142
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Nontoxic fraction of scorpion venom reduces bacterial growth and inflammatory response in a mouse model of infection

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 310-324 | Received 02 Oct 2018, Accepted 28 Apr 2019, Published online: 16 May 2019

References

  • Al-Asmari, A.K., et al., 2017. Evaluation of the in vitro antimicrobial activity of selected Saudi scorpion venoms tested against multidrug-resistant micro-organisms. Journal of global antimicrobial resistance, 10, 14–18.
  • Almaaytah, A., and Albalas, Q., 2014. Scorpion venom peptides with no disulfide bridges: a review. Peptides, 51, 35–45.
  • Amorim-Carmo, B., et al., 2019. Potent and broad-spectrum antimicrobial activity of analogs from the scorpion peptide stigmurin. International journal of molecular sciences, 20 (3), 623.
  • Banerjee, S., et al., 2018. An alkaloid from scorpion venom: chemical structure and synthesis. Journal of natural products, 81 (8), 1899–1904.
  • Bauer, A., et al., 1966. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, 45 (4_ts), 493.
  • Béchohra, L., Laraba-Djebari, F., and Hammoudi-Triki, D., 2016. Cytotoxic activity of Androctonus australis hector venom and its toxic fractions on human lung cancer cell line. Journal of venomous animals and toxins including tropical diseases, 22, 29.
  • Bekkari, N., and Laraba-Djebari, F., 2015. Beneficial effects of Androctonus australis hector venom and its non-toxic fraction in the restoration of early hepatocyte-carcinogenesis induced by FB1 mycotoxin: involvement of oxidative biomarkers. Experimental and molecular pathology, 99, 198–206.
  • Boman, H., 2003. Antibacterial peptides: basic facts and emerging concepts. Journal of internal medicine, 254 (3), 197–215.
  • Borges, A., et al., 2006. In vitro leishmanicidal activity of Tityus discrepans scorpion venom. Parasitology research, 99 (2), 167–173.
  • Bouafir, Y., Ait-Lounis, A., and Laraba-Djebari, F., 2017. Improvement of function and survival of pancreatic beta-cells in streptozotocin-induced diabetic model by the scorpion venom fraction F1. Toxin reviews, 36 (2), 101–108.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72 (1–2), 248–254.
  • Bradley, P.P., et al., 1982. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. Journal of investigative dermatology, 78 (3), 206–209.
  • Buras, J.A., Holzmann, B., and Sitkovsky, M., 2005. Model organisms: animal models of sepsis: setting the stage. Nature reviews drug discovery, 4 (10), 854.
  • Cao, L., et al., 2012. StCT2, a new antibacterial peptide characterized from the venom of the scorpion Scorpiops tibetanus. Peptides, 36 (2), 213–220.
  • Chen, Y., et al., 2007. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrobial agents and chemotherapy, 51 (4), 1398–1406.
  • Cociancich, S., et al., 1993. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochemical and biophysical research communications, 194 (1), 17–22.
  • Conde, R., et al., 2000. Scorpine, an anti‐malaria and anti‐bacterial agent purified from scorpion venom. FEBS letters, 471 (2–3), 165–168.
  • Craik, D.J., Daly, N.L., and Waine, C., 2001. The cystine knot motif in toxins and implications for drug design. Toxicon, 39 (1), 43–60.
  • Dai, C., et al., 2008. Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrobial agents and chemotherapy, 52 (11), 3967–3972.
  • Daniele-Silva, A., et al., 2016. Stigmurin and TsAP-2 from Tityus stigmurus scorpion venom: assessment of structure and therapeutic potential in experimental sepsis. Toxicon, 121, 10–21.
  • Das Neves, R.C., et al., 2019. Antimicrobial and antibiofilm effects of peptides from venom of social Wasp and scorpion on multidrug-resistant Acinetobacter baumannii. Toxins, 11 (4), 216.
  • De La Vega, R.C.R., and Possani, L.D., 2005. Overview of scorpion toxins specific for Na + channels and related peptides: biodiversity, structure–function relationships and evolution. Toxicon, 46, 831–844.
  • Deng, Y., et al., 2018. De novo transcriptomic analysis of the venomous glands from the scorpion Heterometrus spinifer revealed unique and extremely high diversity of the venom peptides. Toxicon, 143, 1–19.
  • Díaz, P., et al., 2009. Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na + permeability changes. Toxicon, 54 (6), 802–817.
  • Ehret-Sabatier, L., et al., 1996. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. Journal of biological chemistry, 271 (47), 29537–29544.
  • Erdeş, E., et al., 2014. Characterization of Leiurus abdullahbayrami (Scorpiones: Buthidae) venom: peptide profile, cytotoxicity and antimicrobial activity. Journal of venomous animals and toxins including tropical diseases, 20 (1), 48.
  • Fan, Z., et al., 2011. Ctriporin, a new anti-methicillin-resistant Staphylococcus aureus peptide from the venom of the scorpion Chaerilus tricostatus. Antimicrobial agents and chemotherapy, 55 (11), 5220–5229.
  • Fratini, F., et al., 2017. Insects, arachnids and centipedes venom: a powerful weapon against bacteria. A literature review. Toxicon, 130, 91–103.
  • Gao, B., et al., 2018a. Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino acids, 50 (8), 1025–1043.
  • Gao, B., et al., 2018b. Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino acids, 50 (8), 1025–1043.
  • Gao, B., Tian, C., and Zhu, S., 2007. Inducible antibacterial response of scorpion venom gland. Peptides, 28 (12), 2299–2305.
  • Ghosh, A., et al., 2019. Scorpion venom–toxins that aid in drug development: a review. International journal of peptide research and therapeutics, 25 (1), 27–37.
  • Harrison, P.L., et al., 2014. Antimicrobial peptides from scorpion venoms. Toxicon: official journal of the international society on toxinology, 88, 115–137.
  • Harrison, P.L., et al., 2016. Phospholipid dependent mechanism of smp24, an α-helical antimicrobial peptide from scorpion venom. Biochimica et biophysica acta (BBA)—Biomembranes, 1858 (11), 2737–2744.
  • Heath, G.R., et al., 2018. Visualization of diffusion limited antimicrobial peptide attack on supported lipid membranes. Soft matter, 14 (29), 6146–6154.
  • Hernández-Aponte, C.A., et al., 2011. Vejovine, a new antibiotic from the scorpion venom of Vaejovis mexicanus. Toxicon, 57 (1), 84–92.
  • Issaad, N., Ait-Lounis, A., and Laraba-Djebari, F., 2018. Cytotoxicity and actin cytoskeleton damage induced in human alveolar epithelial cells by Androctonus australis hector venom. Toxin reviews, 37 (1), 67–74.
  • Kaddache, A., et al., 2017. Switch of steady-state to an accelerated granulopoiesis in response to Androctonus australis hector venom. Inflammation, 40 (3), 871–883.
  • Khemili, D., et al., 2019. Differential effect of Androctonus australis hector venom components on macrophage K V channels: electrophysiological characterization. European biophysics journal, 48 (1), 1–13.
  • Laraba-Djebari, F., Adi-Bessalem, S., and Hammoudi-Triki, D., 2015. Scorpion venoms: pathogenesis and biotherapies. In: Scorpion venoms. New York: Springer, 63–85.
  • Laraba-Djebari, F., and Hammoudi, D., 1998. Utilisation de la fraction toxique majoritaire isolée à partir du venin dans la valorisation du sérum antiscorpionique. Archives de L’Institut Pasteur D’Algérie, 62, 254–266.
  • Larsson, B.-M., et al., 1999. Gram positive bacteria induce IL-6 and IL-8 production in human alveolar macrophages and epithelial cells. Inflammation, 23, 217–230.
  • Li, Z., et al., 2019. Peptides with therapeutic potential in the venom of the scorpion Buthus martensii Karsch. Peptides, 115, 43–50.
  • Maciel, M.C., et al., 2014. Tityus serrulatus scorpion venom improves survival and lung inflammation in lethal sepsis induced by CLP in mice. Toxicon, 89, 1–8.
  • Martin-Eauclaire, M.-F., et al., 2019. Serotherapy against voltage-gated sodium channel-targeting αtoxins from Androctonus scorpion venom. Toxins, 11 (2), 63.
  • Meduri, G.U., et al., 1999. Cytokines IL-1 β, IL-6, and TNF-α enhance in vitro growth of bacteria. American journal of respiratory and critical care medicine, 160 (3), 961–967.
  • Megdad-Lamraoui, A., Adi-Bessalem, S., and Laraba-Djebari, F., 2019. Cerebrospinal inflammatory response following scorpion envenomation: role of histamine H1 and H3 receptors. Inflammopharmacology, 1–13. DOI: 10.1007/s10787-018-00553-6
  • NCFCL Standards, 2010. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. NCCLS.
  • Parente, A., et al., 2018. Analogs of the scorpion venom peptide stigmurin: Structural assessment, toxicity, and increased antimicrobial activity. Toxins, 10 (4), 161.
  • Peigneur, S., et al., 2012. Subtype specificity interaction of bactridines with mammalian, insect and bacterial sodium channels under voltage clamp conditions. FEBS journal, 279 (21), 4025–4038.
  • Possani, L.D., et al., 1999. Scorpion toxins specific for Na+ channels. European journal of biochemistry, 264 (2), 287–300.
  • Ra, D.-C., et al., 2015. Cm38: a new antimicrobial peptide active against Klebsiella pneumoniae is homologous to Cn11. Protein and peptide letters, 22, 164–172.
  • Ramirez-Dominguez, M.E., et al., 2002. Cn11, the first example of a scorpion toxin that is a true blocker of Na + currents in crayfish neurons. Journal of experimental biology, 205, 869–876.
  • Remijsen, Q., Verdonck, F., and Willems, J., 2010. Parabutoporin, a cationic amphipathic peptide from scorpion venom: much more than an antibiotic. Toxicon, 55 (2–3), 180–185.
  • Riedemann, N.C., et al., 2003. Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. The journal of immunology, 170 (1), 503–507.
  • Rochat, H., et al., 1970. The amino acid sequence of neurotoxin I of Androctonus australis Hector. The FEBS. European journal of biochemistry, 17 (2), 262–266.
  • Samy, R.P., et al., 2017. Animal venoms as a source of natural antimicrobials: an overview. Biochemical pharmacology, 134, 127–138.
  • Sônego, F., Alves-Filho, J.C., and Cunha, F.Q., 2014. Targeting neutrophils in sepsis. Expert review of clinical immunology, 10 (8), 1019–1028.
  • Torres-Larios, A, et al., 2000. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. European journal of biochemistry, 267 (16), 5023–5031.
  • Tracey, K.J., et al., 1987. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature, 330 (6149), 662–664.
  • Uawonggul, N., et al., 2007. Purification and characterization of heteroscorpine-1 (HS-1) toxin from Heterometrus laoticus scorpion venom. Toxicon, 49 (1), 19–29.
  • Velasco-Bolom, J.-L., Corzo, G., and Garduño-Juárez, R., 2018. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides. Journal of biomolecular structure and dynamics, 36 (8), 2070–2084.
  • Wieprecht, T., et al., 1997. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry, 36 (42), 12869–12880.
  • Wimley, W.C., and White, S.H., 1996. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature structural and molecular biology, 3 (10), 842–848.
  • Zanetti, G., et al., 1992. Cytokine production after intravenous or peritoneal gram-negative bacterial challenge in mice. Comparative protective efficacy of antibodies to tumor necrosis factor-alpha and to lipopolysaccharide. Journal of immunology, 148 (6), 1890–1897.
  • Zasloff, M., 2016. Antimicrobial peptides: do they have a future as therapeutics? In: Antimicrobial Peptides. New York: Springer, 147–154.
  • Zhao, Z., et al., 2009. Imcroporin, a new cationic antimicrobial peptide from the venom of the scorpion Isometrus maculates. Antimicrobial agents and chemotherapy, 53 (8), 3472–3477.
  • Zhu, S., and Tytgat, J., 2004. The scorpine family of defensins: gene structure, alternative polyadenylation and fold recognition. Cellular and molecular life sciences, 61, 1751–1763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.