Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 14, 2020 - Issue 5
151
Views
6
CrossRef citations to date
0
Altmetric
Articles

New Double Electrode System for the Electrochemical Desalination of Building Stones

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 678-693 | Received 04 Sep 2018, Accepted 17 Dec 2018, Published online: 27 Dec 2018

References

  • Asadi, A., B. B. K. Huat, H. Nahazanan, and H. A. Keykhah. 2013. Theory of electroosmosis in soil. International Journal of Electrochemical Science 8:1016–25.
  • Auras, M. 2008. Poultices and mortars for salt contaminated masonry and stone objects. In Salt Weathering on Buildings and Stone Sculptures, 22-24 October 2008, The National Museum Copenhagen, Denmark: [Proceedings from the International Conference]. 197-217. Lyngby: Technical University of Denmark.
  • Bertolini, L., L. Coppola, M. Gastaldi, and E. Redaelli. 2009. Electroosmotic transport in porous construction materials and dehumidification of masonry. Construction and Building Materials 23 (1):254–63. doi:10.1016/j.conbuildmat.2007.12.013.
  • Castellote, C., C. Andrade, and C. Alonso. 2000. Electrochemical removal of chlorides: Modelling of the extraction, resulting profiles and determination of the efficient time of treatment. Cement and Concrete Research 30:615–21. doi:10.1016/S0008-8846(00)00220-9.
  • Feijoo, J., O. Matyščák, L. M. Ottosen, T. Rivas, and X. R. Nóvoa. 2016. Electrokinetic desalination of protruded areas of stone avoiding the direct contact with electrodes. Materials and Structures 50 (1):82. doi:10.1617/s11527-016-0946-x.
  • Feijoo, J., X. R. Nóvoa, T. Rivas, M. J. Mosquera, J. Taboada, C. Montojo, and F. Carrera. 2013. Granite desalination using electromigration. Influence of type of granite and saline contaminant. The Journal of Cultural Heritage 14 (5):365–76. doi:10.1016/j.culher.2012.09.004.
  • Feijoo, J., X. R. Nóvoa, T. Rivas, and L. M. Ottosen. 2018b. Enhacing the effiency of electrochemical desalination of stones: A proton pump approach. Materials and Structures 51 (100):1–16. doi:10.1617/s11527-018-1224-x.
  • Feijoo, J., L. M. Ottosen, X. R. Nóvoa, T. Rivas, and I. de Rosario. 2017. An improved electrokinetic method to consolidate porous materials. Materials and Structures 186. 50 (3):1–16. doi:10.1617/s11527-017-1063-1.
  • Feijoo, J., L. M. Ottosen, and J. S. Pozo-Antonio. 2015. Influence of the properties of granite and sandstone in the desalination process by electrokinetic technique. Electrochimica Acta 181:280–87. doi:10.1016/j.electacta.2015.06.006.
  • Feijoo, J., T. Rivas, X. R. Nóvoa, I. de Rosario, and J. Otero. 2018a. In situ desalination of a granitic column by the electrokinetic method. International Journal of Architectural Heritage 12 (1):63–74. doi:10.1080/15583058.2017.1370509.
  • Franzoni, E. 2014. Rising damp removal from historical masonries: A still open challenge. Construction and Building Materials 54:123–36. doi:10.1016/j.conbuildmat.2013.12.054.
  • Franzoni, E., S. Bandini, and G. Graziani. 2014. Rising moisture, salts and electrokinetic effects in ancient masonries: From laboratory testing to on-site monitoring. The Journal of Cultural Heritage 15 (2):112–20. doi:10.1016/j.culher.2013.03.003.
  • Grundl, T., and P. Michalski. 1996. Electroosmotically driven water flow in sediments. Water Research 30 (4):811–18. doi:10.1016/0043-1354(95)00224-3.
  • Guedes, P., N. Couto, L. M. Ottosen, and A. B. Ribeiro. 2014. Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Management 34 (5):886–92. doi:10.1016/j.wasman.2014.02.021.
  • Hansen, H. K., A. Rojo, and L. M. Ottosen. 2012. Electrodialytic remediation of copper mine tailings. Procedia Engineering 44:2053–55. doi:10.1016/j.proeng.2012.09.042.
  • Husillos-Rodríguez, N., P. M. Carmona-Quiroga, S. Martínez-Ramírez, M. T. Blanco-Varela, and R. Fort. 2018. Sacrificial mortars for surface desalination. Construction and Building Materials 173:452–60. doi:10.1016/j.conbuildmat.2018.04.029.
  • Idris, A., B. Inanc, and M. N. Hassan. 2004. Overview of waste disposal and landfills/dumps in Asian countries. Journal of Material Cycles and Waste Management 6 (2). doi:10.1007/s10163-004-0117-y.
  • Jeon, E.-K., J.-M. Jung, W.-S. Kim, S.-H. Ko, and K. Baek. 2015. In situ electrokinetic remediation of As-, Cu-, and Pb-contaminated paddy soil using hexagonal electrode configuration: A full scale study. Environmental Science and Pollution Research 22 (1):711–20. doi:10.1007/s11356-014-3363-0.
  • Kamran, K., L. Pel, A. Sawdy, H. Huinink, and K. Kopinga. 2012. Desalination of porous building materials by electrokinetics: An NMR study. Materials and Structures 45 (1–2):297–308. doi:10.1617/s11527-011-9766-1.
  • Koob, S. P., and N. W. Yee. 2000. The desalination of ceramics using a semi-automated continuous washing station. Studies in Conservation 45 (4):265–73.
  • Lubelli, B., and R. P. J. van Hees. 2007. Effectiveness of crystallization inhibitors in preventing salt damage in building materials. Journal of Cultural Heritage 8 (3):223–34. doi:10.1016/j.culher.2007.06.001.
  • Lubelli, B., and R. P. J. van Hees. 2010. Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties. Journal of Cultural Heritage 11 (1):10–18. doi:10.1016/j.culher.2009.03.005.
  • Lubelli, B., R. P. J. van Hees, and H. De Clercq. 2011. In Fine tuning of poultices: Try-outs in practice, in Salt weathering on buildings and stone sculptures: SWBSS, ed. C. Limassol, I. Ioannou, and M. Theodoridou, 381–88. Nicosia: University of Cyprus. 19–22 October.
  • Matyščák, O., L. M. Ottosen, and I. Rörig-Dalgaard. 2014. Desalination of salt damaged Obernkirchen sandstone by an applied DC field. Construction and Building Materials 71:561–69. doi:10.1016/j.conbuildmat.2014.08.051.
  • Mavré, F., R. K. Anand, D. R. Laws, K. F. Chow, B. Y. Chang, J. A. Crooks, and R. M. Crooks. 2010. Bipolar electrodes: A useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Analytical Chemistry 82 (21):8766–74. doi:10.1021/ac101262v.
  • Meng, B. 1994. Calculation of moisture transport coefficients on the basis of relevant pore structure parameters. Materials and Structures 27 (3):125–34. doi:10.1007/BF02473025.
  • Orellan, J., G. Escadeillas, and G. Arliguie. 2004. Electrochemical chloride extraction: Efficiency and side effects. Cement and Concrete Research 34 (2):227–34. doi:10.1016/j.cemconres.2003.07.001.
  • Ottosen, L. M., and I. V. Christensen. 2012. Electrokinetic desalination of sandstones for NaCl removal—Test of different clay poultices at the electrodes. Electrochimica Acta 86:192–202. doi:10.1016/j.electacta.2012.06.005.
  • Ottosen, L. M., I. V. Christensen, and I. Rörig-Dalgaard 2012. Electrochemical desalination of salt infected limestone masonry of a historic warehouse. Proc. Struct. Faults Repair, Edinburgh.
  • Ottosen, L. M., I. V. Christensen, I. Rorig-Dalgård, P. E. Jensen, and H. K. Hansen. 2008a. Utilization of electromigration in civil and environmental engineering–Processes, transport rates and matrix changes. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 43 (8):795–809. doi:10.1080/10934520801973949.
  • Ottosen L.M., Cristensen I.V., Pedersen A.J., Villumsen A. 2005. Electrodialytic Remediation of Heavy Metal Polluted Soil. In: Lichtfouse E., Schwarzbauer J., Robert D. (eds) Environmental Chemistry. Springer, Berlin, Heidelberg.
  • Ottosen, L. M., C. M. D. Ferreira, and I. V. Christensen. 2010. Electrokinetic desalination of glazed ceramic tiles. Journal of Applied Electrochemistry 40 (6):1161–71. doi:10.1007/s10800-010-0086-x.
  • Ottosen, L. M., H. K. Hansen, A. B. Ribeiro, and A. Villumsen. 2001. Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils. Journal of Hazardous Materials 85 (3):291–99. doi:10.1016/S0304-3894(01)00231-X.
  • Ottosen, L. M., G. M. Kirkelund, and P. E. Jensen. 2013. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere 91 (7):963–69. doi:10.1016/j.chemosphere.2013.01.101.
  • Ottosen, L. M., A. J. Pedersen, and I. Rörig-Dalgaard. 2007. Salt-related problems in brick masonry and electrokinetic removal of salts. Journal of Building Appraisal 3 (3):181–94. doi:10.1057/palgrave.jba.2950074.
  • Ottosen, L. M., and I. Rörig-Dalgaard. 2009. Desalination of a brick by application of an electric DC field. Materials and Structures 42 (7):961–71. doi:10.1617/s11527-008-9435-1.
  • Ottosen, L. M., I. Rörig-Dalgaard, and A. Villumsen 2008b. Electrochemical removal of salts from masonry – Experiences from pilot scale. Conference: Salt Weathering on Buildings and Stone Sculptures - SWBSS 2008At: Copenhagen, Denmark.
  • Ottosen, L. M., and I. Rörig-Dalgård. 2007. Electrokinetic removal of Ca(NO3)2 from bricks to avoid salt-induced decay. Electrochimica Acta 52 (10 SPEC. ISS.):3454–63. doi:10.1016/j.electacta.2006.03.118.
  • Parés Viader, R., P. E. Jensen, L. M. Ottosen, J. Ahrenfeldt, and H. Hauggaard-Nielsen. 2015. Electrodialytic extraction of phosphorus from ash of low-temperature gasification of sewage sludge. Electrochimica Acta 181:100–08. doi:10.1016/j.electacta.2015.05.025.
  • Pedersen, A. J., L. M. Ottosen, and A. Villumsen. 2005. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent. Journal of Hazardous Materials 122 (1–2):103–09. doi:10.1016/j.jhazmat.2005.03.019.
  • Polder, R. B. 1996. Electrochemical chloride removal from concrete prisms containing chloride penetrated from sea water. Construction and Building Materials 10 (1):83–88. doi:10.1016/0950-0618(95)00062-3.
  • Rivas, T., J. Feijoo, I. de Rosario, and J. Taboada. 2017. Use of ferrocyanides on granite desalination by immersion and poultice-based methods. International Journal of Architectural Heritage 11 (4):588–606.
  • Rörig-Dalgaard, I. 2012. Development of a poultice for electrochemical desalination of porous building materials: Desalination effect and pH changes. Materials and Structures 50 (6):959–70.
  • Rörig-Dalgaard, I., L. M. Ottosen, and K. K. Hansen. 2012. Diffusion and electromigration in clay bricks influenced by differences in the pore system resulting from firing. Construction and Building Materials 27 (1):390–97. doi:10.1016/j.conbuildmat.2011.07.031.
  • Sa’id-Shawqi, Q., C. Arya, and P. R. Vassie. 1998. Numerical modeling of electrochemical chloride removal from concrete. Cement and Concrete Research 46 (3):391–400. doi:10.1016/S0008-8846(98)00002-7.
  • Setina, J., L. Krage, J. Svare, and S. Kirilova. 2009. Simulation of desalination processes using lime based mortars. Chemical Engineering & Technology 1:30–35.
  • Shan, H., J. Xu, Z. Wang, L. Jiang, and N. Xu. 2016. Electrochemical chloride removal in reinforced concrete structures: Improvement of effectiveness by simultaneous migration of silicate ion. Construction and Building Materials 127:344–52. doi:10.1016/j.conbuildmat.2016.09.137.
  • Sturm, G., H. Weigand, C. Marb, W. Weiß, and B. Huwe. 2010. Electrokinetic phosphorus recovery from packed beds of sewage sludge ash: Yield and energy demand. The Journal of Applied Electrochemistry 40:1069–78. doi:10.1007/s10800-009-0061-6.
  • Tanaka, Y. 2007. Ion exchange membranes - fundamentals and applications. Membrane Science and Technology. Volume 12, Pages 1-531 (2007).
  • Unhruh, J. 2001. A revised endpoint for ceramics desalination at the archaeological site of Gordon-Turkey. Studies in Conservation 46:81–92. doi:10.2307/1506839.
  • Vergès-Belmin, V., and H. Siedel. 2005. Desalination of masonries and monumental sculptures by poulticing: A review. Restoration of Buildings and Monuments 11 (6):391–408. doi:10.1515/rbm-2005-6000.
  • Yeung, A. T., and Y. Y. Gu. 2011. A review on techniques to enhance electrochemical remediation of contaminated soils. The Journal of Hazardous Materials 195:11–29. doi:10.1016/j.jhazmat.2011.08.047.
  • Zezza, F. 2009. Assessment of desalination mortars and poultices for historic masonry. EU-FP6-2004-SSP-4 call. Project ID: 22714.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.