107
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Biochemical and histopathological evaluation of systemic and ocular toxicity of favipiravir in rats

, , , , , , , & show all
Pages 105-112 | Received 20 Jul 2023, Accepted 21 Dec 2023, Published online: 12 Jan 2024

References

  • Łagocka R, Dziedziejko V, Kłos P, et al. Favipiravir in therapy of viral infections. J Clin Med. 2021;10(2):273. doi: 10.3390/jcm10020273.
  • Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing)). 2020;6(10):1192–1198. doi: 10.1016/j.eng.2020.03.007.
  • Furuta Y, Gowen BB, Takahashi K, et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013;100(2):446–454. doi: 10.1016/j.antiviral.2013.09.015.
  • Furuta Y, Takahashi K, Kuno-Maekawa M, et al. Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother. 2005;49(3):981–986. doi: 10.1128/AAC.49.3.981-986.2005.
  • Tablet A. 200 Mg. Report on the deliberation results. Evaluation and licensing division, pharmaceutical and food safety bureau. Tokyo, Japan: Ministry of Health Labour and Welfare; 2014. p. 5–6.
  • Yamazaki S, Suzuki T, Sayama M, et al. Suspected cholestatic liver injury induced by favipiravir in a patient with COVID-19. J Infect Chemother. 2021;27(2):390–392. doi: 10.1016/j.jiac.2020.12.021.
  • Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir–a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020;6(2):45–51. doi: 10.1016/S2055-6640(20)30016-9.
  • Yaylaci S, Dheir H, Şenocak D, et al. The effects of favipiravir on hematological parameters of covıd-19 patients. Rev Assoc Med Bras (1992)). 2020;66(2):65–70. doi: 10.1590/1806-9282.66.S2.65.
  • Jiravisitkul P, Thonginnetra S, Wongvisavavit R. Case report: Favipiravir-induced bluish corneal discoloration in infant with COVID-19. Front Pediatr. 2023;11:1154814. doi: 10.3389/fped.2023.1154814.
  • Doran MA, Aytogan H, Ayıntap E. Fluorescence of ocular surface in a covid-19 patient after favipiravir treatment: a case report. Virol J. 2021;18(1):146. doi: 10.1186/s12985-021-01610-3.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358. doi: 10.1016/0003-2697(79)90738-3.
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25(1):192–205. doi: 10.1016/0003-2697(68)90092-4.
  • Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34(3):497–500. doi: 10.1093/clinchem/34.3.497.
  • Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382(13):1199–1207. doi: 10.1056/NEJMoa2001316.
  • Matricardi PM, Dal Negro RW, Nisini R. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol. 2020;31(5):454–470. doi: 10.1111/pai.13271.
  • Du YX, Chen XP. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin Pharmacol Ther. 2020;108(2):242–247. doi: 10.1002/cpt.1844.
  • Arab-Zozani M, Hassanipour S, Ghoddoosi-Nejad D. Favipiravir for treating patients with novel coronavirus (COVID-19): protocol for a systematic review and meta-analysis of randomised clinical trials. BMJ Open. 2020;10(7):e039730. doi: 10.1136/bmjopen-2020-039730.
  • Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271. doi: 10.1038/s41422-020-0282-0.
  • Kaptein SJ, Jacobs S, Langendries L, et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2− infected hamsters, whereas hydroxychloroquine lacks activity. Proc Natl Acad Sci U S A. 2020;117(43):26955–26965. doi: 10.1073/pnas.2014441117.
  • James Ives M. Preliminary report of favipiravir observational study in Japan released. Favipiravir Observational Study Group. 2020. Available from: http://www.kansensho.or.jp/uploads/files/topics/2019ncov/covid19_casereport_en_200529.pdf
  • Aslan Kayıran M, Cebeci F, Erdemir VA, et al. Fluorescence of nails and hair on wood’s lamp examination in covid pandemic; undefined effect of favipiravir in humans. Dermatol Ther. 2021;34(1):e14740. doi: 10.1111/dth.14740.
  • Yanatma I, Cenk H. Evaluation of nail findings in patients with COVID-19 history and wood’s lamp examination. Skin Appendage Disord. 2022;38(2):1–6. doi: 10.1159/000518983.
  • Srivastava SK, Ramana KV. Focus on molecules: nuclear factor-kappaB. Exp Eye Res. 2009;88(1):2–3. doi: 10.1016/j.exer.2008.03.012.
  • Staal F, Roederer M, Herzenberg LA, et al. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA. 1990;87(24):9943–9947. doi: 10.1073/pnas.87.24.9943.
  • Gloire G, Legrand-Poels S, Piette J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72(11):1493–1505. doi: 10.1016/j.bcp.2006.04.011.
  • Yadav U, Ramana KV. Regulation of NF-B-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid Med Cell Longev. 2013;2013:690545–11. doi: 10.1155/2013/690545.
  • Zhang Q, Lenardo MJ, Baltimore D. 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017;168(1–2):37–57. doi: 10.1016/j.cell.2016.12.012.
  • Shih VF-S, Kearns JD, Basak S, et al. Kinetic control of negative feedback regulators of NF-κB/RelA determines their pathogen-and cytokine-receptor signaling specificity. Proc Natl Acad Sci U S A. 2009;106(24):9619–9624. doi: 10.1073/pnas.0812367106.
  • Zambrano S, De Toma I, Piffer A, et al. NF-κB oscillations translate into functionally related patterns of gene expression. Elife. 2016; 5:e09100. doi: 10.7554/eLife.09100.
  • Lan W, Petznick A, Heryati S, et al. Nuclear factor-κB: central regulator in ocular surface inflammation and diseases. Ocul Surf. 2012;10(3):137–148. doi: 10.1016/j.jtos.2012.04.001.
  • Codo AC, Davanzo GG, de Brito Monteiro L, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 2020;32(3):437–446.e5. e435. doi: 10.1016/j.cmet.2020.07.007.
  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of the Cytokine storm’in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037.
  • Mortaz E, Bassir A, Roofchayee ND, et al. Serum cytokine levels of COVID-19 patients after 7 days of treatment with favipiravir or Kaletra. Int Immunopharmacol. 2021; 93:107407. doi: 10.1016/j.intimp.2021.107407.
  • Kara A, Yakut S, Caglayan C, et al. Evaluation of the toxicological effects of favipiravir (T-705) on liver and kidney in rats: biochemical and histopathological approach. Drug Chem Toxicol. 2022;46(3):546–556. doi: 10.1080/01480545.2022.2066116.
  • Raiturcar TP, Nayak CA. An unusual case of bluish discoloration of the cornea after favipiravir therapy for COVID-19. Indian J Ophthalmol. 2021;69(12):3778–3779. doi: 10.4103/ijo.IJO_1023_21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.