Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 13, 2019 - Issue 5
210
Views
6
CrossRef citations to date
0
Altmetric
Articles

Chemical and mineralogical investigations of lime plasters of medieval structures of Hampi, India

, &
Pages 725-741 | Received 19 Oct 2017, Accepted 22 Apr 2018, Published online: 15 May 2018

References

  • Ajikumar, P. K., L. G. Wong, G. Subramanyam, R. Lakshminarayanan, and S. Valiyaveettil. 2005. Synthesis and characterization of monodispersed spheres of amorphous calcium carbonate and calcite spherules. Cryst Growth Design 5:1129–34. doi:10.1021/cg049606f.
  • Anderegg, F. O. 1942. Autogeneous healing in mortars containing lime. ASTM Bulletin 16:22.
  • Andreassen, J. P. 2005. Formation mechanism and morphology in precipitation of vaterite-nano aggregation or crystal growth? Journal of Crystal Growth 274:256–64. doi:10.1016/j.jcrysgro.2004.09.090.
  • Antony, A., J. H. Low, S. Gray, A. E. Childress, P. Le-Clech, and G. Leslie. 2011. Scale formation and control in high pressure membrane water treatment systems: A review. Journal Membrane Sciences 383:1–16. doi:10.1016/j.memsci.2011.08.054.
  • Arioglu, N., and S. Acun. 2006. A research about a method for restoration of traditional lime mortars and plasters: A staging system approach. Build Environ 41:1223–30. doi:10.1016/j.buildenv.2005.05.015.
  • Binda, L., G. Gatti, G. Manano, C. Poggi, and G. Sacchi Landriani. 1992. The collapse of the Civic Tower of Pavia: A survey of the materials and structure. Masonry International 6 (1):11–20.
  • Binda, L., A. Saisi, S. Messina, and S. Tringali. 2001. Failure due to long-term behaviour of heavy structures: The pavia civic tower and the noto cathedral, 10. Wessex Institute Online. Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK: WIT Press.
  • Boggs, S., Jr. 2006. Principles of sedimentology and stratigraphy. Fourth Edition, ©, by Pearson Education, Inc. Pearson Prentice Hall Pearson Education, Inc. Upper Saddle River. NJ 07458. ISBN. 0·13-154728-3.
  • Boynton, R. S. 1980. Chemistry and Technology of Lime and Limestone, 2nd ed. New York: John Wiley &Sons, Inc.
  • Cazalla, O., Rodriguez-Navarro, C., Sebastián, E., Cultrone, G. 2000. Aging of lime putty: effects on traditional lime mortar carbonation, J. Am. Ceram. Soc. 83 1070–1076.
  • Chakraborty, D., V. K. Agarwal, S. K. Bhatia, and J. Bellare. 1994. Steady-state transitions and Polymorph transformations in continuous precipitation of calcium carbonate. Industrial & Engineering Chemistry Research 33:2187–97. doi:10.1021/ie00033a024.
  • Charola, A. E., M. Dupas, R. P. Sheryll, and G. C. Freund. 1984. Scientific methodologies applied in works of arts, in: Proceeding of the 1st international symposium. Italy: Florence, 28–33.
  • Chen, Z., and Z. Nan. 2011. Controlling the polymorph and morphology of CaCO3 crystals using surfactant mixtures. Journal Colloid Interface Sciences 358:416–22. doi:10.1016/j.jcis.2011.02.062.
  • Chu, V., Regev, L., Weiner, S., Boaretto, E. 2008. Differentiating between anthropogenic calcite in plaster, ash and. natural calcite using infrared spectroscopy: implications in archaeology, Journal of Archaeological Science, 35(1): 905–11.
  • Clarkson, J. R., T. J. Price, and C. J. Adams. 1992. Role of metastable phases in the spontaneous precipitation of calcium-carbonate. Journal Chemical Social Faraday Transactions 88:243–49. doi:10.1039/ft9928800243.
  • Cultrone, G., Sebastian, E., Ortega Huertas, M. 2005. Forced and natural carbonation of lime-based mortars with and without additives: mineralogical and textural changes, Cem. Concr. Res. 35:2278–2289.
  • Devakunjari, D. 1998. World heritage series: Hampi. New Delhi – for Archaeological Survey of India: Eicher Goodearth Ltd. 8. ISBN. 81-87780-42-8.
  • Dickinson, S. R., G. E. Henderson, and K. M. McGrath. 2002. Controlling the kinetic versus thermodynamic crystallisation of calcium carbonate. Journal of Crystal Growth 244:369–78. doi:10.1016/S0022-0248(02)01700-1.
  • Domenico, M., A. Fabrizio, A. Carmine, B. Andrea, B. Nicolò, C. Manuela, C. Stefano, G. M. Crisci., R. D. Luca, M. Lezzerini, S. Mancuso, and A. L. Marca. 2015. A petro-chemical study of ancient mortars from the archaeological site of Kyme (Turkey) Periodico di Mineralogia. 84 (3A (Special Issue)):497–517.
  • Dupas, 1981. L’analyse des mortiers et enduits des peintures murales etdes bâtiments anciens, Symposium International Centre for the Study of the Preservation and the Restoration of Cultural Property, Rome, 281–96.
  • Dupont, L., F. Portemer, and M. Figlarz. 1997. Synthesis and study of a well crystallized CaCO3 vaterite showing a new habitus. Journal Materials Char 7:797–800. doi:10.1039/a607761g.
  • Elsen, J. 2006. Microscopy of historic mortars—A review. Cem Concr Researcher 36:1416–24. doi:10.1016/j.cemconres.2005.12.006.
  • Ferretti, D., and Z. P. Bažant. 2006. Stability of ancient masonry towers: Moisture diffusion, carbonation and size effect. Cement and Concrete Research 36 (7):1379–88. doi:10.1016/j.cemconres.2006.03.013.
  • Frisia, S., A. Borsato, I. J. Fairchild, F. McDermott, and E. M. Selmo. 2002. Aragonite‐calcite relationships in speleothems (Grotte de Clamouse, France): Enironment, fabrics and carbonate geochemistry. Journal of Sedimentary Research 72 (5):687–99. doi:10.1306/020702720687.
  • Fritz, J. M., G. Michell, and C. Arni. 2001. New light on Hampi: Recent research at Vijayanagara. Mumbai: Marg Publications. 1–7. ISBN. 978-81-85026-53-4.
  • García Carmona, J., J. Gómez Morales, and R. Rodríguez Clemente. 2003. Rhombohedral–Scalenohedral calcite transition produced by adjusting the solution electrical conductivity in the system Ca(OH)2–CO2–H2O J. Colld and Interface Sciences 261 (2):434–40. doi:10.1016/S0021-9797(03)00149-8.
  • Gopi, S. P., and V. K. Subramanian. 2012. Polymorphism in CaCO3 - Effect of Temperature under the Influence of EDTA (di sodium salt). Desalination 297:38. doi:10.1016/j.desal.2012.04.015.
  • Groot, C., P. Bartos, and J. Hughes, 2000. “Characterization of old mortars with a respect to their repair”, in Proc. 12th International Brick/Block Masonry Conference, Madrid, p. 815–27.
  • Gulec, A., and A. Ersen. 1998. Characterization of ancient mortars: Evaluation of simple and sophisticated methods. Journal of Arch.Conservation 4 (1):56–67. doi:10.1080/13556207.1998.10785207.
  • Gulzar, S., M. N. Chaudhry, J. P. Burg, and S. A. Saeed. 2013. Characteristics of ancient mortars and plasters from the archaeological site of Akbari-Serai (Pakistan). Asian Journal of Chemistry 25 (15):8484–88. doi:10.14233/ajchem.2013.14798.
  • Hadiko, G., Y. S. Han, M. Fuji, and M. Takahashi. 2005. Synthesis of hollow calcium carbonate particles by the bubble templating method. Materials Letters 59 (19):2519–22. doi:10.1016/j.matlet.2005.03.036.
  • Han, Y., G. Hadiko, M. Fuji, and M. Takahashi. 2006. Influence of initial CaCl2 concentration on the phase and morphology of CaCO3 prepared by carbonation. Journal Materials Sciences 41:4663–67. doi:10.1007/s10853-006-0037-4.
  • Hanifi, B., and S. Kapur. 2016. The physical, chemical, and microscopic properties of masonry mortars from Alhambra Palace (Spain) in reference to their earthquake resistance. Frontiers of Architectural Research 5 (1):101–10. doi:10.1016/j.foar.2015.10.003.
  • Hardy, A. 1995. Indian temple architecture: Form and transformation: The Karṇāṭa Drāviḍa Tradition, 7th to 13th Centuries. Abhinav. New Delhi: Indira Gandhi National Centre for the Arts.ISBN. 978-81-7017-312-0.
  • Heijnen, W. M. M. 1985. The morphology of gel grown calcite. Neues Jahrbuch Fur Mineralogie-Monatshefte 8:357–71.
  • Holmes, S., and M. Wingate. 2002. Building with Lime: A Practical Introduction. London: ITDG Publishing.
  • Huggett, R. J. 2007. Fundamentals of Geomorphology. Second, Milton Park, Abingdon, Oxon: First published 2007 by Routledge 2 Park Square. OX14 4RN. ISBN. 0-203-94711-8 Master e-book ISBN.
  • Jan, E., K. Van Balen, and G. Mertens. 2012. Hydraulicity in historic lime mortars: A review, Chapter in RILEM Book series. January 2012. Netherlands: Springer. doi:10.1007/978-94-007-4635-0_10.
  • Kawano, J., N. Shimobayashi, M. Kitamura, K. Shinoda, and N. Aikawa. 2002. Formation process of calcium carbonate from highly supersaturated solution. Journal Cryst Growth 237–239:419–23. doi:10.1016/S0022-0248(01)01866-8.
  • Kitamura, M. 2002. Controlling factor of polymorphism in crystallization process. Journal Cryst Growth 237/239:2205–14. doi:10.1016/S0022-0248(01)02277-1.
  • Kitano, Y. B. 1962. Journal Chemical Soc, Japan 35:1973. doi:10.1246/bcsj.35.1973.
  • Kontayanis, C. G., and N. V. Vagenas. 2000. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 125:251–55. doi:10.1039/a908609i.
  • Lawrence RMH, A. Study of Carbonation in Non-Hydraulic Lime Mortars [PhD Thesis]. Bath: University of Bath; 2006.
  • Longman, M. W. 1980. Carbonate diagenetic textures from nearsurface diagenetic environments. American Association of Petroleum Geologists, Bulletin 64:461–87.
  • Lubelli, B., T. G. Nijland, and R. P. J. Van Hees. 2011. Self-healing of lime based mortars: Microscopy observations on case studies. Heron 56:1/2.
  • Lycett, M., T. Morrison, and D. Kathleen. 2013. The fall of Vijayanagara reconsidered: Political destruction and historical construction in South Indian history 1. Journal of the Economic and Social History of the Orient. Brill Academic. 56 (3):433–70. doi:10.1163/15685209-12341314.
  • Lynch, G. 1998. Lime mortars for brickwork: Traditional practice and modern misconceptions’, published in two parts, Vol 4 Nos 1 and 2. The Journal of Architectural Conservation 4 (1):7–20. Donhead, Shaftesbury.
  • Macchi, G. 1998. Problems related to the original conception– The case of Pavia Cathedral. In P. Roea, J .L. González, E. Onate and P.Lourenço (Eds.) Structural analysis of historical constructions II CIMNE, 39–56. Barcelona. al. PRe, editor Morales 17, 08029 Barcelona, Spain: Artes Gráficas Torres S.A.
  • Maravelaki-Kalaitzaki, P., I. Karatasios, A. Bakolas, and V. Kilikoglou. 2005. Hydraulic lime mortars for the restoration of the historic masonry in Crete. Cement and Concrete Research 35:1577–86. doi:10.1016/j.cemconres.2004.09.001.
  • Marcus, B. L. 2012. Characterization of historic mortars and earthen building materials in Abu Dhabi Emirate, UAE IOP Conf. Ser.: Materials Sciences Engineering 37:012004.
  • McCauley, J. W., and R. Roy. 1974. Controlled nucleation and crystal growth of various CaCO3 phases by the silica gel technique. American Miner 9-10:947–63.
  • Michell, G. 1977. The hindu temple: An introduction to its meaning and forms, Chicago, USA:. University of Chicago Press. ISBN. 978-0-226-53230-1.
  • Middendrof, B., G. Baronio, K. Callebant, and J. J. Hughes, 2000. Chemical mineralogical and physical mechanical investigation of old mortars in: Proceeding of International RILEM workshop “Historic Mortars Characterization Test”. Paisley, P 53–61.
  • Miriello, D., F. Antonelli, C. Apollaro, A. Bloise, N. Bruno, M. Catalano, et al. 2015. A petro-chemical study of ancient mortars from the archaeological site of Kyme (Turkey). 84(3A) Periodico di Mineralogia 84(3A (Special Issue)): 497-517.
  • Moropoulou, A., A. Bakolas, and K. Bisbikou. 2000. Investigation of the technology of historic mortars. Journal of Cultural Heritage 1:45–58. doi:10.1016/S1296-2074(99)00118-1.
  • Moropoulou, A., A. Cakmak, K. C. Labropoulos, R. Van Grieken, and K. Torfs. 2004. Accelerated microstructural evolution of a calcium-silicate-hydrate (C-S-H) phase in pozzolanic pastes using fine siliceous sources: Comparison with historic pozzolanic mortars. Cem and Con Researcher 34 (1):1–6. doi:10.1016/S0008-8846(03)00187-X.
  • Morse, J. W., and R. S. Arvidson. 2002. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews 58:51–84. doi:10.1016/S0012-8252(01)00083-6.
  • Oliveira, M. A. 2016. A multi–physics approach applied to masonry structures with Non–Hydraulic lime mortars. Guimarães, Portugal: Universidade do Minho.
  • Oliveira, M. A., M. Azenha, P. B. Lourenço, A. Meneghini, E. T. Guimarães, F. Castro, et al. 2017. Experimental analysis of the carbonation and humidity diffusion processes in aerial lime mortar. Construction and Building Materials 148:38–48. doi:10.1016/j.conbuildmat.2017.04.120.
  • Papayianni, I., 1998. Criteria and methodology for manufacturing compatible repair mortars and bricks. Work .on Compatible Restoration Mortars for the protection of European Cultural Heritage. Athens.
  • Pavía, S., B. Fitzgerald, and E. Treacy. 2006. An assessment of lime mortars for masonry repair. Concrete Research in Ireland Colloquium. Dublin: University College Dublin 2006:101–08.
  • Pesce, G. L. 2014. Study of carbonation in novel lime based materials [PhD Thesis]. Bath, England: University of Bath.
  • Puertas, F., M. T. Blanco-Varela, M. Martínez, F. Acción, and G. Alvarez. 1992. Methodology of. Analysis of stones and mortars in monuments. In J. Delgado Rodrigues; Fernando Henriques and F. Telma Jeremias(Ed.s), 7th congress international on deterioration and conservation of stone, Ed D. Rodrigues, 763–70. a Civil, Lisbon, Portugal: Laboratorfo Nacional de Engenhari.
  • Rampazzia, L., A. Pozzia, A. Sansonettib, L. Toniolob, and B. Giussania. 2006. A chemometric approach to the characterisation of historical mortars Cement and concrete research. 36 (6):1108–14.
  • Rossi-Doria, P. R. 1986. Mortars for restoration: Basic requirements and quality control materials and structures. 19:445–48.
  • Sibley, D. F., and M. Gregg. 1987. Classification of dolomite rock textures. Journal Sed Petrology 57:967–75.
  • Singh, M. 1991. Analysis of golkonda fort plaster, 1st international colloguims on role of chemistry in archaeology, 15-18 November, 1991, held at The Birla Institute of Scientific Research, Hyderabad, India, edited by M.C. Ganorbar and N. Rama Rao. India: Birla Institute of Scientific Research.
  • Singh, M. 1993. Analysis and characterization of charminar lime plaster. Current Science 64 (10):760–64.
  • Singh, M., S. Vinodh Kumar, and S. Waghmare. 2015a. Characterization of 6-11th century A.D. decorative lime plasters of rock cut caves of Ellora. Constr Build Materials 98:156–70. doi:10.1016/j.conbuildmat.2015.08.039.
  • Singh, M., S. Vinodh Kumar, S. Waghmare, and P. D. Sable. 2016. Aragonite-Vaterite-Calcite: Polymorphs of CaCO3 in 7th Century CE Lime plasters of Alampur group of temples. India, Cons. Build. Mater. 112:386–97. doi:10.1016/j.conbuildmat.2016.02.191.
  • Singh, M., S. Waghmare, and S. Vinodh Kumar. 2015b. Characterization of lime plasters used in 16th century Mughal monument. Journal Archl Sciences 42:430–34. doi:10.1016/j.jas.2013.11.019.
  • Spanos, N., and P. G. Koutsoukos. 1998. Kinetics of precipitation of calcium carbonate in Alkaline pH at constant supersaturation. Journal Physical Chemical 102:6679–84. doi:10.1021/jp981171h.
  • Stein, B. 1989. The new cambridge history of India: Vijayanagara, Cambridge. Cambridge University Press. 31–32. ISBN. 978-0-521-26693-2.
  • Tai, C. Y., and F.-B. Chen. 1998. Polymorphism of CaCO3 precipitated in a constant-composition environment. AIChE Journal 44 (8):1790–978. doi:10.1002/aic.690440810.
  • Tzotzi, C., T. Pahiadaki, S. G. Yiantsios, A. J. Karabelas, and N. andAndritsos. 2007. A study of CaCO3 scale formation and inhibition in R0 and NF membrane processes. Journal Membrane Sciences 296:171–84. doi:10.1016/j.memsci.2007.03.031.
  • Válek, J., J. J. Hughes, and P. J. M. Bartos. 2000. Compatibility of historic and modern lime mortars. 12th Intern., Válek: Brick-block Masonry.
  • Wolf, G., E. Köningsberger, H. G. Schmidt, L. C. Köningsberger, and H. Gamsjager. 2000. Thermodynamic aspects of vaterite-calcite phase transition. Journal Therm Analysis Calorim 60:463–72. doi:10.1023/A:1010114131577.
  • Xyla, A. G., J. Mikroyannidis, and P. G. Koutsoukos. 1992. The inhibition of calcium carbonate precipitation in aqueous media by organophosphorus compounds. Journal Colloid Interface Sciences 153:537–51. doi:10.1016/0021-9797(92)90344-L.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.