lacroix, E., & Motta, A. (2016). Validation of bison calculation of hydrogen distribution by comparison to experiment. TMS Annu. Meet (pp. 263–272) Springer, Cham. https://doi.org/10.1007/978-3-319-48254-5_33.
  • Lafleur, A. C., Muna, A. B., & Groth, K. M. (2017). Application of quantitative risk assessment for performance-based permitting of hydrogen fueling. International Journal of Hydrogen Energy, 42(11), 7529–7535. https://doi.org/10.1016/j.ijhydene.2016.06.167
  • Lebeau, K., Van Mierlo, J., Lebeau, P., Mairesse, O., & Macharis, C. (2013). Consumer attitudes towards battery electric vehicles: A large-scale survey. International Journal of Electric and Hybrid Vehicles, 5(1), 28–41. https://doi.org/10.1504/IJEHV.2013.053466
  • Leeson, D., Dowell, N. M., Shah, N., Petit, C., & Fennell, P. S. (2017). A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. International Journal of Greenhouse Gas Control, 61, 71–84. https://doi.org/10.1016/j.ijggc.2017.03.020
  • Liu, H., Almansoori, A., Fowler, M., & Elkamel, A. (2012). Analysis of Ontario’s hydrogen economy demands from hydrogen fuel cell vehicles. International Journal of Hydrogen Energy, 37(11), 8905–8916. https://doi.org/10.1016/j.ijhydene.2012.03.029
  • MacDonald, J. (2016). Available: Electric vehicles to be 35% of global new car sales by 2040 (pp. 1–2). Bloomberg New Energy Finance. https://about.bnef.com/blog/electric-vehicles-to-be-35-of-global-new-car-sales-by-2040/.
  • MacLean, H. L., & Lave, L. B. (2003)., Life cycle assessment of automobile/fuel options. Environmental Science & Technology, 37(23), 5445–5452. https://doi.org/10.1021/es034574q
  • Mair, G. W., Thomas, S., Schalau, B., & Wang, B. (2021). Safety criteria for the transport of hydrogen in permanently mounted composite pressure vessels. International Journal of Hydrogen Energy, 46(23), 12577–12593. https://doi.org/10.1016/j.ijhydene.2020.07.268
  • Mak, H.-Y., Rong, Y., & Shen, Z.-J M. (2013). Infrastructure planning for electric vehicles with battery swapping. Management. Sci, 59(7), 1557–1575. https://doi.org/10.1287/mnsc.1120.1672
  • Mekhilef, S., Saidur, R., & Safari, A. (2012). Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1), 981–989. https://doi.org/10.1016/j.rser.2011.09.020
  • Melaina, M. W. (2007). Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen. Energy Policy, 35(10), 4919–4934. https://doi.org/10.1016/j.enpol.2007.04.008
  • Miao, Y., Hynan, P., von Jouanne, A., & Yokochi, A. (2019). Current li-ion battery technologies in electric vehicles and opportunities for advancements. Energies, 12(6), 1074. https://doi.org/10.3390/en12061074
  • Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U., & Dincer, I. (2021). A comprehensive review on hydrogen production from coal gasification: Challenges and opportunities. International Journal of Hydrogen Energy, 46(50), 25385–25412. https://doi.org/10.1016/j.ijhydene.2021.05.088
  • Miguel, P., & Martins, F. (2019). Risk related to the application of hydrogen propulsion technology in cars. In P. M. F. M. Arezes, (Ed.), Advances in safety management and human factors (pp. 510–521). Springer International Publishing AG.
  • Mintz, M. (2006). Hydrogen delivery scenario analysis model for hydrogen distribution options, Transportation Research Record Journal of the Transportation Research Board 1983(1), 114–120.
  • Minutillo, M., Forcina, A., Jannelli, N., & Lubrano Lavadera, A. (2018). Assessment of a sustainable energy chain designed for promoting the hydrogen mobility by means of fuel-cell powered bicycles. Energy, 153, 200–210. https://doi.org/10.1016/j.energy.2018.04.014
  • Mori, D., & Hirose, K. (2009). Recent challenges of hydrogen storage technologies for fuel cell vehicles. International Journal of Hydrogen Energy, 34(10), 4569–4574. https://doi.org/10.1016/j.ijhydene.2008.07.115
  • Moriarty, P., & Honnery, D. (2019). Prospects for hydrogen as a transport fuel. International Journal of Hydrogen Energy, 44(31), 16029–16037. https://doi.org/10.1016/j.ijhydene.2019.04.278
  • Muthu, R. N., Rajashabala, S., & Kannan, R. (2017). Hydrogen storage performance of lithium borohydride decorated activated hexagonal boron nitride nanocomposite for fuel cell applications. International Journal of Hydrogen Energy, 42(23), 15586–15596. https://doi.org/10.1016/j.ijhydene.2017.04.240
  • Kelly, N. A., (2014). Hydrogen  production by water electrolysis. In Advances in hydrogen production, storage and distribution (pp. 159–185). Elsevier.
  • Najdi, R. A., Shaban, T. G., Mourad, M. J., & Karaki, S. H. (2016, July). Hydrogen production and filling of fuel cell cars [Paper presentation]. 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) (pp. 43–48), . https://doi.org/10.1109/ACTEA.2016.7560109
  • Natural Resources Canada (2014). Canada in a changing climate: Sector perspectives on impacts and adaptation. Natural Resources Canada.
  • Natural Resources Canada (2007). From impacts to adaptation: Canada in a changing climate 2007 reflects. Natural Resources Canada. Retrieved November 14, 2019, from http://adaptation2007.nrcan.gc.ca.
  • Natural Resources Canada (2021). Electric charging and alternative fuelling stations locator. Natural Resources Canada. https://www.nrcan.gc.ca/energy-efficiency/energy-efficiency-transportation-and-alternative-fuels/electric-charging-alternative-fuelling-stationslocator-map/20487#/find/nearest.
  • Nesbitt, K., & Sperling, D. (2001). Fleet purchase behavior: decision processes and implications for new vehicle technologies and fuels. Transportation Research Part D: Transport and Environment, 9(5), 297–318. https://doi.org/10.1016/S0968-090X(00)00035-8
  • Nicita, A., Maggio, G., Andaloro, A. P. F., & Squadrito, G. (2020). Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. International Journal of Hydrogen Energy, 45(20), 11395–11408. https://doi.org/10.1016/j.ijhydene.2020.02.062
  • Nikola Corporation (2022). Nikola Tre: Battery-Electric Daycab Semi-Truck. Retrieved February 02, 2022, from https://nikolamotor.com/tre-bev.
  • Ozaki, R., & Sevastyanova, K. May (2011). Going hybrid: An analysis of consumer purchase motivations. Energy Policy, 39(5), 2217–2227. https://doi.org/10.1016/j.enpol.2010.04.024
  • PACCAR Inc. (2022). Zero Emissions | Kenworth. Retrieved February 02, 2022, from https://www.kenworth.com/innovation/zero-emissions/.
  • Pasman, H. J. (2011). Challenges to improve confidence level of risk assessment of hydrogen technologies. International Journal of Hydrogen Energy, 36(3), 2407–2413. https://doi.org/10.1016/j.ijhydene.2010.05.019
  • Perera, P., Hewage, K., & Sadiq, R. (2017). Are we ready for alternative fuel transportation systems in Canada: A regional vignette. Journal of Cleaner Production, 166(x), 717–731. https://doi.org/10.1016/j.jclepro.2017.08.078
  • Plc, L. (2022). H2 Distribution and Storage | Linde Gas. Retrieved February 03, 2022, from https://www.linde-gas.com/en/processes/hydrogen_energy_h2/h2_one_stop_shop/h2_distribution_and_storage/index.html.
  • Ramachandran, S., & Stimming, U. (2015). Well to wheel analysis of low carbon alternatives for road traffic. Energy & Environmental Science, 8(11), 3313–3324. https://doi.org/10.1039/C5EE01512J
  • Ribeiro, S. K., Kobayashi, S., Beuthe, M., Gasca, J., Greene, D., Lee, D. S., Muromachi, Y., Newton, P. J., Plotkin, S., Sperling, D., Wit, R., & Zhou, P. J. (2007). Transport and its infrastructure. In Climate change 2007: Mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change (pp. 325–385). Cambridge, UK; New York, NY: Cambridge University Press.
  • Ritchie, H., Roser, M., and Rosado, P. (2020). Energy. Retrieved January 26, 2022, from https://ourworldindata.org/energy
  • Roses, L., Manzolini, G., Campanari, S., Wit, E. D., & Walter, M. (2013). Techno-economic assessment of membrane reactor technologies for pure hydrogen production for fuel cell vehicle fleets. Energy & Fuels, 27(8), 4423–4431. https://doi.org/10.1021/ef301960e
  • Ross, D. K. (2006). Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars. Vacuum, 80(10), 1084–1089. https://doi.org/10.1016/j.vacuum.2006.03.030
  • Rosyid, O. A., Jablonski, D., & Hauptmanns, U. (2007). Risk analysis for the infrastructure of a hydrogen economy. International Journal of Hydrogen Energy, 32(15), 3194–3200. https://doi.org/10.1016/j.ijhydene.2007.02.012
  • Ruparathna, R., Hewage, K., & Sadiq, R. (2016). Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings. Renewable and Sustainable Energy Reviews, 53, 1032–1045. https://doi.org/10.1016/j.rser.2015.09.084
  • Salvi, B. L., Subramanian, K. A., & Panwar, N. L. (2013). Alternative fuels for transportation vehicles: A technical review. Renewable and Sustainable Energy Reviews, 25, 404–419. https://doi.org/10.1016/j.rser.2013.04.017
  • Samimi, A., Kavousi, K., Zarinabadi, S., & Bozorgian, A, Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran (2020). Optimization of the gasoline production plant in order to increase feed. Progress in Chemical and Biochemical Research, 3(1), 7–19. https://doi.org/10.33945/SAMI/PCBR.2020.1.2
  • Siddiqui, O., & Dincer, I. (2019). A well to pump life cycle environmental impact assessment of some hydrogen production routes. International Journal of Hydrogen Energy, 44(12), 5773–5786. https://doi.org/10.1016/j.ijhydene.2019.01.118
  • Souleman, N. M., Tremblay, O., & Dessaint, L.-A. (2009, JUly). A generic fuel cell model for the simulation of Fuel Cell Power Systems [Paper presentation]. In 2009 IEEE Power & Energy Society General Meeting (pp. 1–8). https://doi.org/10.1109/PES.2009.5275853
  • Squadrito, G., Andaloro, L., Ferraro, M., & Antonucci, V. (2014). Hydrogen fuel cell technology. In Advances in hydrogen production, storage and distribution (pp. 451–498). Elsevier.
  • T. V. Ramachandra & Shwetmala. (2009). Emissions from India’s transport sector: Statewise synthesis. Atmospheric Environment, 43(34), 5510–5517. https://doi.org/10.1016/j.atmosenv.2009.07.015
  • Talebian, H., Herrera, O. E., & Mérida, W. (2019). Spatial and temporal optimization of hydrogen fuel supply chain for light duty passenger vehicles in British Columbia. International Journal of Hydrogen Energy, 44(47), 25939–25956. https://doi.org/10.1016/j.ijhydene.2019.07.218
  • Tesla. (2022). Semi | Tesla. Retrieved February 02, 2022, from https://www.tesla.com/semi.
  • The FreedomCAR and Fuel Partnership (2006). Hydrogen production: Overview of technology options. The FreedomCAR and Fuel Partnership.
  • Thomas, C. E. (2009). Fuel cell and battery electric vehicles compared. International Journal of Hydrogen Energy, 34(15), 6005–6020. https://doi.org/10.1016/j.ijhydene.2009.06.003
  • Timilsina, G. R., & Shrestha, A. (2009). Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy, 37(11), 4523–4539. https://doi.org/10.1016/j.enpol.2009.06.009
  • Tirachini, A., & Cats, O. (2020). COVID-19 and public transportation: Current assessment, prospects, and research needs. Journal of Public Transportation, 22(1), 1–34. https://doi.org/10.5038/2375-0901.22.1.1.
  • Transport Canada (2020a). List of eligible vehicles under the iZEV Program. Transport and Environment. https://tc.canada.ca/en/road-transportation/innovative-technologies/zero-emission-vehicles/list-eligible-vehicles-under-izev-program.
  • Transport Canada (2020b). Government of Canada invests in transportation infrastructure in Greater Vancouver to move goods to market - Canada.ca. https://www.canada.ca/en/transport-canada/news/2020/06/government-of-canada-invests-in-transportation-infrastructure-in-greater-vancouver-to-move-goods-to-market.html.
  • Tsunemi, K., Yoshida, K., Yoshida, M., Kato, E., Kawamoto, A., Kihara, T., & Saburi, T. (2017). Estimation of consequence and damage caused by an organic hydride hydrogen refueling station. International Journal of Hydrogen Energy, 42(41), 26175–26182. https://doi.org/10.1016/j.ijhydene.2017.08.082
  • U.S. Department of Energy (2021). Fuel cell electric vehicles. https://afdc.energy.gov/vehicles/fuel_cell.html.
  • U.S. Energy Information Administration (2020). U.S. Energy Information Administration - EIA - Independent Statistics and Analysis. Retrieved December 30, 2020, from https://www.eia.gov/outlooks/aeo/data/browser/#/?id=46-AEO2019&region=0-0&cases=ref2019&start=2017&end=2025&f=A&linechart=&map=&ctype=linechart&sid=∼∼∼∼∼&sourcekey=0.
  • United Nations (2019). United Nations Sustainable Development. Retrieved November 14, 2019, from https://www.un.org/sustainabledevelopment/.
  • Unterlohner, F. (2020). Comparison of hydrogen and battery electric trucks. Transport and Environment, 1–14.
  • Volvo (2022). Electric trucks | Volvo Trucks. Retrieved February 02, 2022, from https://www.volvotrucks.com/en-en/trucks/alternative-fuels/electric-trucks.html.
  • Weinert, J. X., Shaojun, L., Ogden, J. M., & Jianxin, M. (2007). Hydrogen refueling station costs in Shanghai. International Journal of Hydrogen Energy, 32(16), 4089–4100. https://doi.org/10.1016/j.ijhydene.2007.05.010
  • Wong, E. Y. C., Ho, D. C. K., So, S., Tsang, C., & Chan, E. M. H. (2021). Life cycle assessment of electric vehicles and hydrogen fuel cell vehicles using the GREET model—A comparative study. Sustainability, 13(9), 4872. https://doi.org/10.3390/su13094872
  • Wu, H. H., Gilchrist, A., Sealy, K., Israelsen, P., & Muhs, J., May (2011). A review on inductive charging for electric vehicles [Paper presentation]. In: 2011 IEEE International Electric Machines & Drives Conference (IEMDC) (pp. 143–147), . https://doi.org/10.1109/IEMDC.2011.5994820
  • Wulf, C., & Kaltschmitt, M. (2013). Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresource Technology, 150, 466–475. https://doi.org/10.1016/j.biortech.2013.08.127
  • Wulf, C., & Kaltschmitt, M. (2018). Hydrogen supply chains for mobility—Environmental and economic assessment. Sustain, 10(6), 1–26. https://doi.org/10.3390/su10061699.
  • Wulf, C., Reuß, M., Grube, T., Zapp, P., Robinius, M., Hake, J.-F., & Stolten, D. (2018). Life Cycle Assessment of hydrogen transport and distribution options. Journal of Cleaner Production, 199, 431–443. https://doi.org/10.1016/j.jclepro.2018.07.180
  • Yan, X., & Crookes, R. J. (2009). Reduction potentials of energy demand and GHG emissions in China’s road transport sector. Energy Policy, 37(2), 658–668. https://doi.org/10.1016/j.enpol.2008.10.008
  • Zamagni, A. May ( 2012). Life cycle sustainability assessment. The International Journal of Life Cycle Assessment, 17(4), 373–376. https://doi.org/10.1007/s11367-012-0389-8
  • Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307–326. https://doi.org/10.1016/j.pecs.2009.11.002
  • Zeng, X., Li, M., Abd El‐Hady, D., Alshitari, W., Al‐Bogami, A. S., Lu, J., & Amine, K. (2019). Commercialization of lithium battery technologies for electric vehicles. Advanced Energy Materials, 9(27), 1900161. https://doi.org/10.1002/aenm.201900161
  • Zheng, Y., Dong, Z. Y., Xu, Y., Meng, K., Zhao, J. H., & Qiu, J. (2014). Electric vehicle battery charging/swap stations in distribution systems: Comparison study and optimal planning. IEEE Transactions on Power Systems, 29(1), 221–229. https://doi.org/10.1109/TPWRS.2013.2278852
  • Zhou, L. (2005). Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews, 9(4), 395–408. https://doi.org/10.1016/j.rser.2004.05.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.