231
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Snake venom: kill and cure

Pages 21-40 | Received 13 Sep 2017, Accepted 27 Oct 2017, Published online: 20 Nov 2017

References

  • Adade, C.M., et al., 2014. Crovirin, a snake venom cysteine-rich secretory protein (CRISP) with promising activity against trypanosomes and leishmania. PLoS Neglected Tropical Diseases, 8 (10), e3252.
  • Aird, S.D., 2002. Ophidian envenomation strategies and the role of purines. Toxicon: Official Journal of the International Society on Toxinology, 40, 335–393.
  • Akao, P.K., et al., 2010. Structural studies of BmooMP alpha-I, a non-hemorrhagic metalloproteinase from Bothrops moojeni venom. Toxicon, 55 (2–3), 361–368.
  • Akef, H., et al., 2017. Anti-proliferative effects of Androctonus amoreuxi Scorpion and Cerastes cerastes snake venoms on human prostate cancer cells. Journal of Cancer Prevention, 22 (1), 40–46.
  • Alves, R.M., et al., 2008. Evidence of caspase-mediated apoptosis induced by l-amino acid oxidase isolated from Bothrops atrox snake venom. Comparative Biochemistry and Physiology – A Molecular and Integrative Physiology, 151 (4), 542–550.
  • Aranda-Souza, M.A., et al., 2014. A lectin from Bothrops leucurus snake venom raises cytosolic calcium levels and promotes B16-F10 melanoma necrotic cell death via mitochondrial permeability transition. Toxicon, 82, 97–103.
  • Azevedo, F.V., et al., 2016. Human breast cancer cell death induced by BnSP-6, a Lys-49 PLA2 homologue from Bothrops pauloensis venom. International Journal of Biological Macromolecules, 82, 671–677.
  • Barbosa, P.S.F., et al., 2005. Renal and antibacterial effects induced by myotoxin I and II isolated from Bothrops jararacussu venom. Toxicon: Official Journal of the International Society on Toxinology, 46 (4), 376–386.
  • Barros, G.A.C., et al., 2015. In vitro activity of phospholipase A2 and of peptides from Crotalus durissus terrificus venom against amastigote and promastigote forms of Leishmania (L.) infantum chagasi. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 21, 48.
  • Bastos, L.M., et al., 2008. Toxoplasma gondii: effects of neuwiedase, a metalloproteinase from Bothrops neuwiedi snake venom, on the invasion and replication of human fibroblasts in vitro. Experimental Parasitology, 120 (4), 391–396.
  • Bazaa, A., et al., 2009. MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration. Matrix Biology: Journal of the International Society for Matrix Biology, 28 (4), 188–193.
  • Bhattacharya, S., et al., 2013. In vivo and in vitro antileishmanial activity of Bungarus caeruleus snake venom through alteration of immunomodulatory activity. Experimental Parasitology, 135 (1), 126–133.
  • Blower, R.J., Barksdale, S.M., and van Hoek, M.L., 2015. Snake cathelicidin NA-CATH and smaller helical antimicrobial peptides are effective against burkholderia thailandensis. PLoS Neglected Tropical Diseases, 9 (7), e0003862.
  • Borges, I.P., et al., 2016. Anti-parasitic effect on Toxoplasma gondii induced by BnSP-7, a Lys49-phospholipase A2 homologue from Bothrops pauloensis venom. Toxicon, 119, 84–91.
  • Borkow, G., and Ovadia, M., 1999. Selective lysis of virus-infected cells by cobra snake cytotoxins: a sendai virus, human erythrocytes, and cytotoxin model. Biochemical and Biophysical Research Communications, 264 (1), 63–68.
  • Borkow, G., Marco, D., and Ovadia, M., 2008. Isolation and partial characterization of an antiviral proteolytic fraction from the venom of echis carinatus sochureki. The Open Biology Journal, 1 (1), 21–26.
  • Bregge-Silva, C., et al., 2012. Isolation and biochemical, functional and structural characterization of a novel l-amino acid oxidase from Lachesis muta snake venom. Toxicon, 60 (7), 1263–1276.
  • Burin, S.M., et al., 2013. L-amino acid oxidase isolated from bothrops pirajai induces apoptosis in BCR-ABL-positive cells and potentiates imatinib mesylate effect. Basic and Clinical Pharmacology and Toxicology, 113 (2), 103–112.
  • Burin, S.M., et al., 2016. The L-amino acid oxidase from Calloselasma rhodostoma snake venom modulates apoptomiRs expression in Bcr-Abl-positive cell lines. Toxicon, 120, 9–14.
  • Castanheira, L., et al., 2015. Insights into anti-parasitism induced by a C-type lectin from Bothrops pauloensis venom on Toxoplasma gondii. International Journal of Biological Macromolecules, 74, 568–574.
  • Castillo, J.C.Q., et al., 2012. In vitro antiplasmodial activity of phospholipases A2 and a phospholipase homologue isolated from the venom of the snake Bothrops asper. Toxins, 4 (12), 1500–1516.
  • Cecilio, A.B., et al., 2013. Molecular characterization of Lys49 and Asp49 phospholipases A2 from snake venom and their antiviral activities against Dengue virus. Toxins, 5 (10), 1780–1798.
  • Chen, L.W., et al., 2011. Bactericidal effect of Naja nigricollis toxin ?? is related to its membrane-damaging activity. Peptides, 32 (8), 1755–1763.
  • Chen, X., et al., 2009. Apoptosis of human hepatocellular carcinoma cell (HepG2) induced by cardiotoxin III through S-phase arrest. Experimental and Toxicologic Pathology, 61 (4), 307–315.
  • Chernyshenko, V., et al., 2017. Antiplatelet and anti-proliferative action of disintegrin from Echis multisquamatis snake venom. Croatian Medical Journal, 58, 118–127.
  • Ciscotto, P., et al., 2009. Antigenic, microbicidal and antiparasitic properties of an l-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon: Official Journal of the International Society on Toxinology, 53 (3), 330–341.
  • Corrêa, E.A., et al., 2016. Isolation, structural and functional characterization of a new Lys49 phospholipase A2 homologue from Bothrops neuwiedi urutu with bactericidal potential. Toxicon, 115, 13–21.
  • Costa, T.R., et al., 2008. Myotoxic phospholipases A2 isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: Cytotoxic effect on microorganism and tumor cells. Peptides, 29 (10), 1645–1656.
  • Costa, T.R., et al., 2015. Evaluating the microbicidal, antiparasitic and antitumor effects of CR-LAAO from Calloselasma rhodostoma venom. International Journal of Biological Macromolecules, 80, 489–497.
  • Da Silva, M., et al., 2009. Anti-platelet effect of cumanastatin 1, a disintegrin isolated from venom of South American Crotalus rattlesnake. Thrombosis Research. Elsevier B.V, 123 (5), 731–739.
  • Das, T., et al., 2013. Inhibition of leukemic U937 cell growth by induction of apoptosis, cell cycle arrest and suppression of VEGF, MMP-2 and MMP-9 activities by cytotoxin protein NN-32 purified from Indian spectacled cobra (Naja naja) venom. Toxicon, 65, 1–4.
  • De Albuquerque Modesto, J.C., et al., 2006. BE-I-PLA2, a novel acidic phospholipase A2 from Bothrops erythromelas venom: Isolation, cloning and characterization as potent anti-platelet and inductor of prostaglandin I2 release by endothelial cells. Biochemical Pharmacology, 72 (3), 377–384.
  • De Barros, N.B., et al., 2016. Liposomes containing an ASP49-phospholipase A2 from Bothrops jararacussu snake venom as experimental therapy against cutaneous leishmaniasis. International Immunopharmacology, 36, 225–231.
  • De Vieira Santos, M.M., et al., 2008. Antitumoural effect of an L-amino acid oxidase isolated from Bothrops jararaca snake venom. Basic and Clinical Pharmacology and Toxicology, 102 (6), 533–542.
  • Dennis, E.A., 1994. Diversity of group types, regulation, and function of phospholipase A2. The Journal of Biological Chemistry, 269 (18), 13057–13060.
  • Ding, B., et al., 2015. Antiplatelet aggregation and antithrombosis efficiency of peptides in the snake venom of Deinagkistrodon acutus: isolation, identification, and evaluation. Evidence-Based Complementary and Alternative Medicine, 2015, 1–6.
  • Du, X.Y., and Clemetson, K.J., 2002. Snake venom L-amino acid oxidases. Toxicon, 40, 659–665.
  • Ebrahim, K., et al., 2015. Cobra venom cytotoxins; Apoptotic or necrotic agents? Toxicon: Official Journal of the International Society on Toxinology, 108, 134–140.
  • El Chamy Maluf, S., et al., 2016. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides, 78, 11–16.
  • Fenard, D., et al., 1999. Secreted phospholipases A2, a new class of HIV inhibitors that block virus entry into host cells. Journal of Clinical Investigation, 104 (5), 611–618.
  • Fox, J.W., and Serrano, S.M.T., 2005. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon, 45, 969–985.
  • Fox, J.W., and Serrano, S.M.T., 2008. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS Journal, 275, 3016–3030.
  • França, S.C., et al., 2007. Molecular approaches for structural characterization of Bothrops l-amino acid oxidases with antiprotozoal activity: cDNA cloning, comparative sequence analysis, and molecular modeling. Biochemical and Biophysical Research Communications, 355 (2), 302–306.
  • Fry, B.G., 1999. Structure-function properties of venom components from Australian elapids. Toxicon: Official Journal of the International Society on Toxinology, 37, 11–32.
  • Ghazaryan, N.A., et al., 2015. Anti-tumor effect investigation of obtustatin and crude Macrovipera lebetina obtusa venom in S-180 sarcoma bearing mice. European Journal of Pharmacology, 764, 340–345.
  • Golubkov, V., Hawes, D., and Markland, F.S., 2003. Anti-angiogenic activity of contortrostatin, a disintegrin from Agkistrodon contortrix contortrix snake venom. Angiogenesis, 6 (3), 213–224.
  • Gomes, A., et al., 2007. A heat stable protein toxin (drCT-I) from the Indian Viper (Daboia russelli russelli) venom having antiproliferative, cytotoxic and apoptotic activities. Toxicon: Official Journal of the International Society on Toxinology, 49 (1), 46–56.
  • Gomes, A., et al., 2010. Anticancer potential of animal venoms and toxins. Indian Journal of Experimental Biology, 48 (2), 93–103.
  • Gomes, V.M., et al., 2005. Purification and characterization of a novel peptide with antifungal activity from Bothrops jararaca venom. Toxicon, 45 (7), 817–827.
  • Gonçalves, A.R., et al., 2002. Ultrastructural alterations and growth inhibition of Trypanosoma cruzi and Leishmania major induced by Bothrops jararaca venom. Parasitology Research, 88 (7), 598–602.
  • Guillaume, C., et al., 2004. Anti-Plasmodium properties of group IA, IB, IIA and III secreted phospholipases A2 are serum-dependent. Toxicon, 43 (3), 311–318.
  • Guimarães, D., de, O., et al., 2017. In vitro antitumor and antiangiogenic effects of Bothropoidin, a metalloproteinase from Bothrops pauloensis snake venom. International Journal of Biological Macromolecules, 97, 770–777.
  • Gutiérrez, J.M., et al., 2005. Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon, 45 (8), 997–1011.
  • Hite, L.A., et al., 1994. cDNA sequences for four snake venom metalloproteinases: structure, classification, and their relationship to mammalian reproductive proteins. Archives of Biochemistry and Biophysics, 308, 182–191.
  • Huancahuire-Vega, S., et al., 2011. Biochemical and pharmacological characterization of PhTX-I a new myotoxic phospholipase A 2 isolated from Porthidium hyoprora snake venom. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, Elsevier Inc., 154 (2), 108–119.
  • Izidoro, L.F.M., et al., 2011. Bothrops pirajai snake venom L-amino acid oxidase: in vitro effects on infection of toxoplasma gondii in human foreskin fibroblasts. Revista Brasileira De Farmacognosia, 21 (3), 477–485.
  • Jebali, J., et al., 2014. Lebecin, a new C-type lectin like protein from Macrovipera lebetina venom with anti-tumor activity against the breast cancer cell line MDA-MB231. Toxicon, 86, 16–27.
  • Kang, I.C., Lee, Y.D., and Kim, D.S., 1999. A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Research, 59 (15), 3754–3760.
  • Kayano, A.M., et al., 2015. BbMP-1, a new metalloproteinase isolated from Bothrops brazili snake venom with in vitro antiplasmodial properties. Toxicon, 106, 30–41.
  • Kessentini-Zouari, R., et al., 2010. CC-PLA2-1 and CC-PLA2-2, two Cerastes cerastes venom-derived phospholipases A2, inhibit angiogenesis both in vitro and in vivo. Laboratory Investigation, 90 (4), 510–519.
  • Khunsap, S., et al., 2011. Purification of a phospholipase A(2) from Daboia russelii siamensis venom with anticancer effects. Journal of Venom Research, 2, 42–51.
  • Koh, D.C.I., Armugam, A., and Jeyaseelan, K., 2006. Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences: Cmls, 63, 3030–3041.
  • Kong, Y., et al., 2009. A novel anti-platelet aggregation tripeptide from Agkistrodon acutus venom: isolation and characterization. Toxicon, Elsevier Ltd, 54 (2), 103–109.
  • Kong, Y., et al., 2015. LX0702, a novel snake venom peptide derivative, inhibits thrombus formation via affecting the binding of fibrinogen with GPIIb/IIIa. Journal of Pharmacological Sciences, Elsevier Ltd, 127 (4), 462–466.
  • Lee, M.L, et al., 2014. Antiproliferative activity of King Cobra (Ophiophagus hannah) venom l-amino acid oxidase. Basic and Clinical Pharmacology and Toxicology, 114 (4), 336–343.
  • Lee, M.L., et al., 2011. Antibacterial action of a heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. Comparative Biochemistry and Physiology – C Toxicology and Pharmacology, 153 (2), 237–242.
  • Lin, K.L., et al., 2010. Down-regulation of the JAK2/PI3K-mediated signaling activation is involved in Taiwan cobra cardiotoxin III-induced apoptosis of human breast MDA-MB-231 cancer cells. Toxicon, 55 (7), 1263–1273.
  • Lu, Q., et al., 2005. Snake venom C-type lectins interacting with platelet receptors. Structure-function relationships and effects on haemostasis. Toxicon, 45 (8), 1089–1098.
  • Lucena, S., et al., 2015. Inhibition of pancreatic tumoral cells by snake venom disintegrins. Toxicon: Official Journal of the International Society on Toxinology, 93, 136–143.
  • Magaldi, S., et al., 2002. Antifungal activity of Crotalus durissus cumanensis venom. Mycoses, 45 (1-2), 19–21.
  • Marcinkiewicz, C., et al., 2003. Obtustatin: a potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Research, 63 (9), 2020–2023.
  • Markland, F.S., 1998. Snake venoms and the hemostatic system. Toxicon: Official Journal of the International Society on Toxinology, 36, 1749–1800.
  • Markland, F.S., and Swenson, S., 2013. Snake venom metalloproteinases. Toxicon: Official Journal of the International Society on Toxinology, 62, 3–18.
  • Markland, F.S., et al., 2001. A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis, 31 (3–6), 183–191.
  • Morjen, M., et al., 2013. PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells. Matrix Biology, 32 (1), 52–62.
  • Mosca, R.C., and Nanci Do Nascimento, N., 2011. An in vitro preliminary study on the growth inhibition of oral microbiota by snake venom. Journal of Dentistry and Oral Hygiene, 3 (8), 114–118.
  • Mukherjee, A.K., et al., 2015. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom l-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production. Apoptosis, 20 (10), 1358–1372.
  • Muller, V.D., et al., 2012. Crotoxin and phospholipases A2 from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses. Toxicon, 59 (4), 507–515.
  • Muller, V.D., et al., 2014. Phospholipase A2 isolated from the venom of Crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope. PLoS One, 9 (11), e112351.
  • Nair, D.G., et al., 2007. Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. Biochemical Journal, 402 (1), 93–104.
  • Naumann, G.B., et al., 2011. Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom. Biochimica Et Biophysica Acta - General Subjects, 1810 (7), 683–694.
  • Nunes, D.C.O., et al., 2013. BnSP-7 toxin, a basic phospholipase A2 from Bothrops pauloensis snake venom, interferes with proliferation, ultrastructure and infectivity of Leishmania (Leishmania) amazonensis. Parasitology, 140 (7), 844–854.
  • Nunes, E. d S., et al., 2011. Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 159 (1), 57–63.
  • Nunes, E.S., et al., 2012. Cytotoxic effect and apoptosis induction by Bothrops leucurus venom lectin on tumor cell lines. Toxicon, 59 (7–8), 667–671.
  • Oguiura, N., et al., 2011. In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. The Journal of Antibiotics), 64 (4), 327–331.
  • Okubo, B.M., et al., 2012. Evaluation of an antimicrobial L-amino acid oxidase and peptide derivatives from bothropoides mattogrosensis pitviper venom. PLoS One, 7 (3),
  • Panfoli, I., et al., 2010. Inhibition of hemorragic snake venom components: old and new approaches. Toxins, 2, 417–427.
  • Passero, L.F.D., et al., 2007. Comparative studies of the anti-leishmanial activity of three Crotalus durissus ssp. venoms. Parasitology Research, 101 (5), 1365–1371.
  • Peichoto, M.E., et al., 2011. A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: Identification of a protein with inhibitory activity against the parasite. Toxicon, 58 (1), 28–34.
  • Petricevich, V.L., and Mendonça, R.Z., 2003. Inhibitory potential of Crotalus durissus terrificus venom on measles virus growth. Toxicon, 42 (2), 143–153.
  • Quintana, J.C., et al., 2012. Antiplasmodial effect of the venom of Crotalus durissus cumanensis, crotoxin complex and Crotoxin B. Acta Tropica, 124 (2), 126–132.
  • Rádis-Baptista, G., et al., 2006. Crotacetin, a novel snake venom C-type lectin homolog of convulxin, exhibits an unpredictable antimicrobial activity. Cell Biochemistry and Biophysics, 44 (3), 412–423.
  • Rodrigues, V.M., et al., 2004. Bactericidal and neurotoxic activities of two myotoxic phospholipases A2 from Bothrops neuwiedi pauloensis snake venom. Toxicon, 44 (3), 305–314.
  • Rudrammaji, L.M.S., et al., 2001. Role of catalytic function in the antiplatelet activity of phospholipase A2 cobra (Naja naja naja) venom. Molecular and Cellular Biochemistry, 219 (1–2), 39–44.
  • Sakurai, Y., et al., 2001. Inhibition of human platelet aggregation by L-amino acid oxidase purified from Naja naja kaouthia venom. Toxicon: Official Journal of the International Society on Toxinology, 39 (12), 1827–1833.
  • Samel, M., et al., 2006. Isolation and characterization of an apoptotic and platelet aggregation inhibiting l-amino acid oxidase from Vipera berus berus (common viper) venom. Biochimica Et Biophysica Acta - Proteins and Proteomics, 1764 (4), 707–714.
  • Samy, R.P., et al., 2007. Antibacterial activity of snake, scorpion and bee venoms: A comparison with purified venom phospholipase A2 enzymes. Journal of Applied Microbiology, 102 (3), 650–659.
  • Samy, R.P., et al., 2008. Viper metalloproteinase (Agkistrodon halys Pallas) with antimicrobial activity against multi-drug resistant human pathogens. Journal of Cellular Physiology, 216 (1), 54–68.
  • Sánchez, E.E., et al., 2009. Colombistatin: a disintegrin isolated from the venom of the South American snake (bothrops colombiensis) that effectively inhibits platelet aggregation and SK-Mel-28 cell adhesion. Archives of Toxicology, 83 (3), 271–279.
  • Sánchez, E.E., et al., 2010. Cloning, expression, and hemostatic activities of a disintegrin, r-mojastin 1, from the mohave rattlesnake (Crotalus scutulatus scutulatus). Thrombosis Research, 126 (3), e211–e219.
  • Sant’Ana, C.D., et al., 2008. Antiviral and antiparasite properties of an l-amino acid oxidase from the Snake Bothrops jararaca: Cloning and identification of a complete cDNA sequence. Biochemical Pharmacology, 76 (2), 279–288.
  • Santamaría, C., et al., 2005. Bactericidal and antiendotoxic properties of short cationic peptides derived from a snake venom Lys49 phospholipase A2. Antimicrobial Agents and Chemotherapy, 49 (4), 1340–1345.
  • Santos-Filho, N.A., et al., 2008. A new acidic myotoxic, anti-platelet and prostaglandin I2 inductor phospholipase A2 isolated from Bothrops moojeni snake venom. Toxicon, 52 (8), 908–917.
  • Sarray, S., et al., 2007. Lebectin and lebecetin, two C-type lectins from snake venom, inhibit alpha5beta1 and alphaV-containing integrins. Matrix Biology: Journal of the International Society for Matrix Biology, 26 (4), 306–313.
  • Schmitmeier, S., et al., 2005. Potent mimicry of fibronectin-induced intracellular signaling in glioma cells by the homodimeric snake venom disintegrin contortrostatin. Neurosurgery, 57 (1), 141–153.
  • Schmitmeier, S., Markland, F.S., and Chen, T.C., 2000. Anti-invasive effect of contortrostatin, a snake venom disintegrin, and TNF-alpha on malignant glioma cells. Anticancer Research, 20 (6B), 4227–4233.
  • Shikamoto, Y., et al., 2005. Crystal structure of a CRISP family Ca2+-channel blocker derived from snake venom. Journal of Molecular Biology, 350 (4), 735–743.
  • Silveira, L.B., et al., 2013. Isolation and expression of a hypotensive and anti-platelet acidic phospholipase A2 from Bothrops moojeni snake venom. Journal of Pharmaceutical and Biomedical Analysis, 73, 35–43.
  • Stábeli, R.G., et al., 2004. Platelet aggregation and antibacterial effects of an L-amino acid oxidase purified from Bothrops alternatus snake venom. Bioorganic and Medicinal Chemistry, 12 (11), 2881–2886.
  • Stábeli, R.G., et al., 2006. Bothrops moojeni myotoxin-II, a Lys49-phospholipase A2 homologue: An example of function versatility of snake venom proteins. Comparative Biochemistry and Physiology – C Toxicology and Pharmacology, 142 (3–4 SPEC. ISS), 371–381.
  • Stábeli, R.G., et al., 2007. Cytotoxic l-amino acid oxidase from Bothrops moojeni: Biochemical and functional characterization. International Journal of Biological Macromolecules, 41 (2), 132–140.
  • Staniszewska, I., et al., 2009. Effect of VP12 and viperistatin on inhibition of collagen-receptor-dependent melanoma metastasis. Cancer Biology and Therapy, 8 (15), 1507–1516.
  • Stiles, B.G., Sexton, F.W., and Weinstein, S.A., 1991. Antibacterial effects of different snake venoms: Purification and characterization of antibacterial proteins from Pseudechis australis (Australian king brown or mulga snake) venom. Toxicon, 29 (9), 1129–1141.
  • Sudharshan, S., and Dhananjaya, B.L., 2015. Antibacterial potential of a basic phospholipase A2 (VRV-PL-VIIIa) from Daboia russelii pulchella (Russell’s viper) venom. Journal of Venomous Animals and Toxins Including Tropical Diseases, 21, 17.
  • Suntravat, M., et al., 2013. CDNA cloning of a snake venom metalloproteinase from the eastern diamondback rattlesnake (Crotalus adamanteus), and the expression of its disintegrin domain with anti-platelet effects. Toxicon: Official Journal of the International Society on Toxinology, 64, 43–54.
  • Suntravat, M., et al., 2016. Expression, purification, and analysis of three recombinant ECD disintegrins (r-colombistatins) from P-III class snake venom metalloproteinases affecting platelet aggregation and SK-MEL-28 cell adhesion. Toxicon: Official Journal of the International Society on Toxinology, 122, 43–49.
  • Takagi, J., 2007. Structural basis for ligand recognition by integrins. Current Opinion in Cell Biology, 19, 557–564.
  • Teixeira, S.S., et al., 2011. Molecular characterization of an acidic phospholipase A 2 from Bothrops pirajai snake venom: synthetic C-terminal peptide identifies its antiplatelet region. Archives of Toxicology, 85 (10), 1219–1233.
  • Tempone, A.G., et al., 2001. Bothrops moojeni venom kills Leishmania spp. with hydrogen peroxide generated by its L-amino acid oxidase. Biochemical and Biophysical Research Communications, 280 (3), 620–624.
  • Tõnismägi, K., et al., 2006. l-Amino acid oxidase from Vipera lebetina venom: Isolation, characterization, effects on platelets and bacteria. Toxicon, 48 (2), 227–237.
  • Torres, A.F.C., et al., 2010. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: phospholipase A 2 and l-amino acid oxidase. Toxicon, 55 (4), 795–804.
  • Toyama, M.H., et al., 2003. Structural, enzymatic and biological properties of new PLA2 isoform from Crotalus durissus terrificus venom. Toxicon, 41 (8), 1033–1038.
  • Toyama, M.H., et al., 2006. Isolation of a new L-amino acid oxidase from Crotalus durissus cascavella venom. Toxicon: Official Journal of the International Society on Toxinology, 47 (1), 47–57.
  • Vargas, L.J., et al., 2012. An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 161 (4), 341–347.
  • Vonk, F.J., et al., 2011. Snake venom: From fieldwork to the clinic: Recent insights into snake biology, together with new technology allowing high-throughput screening of venom, bring new hope for drug discovery. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology, 33, 269–279.
  • Wang, W.J., Shih, C.H., and Huang, T.F., 2005. Primary structure and antiplatelet mechanism of a snake venom metalloproteinase, acurhagin, from Agkistrodon acutus venom. Biochimie, 87 (12), 1065–1077.
  • Wang, Y., et al., 2008. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS One, 3 (9), e3217.
  • Wei, J.F., et al., 2006. Purification, characterization and cytokine release function of a novel Arg-49 phospholipase A2 from the venom of Protobothrops mucrosquamatus. Biochimie, 88 (10), 1331–1342.
  • Wen, Y.L., et al., 2013. Antibacterial and membrane-damaging activities of β-bungarotoxin B chain. Journal of Peptide Science: An Official Publication of the European Peptide Society, 19 (1), 1–8.
  • Wu, M., et al., 2013. The anticancer effect of cytotoxin 1 from Naja atra Cantor venom is mediated by a lysosomal cell death pathway involving lysosomal membrane permeabilization and cathepsin B release. The American Journal of Chinese Medicine, 41 (3), 643–663.
  • Xie, J.P., et al., 2003. In vitro activities of small peptides from snake venom against clinical isolates of drug-resistant Mycobacterium tuberculosis. International Journal of Antimicrobial Agents, 22 (2), 172–174.
  • Xu, C., et al., 2007. A bactericidal homodimeric phospholipases A2 from Bungarus fasciatus venom. Peptides, 28 (5), 969–973.
  • Yamane, E.S., et al., 2013. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie, 95 (2), 231–240.
  • Yan, C., et al., 2007. Autophagy is involved in cytotoxic effects of crotoxin in human breast cancer cell line MCF-7 cells. Acta Pharmacologica Sinica, 28 (4), 540–548.
  • Yang, R.-S., et al., 2005. Inhibition of tumor formation by snake venom disintegrin. Toxicon: Official Journal of the International Society on Toxinology, 45 (5), 661–669.
  • Zhang, H., et al., 2004. Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions. Journal of Microbiology (Seoul, Korea), 42 (4), 336–339.
  • Zhang, Y.J., et al., 2003. Molecular characterization of Trimeresurus stejnegeri venom L-amino acid oxidase with potential anti-HIV activity. Biochemical and Biophysical Research Communications, 309 (3), 598–604.
  • Zhou, H., et al., 2011. The antibacterial activity of BF-30 in vitro and in infected burned rats is through interference with cytoplasmic membrane integrity. Peptides, 32 (6), 1131–1138.
  • Zieler, H., et al., 2001. A snake venom phospholipase A(2) blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface. Journal of Experimental Biology, 204 (Pt 23), 4157–4167.
  • Zouari-Kessentini, R., et al., 2009. Two purified and characterized phospholipases A2 from Cerastes cerastes venom, that inhibit cancerous cell adhesion and migration. Toxicon, 53 (4), 444–453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.