214
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Inhibition of galectin-3 ameliorates high-glucose-induced oxidative stress and inflammation in ARPE-19 cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 179-186 | Received 04 Feb 2022, Accepted 19 May 2022, Published online: 05 Jun 2022

References

  • Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020;37:101799.
  • Lakkaraju A, Umapathy A, Tan LX, et al. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020;78:100846.
  • Ponnalagu M, Subramani M, Jayadev C, et al. Retinal pigment epithelium-secretome: a diabetic retinopathy perspective. Cytokine 2017;95:126–135.
  • Lechner J, O'Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vision Res 2017;139:7–14.
  • Chen Q, Tang L, Xin G, et al. Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic Biol Med 2019;130:48–58.
  • Sciacchitano S, Lavra L, Morgante A, et al. Galectin-3: one molecule for an alphabet of diseases, from A to Z. IJMS 2018;19:379.
  • Dong R, Zhang M, Hu Q, et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (review). Int J Mol Med 2017;41:599–614.
  • Petrovic I, Pejnovic N, Ljujic B, et al. Overexpression of galectin 3 in pancreatic β cells amplifies β-cell apoptosis and islet inflammation in type-2 diabetes in mice. Front Endocrinol 2020;11:30.
  • Luís C, Costa R, Rodrigues I, et al. Xanthohumol and 8-prenylnaringenin reduce type 2 diabetes-associated oxidative stress by downregulating galectin-3. Porto Biomed J 2019;4:e23.
  • Sun J, Zhang L, Fang J, et al. Galectin-3 mediates high-glucose-induced cardiomyocyte injury by the NADPH oxidase/reactive oxygen species pathway. Can J Physiol Pharmacol 2020;98:826–833.
  • Yin Q, Chen J, Ma S, et al. Pharmacological inhibition of galectin-3 ameliorates diabetes-associated cognitive impairment, oxidative stress and neuroinflammation in vivo and in vitro. J Inflamm Res 2020;13:533–542.
  • Blanco Martinez A, da Costa Calaza K, Mendonca H, et al. Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: galectin-3 participation. Neural Regen Res 2020;15:625–635.
  • Mendonça HR, Carvalho JNA, Abreu CA, et al. Lack of galectin-3 attenuates neuroinflammation and protects the retina and optic nerve of diabetic mice. Brain Res 2018;1700:126–137.
  • Vora A, de Lemos JA, Ayers C, et al. Association of galectin-3 with diabetes mellitus in the Dallas Heart Study. J Clin Endocrinol Metab 2019;104:4449–4458.
  • Tan KCB, Cheung C-L, Lee ACH, et al. Galectin-3 and risk of cardiovascular events and all-cause mortality in type 2 diabetes. Diabetes Metab Res Rev 2019;35:e3093.
  • Hodeib H, Hagras M, Abdelhai D, et al. Galectin-3 as a prognostic biomarker for diabetic nephropathy. DMSO 2019;12:325–331.
  • McFarlane S. Characterisation of the advanced glycation endproduct receptor complex in the retinal pigment epithelium. Br J Ophthalmol 2005;89:107–112.
  • Uehara F, Ohba N, Ozawa M. Isolation and characterization of galectins in the mammalian retina. Invest Ophthalmol Vis Sci 2001;42:2164–2172.
  • Guo Q, Furuta K, Lucien F, et al. Integrin β1-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH. J Hepatol 2019;71:1193–1205.
  • Birkner K, Wasser B, Ruck T, et al. β1-integrin- and KV1.3 channel-dependent signaling stimulates glutamate release from Th17 cells. J Clin Invest 2020;130:715–732.
  • Jo DH, Yun J-H, Cho CS, et al. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia 2019;67:321–331.
  • Simó R, Villarroel M, Corraliza L, et al. The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier-implications for the pathogenesis of diabetic retinopathy. J Biomed Biotechnol 2010;2010:190724.
  • Xia T, Rizzolo LJ. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Res 2017;139:72–81.
  • Énzsöly A, Szabó A, Kántor O, et al. Pathologic alterations of the outer retina in streptozotocin-induced diabetes. Invest Ophthalmol Vis Sci 2014;55:3686–3699.
  • Tarchick MJ, Bassiri P, Rohwer RM, et al. Early functional and morphologic abnormalities in the diabetic nyxnob mouse retina. Invest Ophthalmol Vis Sci 2016;57:3496–3508.
  • Zhang Y, Xi X, Mei Y, et al. High-glucose induces retinal pigment epithelium mitochondrial pathways of apoptosis and inhibits mitophagy by regulating ROS/PINK1/Parkin signal pathway. Biomed Pharmacother 2019;111:1315–1325.
  • Alge-Priglinger CS, André S, Schoeffl H, et al. Negative regulation of RPE cell attachment by carbohydrate-dependent cell surface binding of galectin-3 and inhibition of the ERK-MAPK pathway. Biochimie 2011;93:477–488.
  • Strauβ O, Priglinger CS, Szober CM, et al. Galectin-3 induces clustering of CD147 and integrin-β1 transmembrane glycoprotein receptors on the RPE cell surface. PLOS One 2013;8:e70011.
  • Obermann J, Priglinger CS, Merl-Pham J, et al. Proteome-wide identification of glycosylation-dependent interactors of galectin-1 and galectin-3 on mesenchymal retinal pigment epithelial (RPE) cells. Mol Cell Proteomics 2017;16:1528–1546.
  • Pugliese G, Pricci F, Leto G, et al. The diabetic milieu modulates the advanced glycation end product-receptor complex in the mesangium by inducing or upregulating galectin-3 expression. Diabetes 2000;49:1249–1257.
  • Tsukamoto M, Sango K, Niimi N, et al. Upregulation of galectin-3 in immortalized Schwann cells IFRS1 under diabetic conditions. Neurosci Res 2015;92:80–85.
  • Martínez-Martínez E, Brugnolaro C, Ibarrola J, et al. CT-1 (cardiotrophin-1)-Gal-3 (galectin-3) axis in cardiac fibrosis and inflammation. Hypertension 2019;73:602–611.
  • Martínez-Martínez E, Calvier L, Fernández-Celis A, et al. Galectin-3 blockade inhibits cardiac inflammation and fibrosis in experimental hyperaldosteronism and hypertension. Hypertension 2015;66:767–775.
  • Fulton DJR, Li X, Bordan Z, et al. Galectin-3: a harbinger of reactive oxygen species, fibrosis, and inflammation in pulmonary arterial hypertension. Antioxid Redox Signal 2019;31:1053–1069.
  • Soares LC, Al-Dalahmah O, Hillis J, et al. Novel galectin-3 roles in neurogenesis, inflammation and neurological diseases. Cells 2021;10:3047.
  • Xu G-R, Zhang C, Yang H-X, et al. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother 2020;126:110071.
  • Chen X, Lin J, Hu T, et al. Galectin-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation. J Cell Physiol 2018;234:10990–11000.
  • Farnoodian M, Halbach C, Slinger C, et al. High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression. Am J Physiol Cell Physiol 2016;311:C418–C436.
  • Wang P, Chen F, Wang W, et al. Hydrogen sulfide attenuates high glucose-induced human retinal pigment epithelial cell inflammation by inhibiting ROS formation and NLRP3 inflammasome activation. Mediators Inflamm 2019;2019:8908960.
  • Kauppinen A, Niskanen H, Suuronen T, et al. Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells-implications for age-related macular degeneration (AMD). Immunol Lett 2012;147:29–33.
  • Siew JJ, Chen H-M, Chen H-Y, et al. Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington’s disease. Nat Commun 2019;10:3473.
  • Arsenijevic A, Stojanovic B, Milovanovic J, et al. Galectin-3 in inflammasome activation and primary biliary cholangitis development. Int J Mol Sci 2020;21:5097.
  • Li H, Xiao L, He H, et al. Quercetin attenuates atherosclerotic inflammation by inhibiting galectin‐3‐NLRP3 signaling pathway. Mol Nutr Food Res 2021;65:e2000746.
  • Yang S, Zhou J, Li D. Functions and diseases of the retinal pigment epithelium. Front Pharmacol 2021;12:727870.
  • Xu HZ, Song ZM, Fu SH, et al. RPE barrier breakdown in diabetic retinopathy: seeing is believing. J Ocul Biol Dis Infor 2011;4:83–92.
  • Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021;83:100919.
  • Bailey TA, Kanuga N, Romero IA, et al. Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2004;45:675–684.
  • Mesquida M, Drawnel F, Fauser S. The role of inflammation in diabetic eye disease. Semin Immunopathol 2019;41:427–445.
  • Canning P, Glenn JV, Hsu DK, et al. Inhibition of advanced glycation and absence of galectin-3 prevent blood-retinal barrier dysfunction during short-term diabetes. Exp Diabetes Res 2007;2007:1–10.
  • Mauris J, Woodward AM, Cao Z, et al. Molecular basis for MMP9 induction and disruption of epithelial cell-cell contacts by galectin-3. J Cell Sci 2014;127:3141–3148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.