268
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Particulate matter 2.5 promotes inflammation and cellular dysfunction via reactive oxygen species/p38 MAPK pathway in primary rat corneal epithelial cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 273-284 | Received 07 Apr 2022, Accepted 30 Aug 2022, Published online: 20 Sep 2022

References

  • Baroody FM. How nasal function influences the eyes, ears, sinuses, and lungs. Proc Am Thorac Soc 2011;8:53–61.
  • Ritz B, Hoffmann B, Peters A. The effects of fine dust, ozone, and nitrogen dioxide on health. Dtsch Arztebl Int 2019;51–52:881–886.
  • OECD. Environment at a glance. Air quality. 2020. Available from: http://www.oecd.org/environment/env-at-a-glance.
  • Han L, Zhou W, Pickett ST, et al. Multicontaminant air pollution in Chinese cities. Bull World Health Organ 2018;96:233–242E.
  • Loomis D, Huang W, Chen G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin J Cancer 2014;33:189–196.
  • Santibáñez-Andrade M, Chirino YI, González-Ramírez I, et al. Deciphering the code between air pollution and disease: the effect of particulate matter on cancer hallmarks. Int J Mol Sci 2019;211:136.
  • Kim H, Kim WH, Kim YY, et al. Air pollution and central nervous system disease: a review of the impact of fine particulate matter on neurological disorders. Front Public Health 2020;8:575330.
  • Lee H, Kim DH, Kim JH, et al. Urban aerosol particulate matter promotes necrosis and autophagy via reactive oxygen species-mediated cellular disorders that are accompanied by cell cycle arrest in retinal pigment epithelial cells. Antioxidants 2021;10:149.
  • Jung SJ, Mehta JS, Tong L. Effects of environment pollution on the ocular surface. Ocul Surf 2018;6:198–205.
  • Barrientez B, Nicholas SE, Whelchel A, et al. Corneal injury: clinical and molecular aspects. Exp Eye Res 2019;186:107709.
  • Klopfer J. Effects of environmental air pollution on the eye. J Am Optom Assoc 1989;60:773–778.
  • Hyun SW, Song SJ, Park B, et al. Toxicological effects of urban particulate matter on corneal and conjunctival epithelial cells. Toxicol Res 2020;36:311–318.
  • Fu Q, Mo Z, Lyu D, et al. Air pollution and outpatient visits for conjunctivitis: a case-crossover study in Hangzhou, China. Environ Pollut 2017;231:344–350.
  • Fu Q, Lyu D, Zhang L, et al. Airborne particulate matter (PM2.5) triggers autophagy in human corneal epithelial cell line. Environ Pollut 2017;227:314–322.
  • Szyszkowicz M, Kousha T, Castner J. Air pollution and emergency department visits for conjunctivitis: a case-crossover study. Int J Occup Med Environ Health 2016;29:381–393.
  • Torricelli AA, Novaes P, Matsuda M, et al. Correlation between signs and symptoms of ocular surface dysfunction and tear osmolarity with ambient levels of air pollution in a large metropolitan area. Cornea 2013;32:e11–e15.
  • Mo Z, Fu Q, Lyu D, et al. Impacts of air pollution on dry eye disease among residents in Hangzhou, China: a case-crossover study. Environ Pollut 2019;246:183–189.
  • Tan G, Li J, Yang Q, et al. Air pollutant particulate matter 2.5 induces dry eye syndrome in mice. Sci Rep 2018;81:17828.
  • Gao ZX, Song XL, Li SS, et al. Assessment of DNA damage and cell senescence in corneal epithelial cells exposed to airborne particulate matter (PM2.5) collected in Guangzhou, China. Invest Ophthalmol Vis Sci 2016;57:3093–3102.
  • Zorov DB, Plotnikov EY, Jankauskas SS, et al. The phenoptosis problem: what is causing the death of an organism? Lessons from acute kidney injury. Biochemistry (Mosc) 2012;77:742–753.
  • Lee W, Choo S, Sim H, et al. Inhibitory activities of ononin on particulate matter-induced oxidative stress. Biotechnol Bioproc E 2021;26:208–215.
  • Lee H, Hwang-Bo H, Ji SY, et al. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. Environ Pollut 2020;262:114301.
  • Xiang P, He RW, Han YH, et al. Mechanisms of house dust-induced toxicity in primary human corneal epithelial cells: oxidative stress, proinflammatory response and mitochondrial dysfunction. Environ Int 2016;89–90:30–37.
  • Wang J, Huang J, Wang L, et al. Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway. J Thorac Dis 2017;9:4398–4412.
  • Zeng Y, Zhu G, Zhu M, et al. Edaravone attenuated particulate matter-induced lung inflammation by inhibiting ROS-NF-κB signaling pathway. Oxid Med Cell Longev 2022;2022:6908884.
  • Cui YH, Hu ZX, Gao ZX, et al. Airborne particulate matter impairs corneal epithelial cells migration via disturbing FAK/RhoA signaling pathway and cytoskeleton organization. Nanotoxicology 2148;124:312–324.
  • Forbes DJ, Pozos RS, Nelson JD, et al. Characterization of rat corneal epithelium maintained in tissue culture. Curr Eye Res 1984;3:1471–1479.
  • Kobayashi T, Yoshioka R, Shiraishi A, et al. New technique for culturing corneal epithelial cells of normal mice. Mol Vis 2009;15:1589–1593.
  • Ma QY, Huang DY, Zhang HJ, et al. Exposure to particulate matter 2.5 (PM2.5) induced macrophage-dependent inflammation, characterized by increased Th1/Th17 cytokine secretion and cytotoxicity. Int Immunopharmacol 2017;50:139–145.
  • Gu J, Wang J, You A, et al. MiR-137 inhibits the proliferation, invasion and migration of glioma via targeting to regulate EZH2. Genes Genomics 2021;43:1157–1165.
  • Ji SY, Lee H, Hwangbo H, et al. A Novel peptide oligomer of bacitracin induces M1 macrophage polarization by facilitating Ca2+ influx. Nutrients 2020;12:1603.
  • Chae BS. Effect of low-dose corticosterone pretreatment on the production of inflammatory mediators in super-low-dose LPS-primed immune cells. Toxicol Res 2021;37:47–57.
  • Liang Y, Kong D, Zhang Y, et al. Fisetin inhibits cell proliferation and induces apoptosis via JAK/STAT3 signaling pathways in human thyroid TPC 1 cancer cells. Biotechnol Bioproc E 2020;25:197–205.
  • Kim DH, Kim JH, Hwangbo H, et al. Spermidine attenuates oxidative stress-induced apoptosis via blocking Ca2+ overload in retinal pigment epithelial cells independently of ROS. Ijms 2021;22:1361.
  • Choi MJ, Mukherjee S, Yun JW. Loss of ADAMTS15 promotes browning in 3T3-L1 white adipocytes via activation of β3-adrenergic receptor. Biotechnol Bioproc E 2021;26:188–200.
  • Ma X, Shimmura S, Miyashita H, et al. Long-term culture and growth kinetics of murine corneal epithelial cells expanded from single corneas. Invest Ophthalmol Vis Sci 2009;50:2716–2721.
  • Lee HS, Lee JH, Yang JW. Effect of porcine chondrocyte-derived extracellular matrix on the pterygium in mouse model. Graefes Arch Clin Exp Ophthalmol 2014;252:609–618.
  • Kinner A, Wu W, Staudt C, et al. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 2008;36:5678–5694.
  • Tutt R, Bradley A, Begley C, et al. Optical and visual impact of tear break-up in human eyes. Invest Ophthalmol Vis Sci 2000;4113:4117–4123.
  • Li J, Tan G, Ding X, et al. A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10. Biomed Pharmacother 2017;96:524–534.
  • Idarraga MA, Guerrero JS, Mosle SG, et al. Relationships between short-term exposure to an indoor environment and dry eye (DE) symptoms. J Clin Med 2020;9:1316.
  • Lee H, Jeon S, Kim CE, et al. A new ophthalmic pharmaceutical formulation, topical sulglycotide, enhances the ocular mucin secretion in desiccation stress-mediated dry eye disease. Invest Ophthalmol Vis Sci 2019;60:1076–1087.
  • Pflugfelder SC, Stern ME. Mucosal environmental sensors in the pathogenesis of dry eye. Expert Rev Clin Immunol 2014;10:1137–1140.
  • Tandon A, Tovey JC, Sharma A, et al. Role of transforming growth factor Beta in corneal function, biology and pathology. Curr Mol Med 2010;10:565–578.
  • Zhu J, Zhao Y, Gao Y, et al. Effects of different components of PM2.5 on the expression levels of NF-κB family gene mRNA and inflammatory molecules in human macrophage. Int J Environ Res Public Health 2019;16:1408.
  • Baldwin AS. Jr. The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649–683.
  • Park JH, Troxel AB, Harvey RG, et al. Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by the aldo-keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Chem Res Toxicol 2006;19:719–728.
  • Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47–95.
  • Ryu YS, Kang KA, Piao MJ, et al. Particulate matter induces inflammatory cytokine production via activation of NFκB by TLR5-NOX4-ROS signaling in human skin keratinocyte and mouse skin. Redox Biol 2019;21:101080.
  • Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 2009;862:37–250.
  • Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005;15:11–18.
  • Wang T, Chiang ET, Moreno-Vinasco L, et al. Particulate matter disrupts human lung endothelial barrier integrity via ROS- and p38 MAPK-dependent pathways. Am J Respir Cell Mol Biol 2010;42:442–449.
  • Wan Q, Liu Z, Yang Y. Puerarin inhibits vascular smooth muscle cells proliferation induced by fine particulate matter via suppressing of the p38 MAPK signaling pathway. BMC Complement Altern Med 2018;181:146.
  • Kim JH, Kim M, Kim JM, et al. Afzelin suppresses proinflammatory responses in particulate matter-exposed human keratinocytes. Int J Mol Med 2019;43:2516–2522.
  • Lee W, Ku SK, Kim JE, et al. Inhibitory effects of protopanaxatriol type ginsenoside fraction (Rgx365) on particulate matter-induced pulmonary injury. J Toxicol Environ Health A 2019;825:338–350.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.