330
Views
64
CrossRef citations to date
0
Altmetric
Review Article

Host-derived lipids and oxylipins are crucial signals in modulating mycotoxin production by fungi

&
Pages 79-88 | Received 18 Aug 2008, Accepted 18 Nov 2008, Published online: 15 Jul 2009

References

  • Bareetseng, A. S., Kock, J. L. F., Pohl, C. H., Pretorius, E. E., Strauss, C. J., Botes, P. J., van Wyk, P. W.J., and Nigam, S. (2004). Mapping 3-hydroxy oxylipins on ascospores of Eremothecium sinecaudum. Antonie Van Leeuwenhock 86:363–368.
  • Bate, N. J., and Rothstein, S. J. (1998). C-6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J. 16:561–569.
  • Birkett, M. A., Campbell, C. A. M., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., Matthes, M., Napier, J. A., Pettersson, J., Pickett, J. A., Poppy, G. M., Pow, E. M., Pye, B. J., Smart, L. E., Wadhams, G. H., Wadhams, L. J., and Woodcock, C. M. (2000). New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl. Acad. Sci. U S A 97:9329–9334.
  • Blée, E. (2002). Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–321.
  • Boue, S. A., Shih, B. Y., Carter-Wientjes, C. H., and Cleveland, T. E. (2005). Effect of soybean lipoxygenase on volatile generation and inhibition of Aspergillus flavus mycelial growth. J. Agric. Food Chem. 53:4778–4783.
  • Brodhagen, M., and Keller, N. P. (2006). Signalling pathways connecting mycotoxin production and sporulation. Mol. Plant Pathol. 7:285–301.
  • Brodhagen, M., Tsitsigiannis, D. I., Hornung, E., Goebel, C., Feussner, I., and Keller, N. P. (2008). Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem. Mol. Microbiol. 67:378–391.
  • Brodowsky, I. D., and Oliw, E. H. (1993). Biosynthesis of 8R-hydroperoxylinoleic acid by the fungus Laetisaria-arvalis. Biochim. Biophy. Acta 1168:68–72.
  • Brown, R. L., Cotty, P. J., Cleveland, T. E., and Widstrom, N. W. (1993). Living maize embryo influences accumulation of aflatoxin in maize kernels. J. Food Prot. 56:967–971.
  • Burow, G. B., Gardner, H. W., and Keller, N. P. (2000). A peanut seed lipoxygenase responsive to Aspergillus colonization. Plant Mol. Biol. 42:689–701.
  • Burow, G. B., Nesbitt, T. C., Dunlap, J., and Keller, N. P. (1997). Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Mol. Plant-Microbe Interact. 10:380–387.
  • Calvo, A. M., Gardner, H. W., and Keller, N. P. (2001). Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J. Biol. Chem. 276:25766–25774.
  • Calvo, A. M., Hinze, L. L., Gardner, H. W., and Keller, N. P. (1999). Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl. Environ. Microbiol. 65:3668–3673.
  • Calvo, A. M., Wilson, R. A., Bok, J. W., and Keller, N. P. (2002). Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66:447–459.
  • Champe, S. P., and el-zayat, A. A. E. (1989). Isolation of a sexual sporulation hormone from Aspergillus nidulans. J. Bacteriol. 171:3982–3988.
  • Champe, S. P., Rao, P., and Chang, A. (1987). An endogenous inducer of sexual development in Aspergillus nidulans. J. Gen. Microbiol. 133:1383–1387.
  • Cleveland, T. E., Yu, J. J., Bhatnagar, D., Chen, Z. Y., Brown, R. L., Chang, P. K., and Cary, J. W. (2004). Progress in elucidating the molecular basis of the host plant—Aspergillus flavus interaction, a basis for devising strategies to reduce aflatoxin contamination in crops. J. Toxicol.-Toxin Rev. 23:345–380.
  • Croft, K. P. C., Juttner, F., and Slusarenko, A. J. (1993). Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (l) leaves inoculated with Pseudomonas syringae pv Phaseolicola. Plant Physiol. 101:13–24.
  • Diener, U. L., Cole, R. J., Sanders, T. H., Payne, G. A., Lee, L. S., and Klich, M. A. (1987). Epidemiology of aflatoxin formation by Aspergillus flavus. Ann. Rev. Phytopathol. 25:249–270.
  • Doehlert, D. C., Wicklow, D. T., and Gardner, H. W. (1993). Evidence implicating the lipoxygenase pathway in providing resistance to soybeans against Aspergillus flavus. Phytopathol. 83:1473–1477.
  • Erb-Downward, J. R., and Huffnagle, G. B. (2006). Role of oxylipins and other lipid mediators in fungal pathogenesis. Future Microbiol. 1:219–227.
  • Fabbri, A. A., Fanelli, C., Panfili, G., Passi, S., and Fasella, P. (1983). Lipoperoxidation and aflatoxin biosynthesis by Aspergillus parasiticus and Aspergillus flavus. J. Gen. Microbiol. 129:3447–3452.
  • Feussner, I., and Wasternack, C. (2002). The lipoxygenase pathway. Ann. Rev. Plant Biol. 53:275–297.
  • Gao, X. Q., Shim, W. B., Gobel, C., Kunze, S., Feussner, I., Meeley, R., Balint-Kurti, P., and Kolomiets, M. (2007). Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol. Plant-Microbe Interact. 20:922–933.
  • Goodrich-Tanrikulu, M., Mahoney, N. E., and Rodriguez, S. B. (1995). The plant-growth regulator methyl jasmonate inhibits aflatoxin production by Aspergillus flavus. Microbiol.-UK 141:2831–2837.
  • Greene-McDowelle, D. M., Ingber, B., Wright, M. S., Zeringue, H. J., Bhatnagar, D., and Cleveland, T. E. (1999). The effects of selected cotton-leaf volatiles on growth, development and aflatoxin production of Aspergillus parasiticus. Toxicon 37:883–893.
  • Guo, B., Chen, X., Dang, P., Scully, B. T., Liang, X., Holbrook, C. C., Yu, J., and Culbreath, A. K. (2008). Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev. Biol. 8:12. doi:10.1186/1471–213X-8–12.
  • Hamberg, M., Su, C., and Oliw, E. (1998). Manganese lipoxygenase: Discovery of a bis-allylic hydroperoxide as product and intermediate in a lipoxygenase reaction. J. Biol. Chem. 273:13080–13088.
  • Herman, R. P. (1998). Oxylipin production and action in fungi and related organisms. In: Rowley, A. F., Kuhn, H., and Schewe, T., eds. Eicosanoids and Related Compounds in Plants and Animals. Princeton: Princeton University Press, pp. 115–130.
  • Holmes, R. A., Boston, R. S., and Payne, G. A. (2008). Diverse inhibitors of aflatoxin biosynthesis. Appl. Microbiol. Biotechnol. 78:559–572.
  • Howe, G. A., and Schilmiller, A. L. (2002). Oxylipin metabolism in response to stress. Curr. Opinion Plant Biol. 5:230–236.
  • Isakeit, T., Gao, X., and Kolomiets, M. (2007). Increased resistance of a maize mutant lacking the 9-lipoxygenase gene, ZmLOX3, to root rot caused by Exserohilum pedicellatum. J. Phytopathol. 155:758–760.
  • Keller, N. P., Butchko, R. A. E., Sarr, B., and Phillips, T. D. (1994). A visual-pattern of mycotoxin production in maize kernels by Aspergillus spp. Phytopathol. 84:483–488.
  • Klose, J., Moniz de Sa, M., and Kronstad, J. W. (2004). Lipid-induced filamentous growth in Ustilago maydis. Mol. Microbiol 52:823–835.
  • Kock, J. L. F., Strauss, C. J., Pohl, C. H., and Nigam, S. (2003). The distribution of 3-hydroxy oxylipins in fungi. Prostaglandins Other Lipid Mediat. 71:85–96.
  • La Camera, S., Geoffroy, P., Samaha, H., Ndiaye, A., Rahim, G., Legrand, M., and Heitz, T. (2005). A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J. 44:810–825.
  • Lara-Ortiz, T., Riveros-Rosas, H., and Aguirre, J. (2003). Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50:1241–1255.
  • Maggio-Hall, L. A., Wilson, R. A., and Keller, N. (2005). Fundamental contribution of β-oxidation to polyketide mycotoxin production in planta. Mol. Plant-Microbe Interact. 18:783–793.
  • Mazur, P., Nakanishi, K., Elzayat, A. A. E., and Champe, S. P. (1991). Structure and synthesis of sporogenic psi factors from Aspergillus nidulans. J. Chem. Soc. Chem. Commun. 20:1486–1487.
  • McDonald, T., Devi, T., Shimizu, K., Shim, S.-C., and Keller, N. P. (2004). Signaling events connecting mycotoxin biosynthesis and sporulation in Aspergillus and Fusarium spp. In: Yoshizawa, T., ed. New Horizon of Mycotoxicology for Assuring Food Safety, Takamatsu: Bookish Co., pp. 139–147.
  • Milligan, G., Stoddart, L. A., and Brown, A. J. (2006). G protein-coupled receptors for free fatty acids. Cell. Signalling 18:1360–1365.
  • Mita, G., Fasano, P., De Domenico, S., Perrone, G., Epifani, F., Iannacone, R., and Santino, A. (2007). 9-Lipoxygenase metabolism is involved in the almond/Aspergillus carbonarius interaction. J. Exp. Bot. 58:1803–1811.
  • Nakayama, N., Takemae, A., and Shoun, H. (1996). Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydrolase of the fungus Fusarium oxysporum. J. Biochem. 119:435–440.
  • Nandi, A., Moeder, W., Kachroo, P., Klessig, D. F., and Shah, J. (2005). Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. Mol. Plant-Microbe Interact. 18:363–370.
  • Narasaiah, K. V., Sashidhar, R. B., and Subramanyam, C. (2006). Biochemical analysis of oxidative stress in the production of aflatoxin and its precursor intermediates. Mycopathol. 162:179–189.
  • Noverr, M. C., Erb-Downward, J. R., and Huffnagle, G. B. (2003). Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin. Microbiol. Rev. 16:517–533.
  • Obinata, H., Hattori, T., Nakane, S., Tatei, K., and Izumi, T. (2005). Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A. J. Biol. Chem. 280:40676–40683.
  • Passi, S., Nazzaroporro, M., Fanelli, C., Fabbri, A. A., and Fasella, P. (1984). Role of lipoperoxidation in aflatoxin production. Appl. Microbiol. Biotech. 19:186–190.
  • Prost, I., Dhondt, S., Rothe, G., Vicente, J., Rodriguez, M. J., Kift, N., Carbonne, F., Griffiths, G., Esquerre-Tugaye, M. T., Rosahl, S., Castresana, C., Hamberg, M., and Fournier, J. (2005). Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 139:1902–1913.
  • Reverberi, M., Fabbri, A. A., Zjalic, S., Ricelli, A., Punelli, F., and Fanelli, C. (2005). Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl. Microbiol. Biotech. 69:207–215.
  • Roze, L., Beaudry, R. M., Arthur, A. E., Calvo, A. M., and Linz, J. E. (2007). Aspergillus volatiles regulate aflatoxin synthesis and asexual sporulation in Aspergillus parasiticus. Appl. Environ. Microbiol. 73:7268–7276.
  • Sagaram, U. S., Kolomiets, M., and Shim, W.-B. (2006). Regulation of fumonisin biosynthesis in Fusarium verticillioides-maize system. Plant Pathol. J. 23:203–210.
  • Sekine, K. T., Nandi, A., Ishihara, T., Hase, S., Ikegami, M., Shah, J., and Takahashi, H. (2004). Enhanced resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 mutant is mediated via an SA-independent mechanism. Mol. Plant-Microbe Interact. 17:623–632.
  • Shah, J. (2005). Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu. Rev. Phytopathol. 43:229–260.
  • Shah, J., Kachroo, P., Nandi, A., and Klessig, D. F. (2001). A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J. 25:563–574.
  • Shea, J. M., and Del Poeta, M. (2006). Lipid signaling in pathogenic fungi. Curr. Opin. Microbiol. 9:352–358.
  • Shim, W. B., and Dunkle, L. D. (2002). Identification of genes expressed during cercosporin biosynthesis in Cercospora zeae-maydis. Physiol. Mol. Plant Pathol. 61:237–248.
  • Shim, W. B., Flaherty, J. E., and Woloshuk, C. P. (2003). Comparison of fumonisin B-1 biosynthesis in maize germ and degermed kernels by Fusarium verticillioides. J. Food Prot. 66:2116–2122.
  • Su, C., Brodowsky, I. D., and Oliw, E. H. (1995). Studies on linoleic acid 8R-dioxygenase and hydroperoxide isomerase of the fungus Gaeumannomyces graminis. Lipids. 30:43–50.
  • Tsitsigiannis, D. I., and Keller, N. P. (2006). Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Mol. Microbiol. 59:882–892.
  • Tsitsigiannis, D. I., and Keller, N. P. (2007). Oxylipins as developmental and host-fungal communication signals. Trends Microbiol. 15:109–118.
  • Tsitsigiannis, D., Kowieski, T. M., Zarnowski, R., and Keller, N. P. (2004). Endogenous lipogenic regulators of spore balance in Aspergillus nidulans. Euk. Cell 3:1398–1411.
  • Tsitsigiannis, D. I., Kunze, S., Willis, D. K., Feussner, I., and Keller, N. P. (2005). Aspergillus infection inhibits the expression of peanut 13S-HPODE-forming seed lipoxygenases. Mol. Plant-Microbe Interact. 18:1081–1089.
  • Tsitsigiannis, D. I., Zarnowski, R., and Keller, N. P. (2004). The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J. Biol. Chem. 279:11344–11353.
  • Turner, J. G., Ellis, C., and Devoto, A. (2002). The jasmonate signal pathway. Plant Cell 14:S153–S164.
  • Vergopoulou, S., Galanopoulou, D., and Markaki, P. (2001). Methyl jasmonate stimulates aflatoxin B-1 biosynthesis by Aspergillus parasiticus. J. Agric Food Chem. 49:3494–3498.
  • Voigt, C. A., Schafer, W., and Salomon, S. (2005). A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J. 42:364–375.
  • Wang, X. M. (2004). Lipid signaling. Curr. Opinion Plant Biol. 7:329–336.
  • Welti, R., and Wang, X. M. (2004). Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr. Opinion Plant Biol. 7:337–344.
  • Wilson, R. A., Gardner, H. W., and Keller, N. P. (2001). Cultivar-dependent expression of a maize lipoxygenase responsive to seed infesting fungi. Mol. Plant-Microbe Interact. 14:980–987.
  • Wright, M. S., Greene-McDowelle, D. M., Zeringue, H. J., Bhatnagar, D., and Cleveland, T. E. (2000). Effects of volatile aldehydes from Aspergillus-resistant varieties of corn on Aspergillus parasiticus growth and aflatoxin biosynthesis. Toxicon 38:1215–1223.
  • Wymann, M. P., and Schneiter, R. (2008). Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9:162–176.
  • Xue, H. Q., Isleib, T. G., Payne, G. A., Novitzky, W. F., and Obrian, G. (2005). Aflatoxin production in peanut lines selected to represent a range of linoleic acid concentrations. J. Food Protec. 68:126–132.
  • Xue, H. Q., Isleib, T. G., Payne, G. A., Wilson, R. F., Novitzky, W. P., and O’Brian, G. (2003). Comparison of aflatoxin production in normal- and high-oleic backcross-derived peanut lines. Plant Dis. 87:1360–1365.
  • Zaika, L. L., and Buchanan, R. L. (1987). Review of compounds affecting the biosynthesis or bioregulation of aflatoxins. J. Food Protec. 50:691–708.
  • Zeringue, H. J. (2000). Identification and effects of maize silk volatiles on cultures of Aspergillus flavus. J. Agri. Food Chem. 48:921–925.
  • Zeringue, H. J. (2002). Effects of methyl jasmonate on phytoalexin production and aflatoxin control in the developing cotton boll. Biochem. System. Ecol. 30:497–503.
  • Zeringue, H. J., Brown, R. L., Neucere, J. N., and Cleveland, T. E. (1996). Relationships between C-6-C-12 alkanal and alkenal volatile contents and resistance of maize genotypes to Aspergillus flavus and aflatoxin production. J. Agric. Food Chem. 44:403–407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.