Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 14, 2020 - Issue 8
284
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigation on the Seismic Behavior of the Semi-Rigid One-Way Straight Mortise-Tenon Joint of a Historical Timber Building

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1135-1147 | Received 19 Nov 2018, Accepted 19 Feb 2019, Published online: 20 Mar 2019

References

  • ASTM D 143-09. Standard methods of testing small clear specimens of timber., West Conshohocken, PA: American Society of Testing and Materials.
  • Bingjian, M. 1991. Construction Technology of Chinese Ancient Timber Structure Woodwork. Beijing: Science Press. (in Chinese).
  • Brischke, C., and L. Meyer-Veltrup. 2016. Modelling timber decay caused by brown rot fungi. Materials and Structures 49 (8):3281–91. doi:10.1617/s11527-015-0719-y.
  • Cavalli, A., D. Cibecchini, M. Togni, and H. S. Sousa. 2016. A review on the mechanical properties of aged wood and salvaged timber. Construction and Building Materials 114:681–87. doi:10.1016/j.conbuildmat.2016.04.001.
  • Ceccotti, A., and Togni, M. 1996. NDT on ancient timber beams: Assessment of strength/stiffness properties combining visual and instrumental methods. In Proceedings of 10th International symposium on nondestructive testing of wood, Lausanne, Switzerland, August 26–28, 1996, pp. 379–88.
  • Chen, C., H. Qiu, and Y. Lu. 2016. Flexural behaviour of timber dovetail mortise–Tenon joints. Construction and Building Materials 112:366–77. doi:10.1016/j.conbuildmat.2016.02.074.
  • Chen, J., T. Li, Q. Yang, X. Shi, and Y. Zhao. 2018. Degradation laws of hysteretic behaviour for historical timber buildings based on pseudo-static tests. Engineering Structures 156:480–89. doi:10.1016/j.engstruct.2017.11.054.
  • Chen, Z., E. Zhu, J. Pan, and G. Wu. 2015. Energy-dissipation performance of typical beam-column joints in Yingxian Wood Pagoda: Experimental study. Journal of Performance of Constructed Facilities 30 (3):04015028. doi:10.1061/(ASCE)CF.1943-5509.0000771.
  • Chen, L-K., S-C. Li, Y-T. Wang, Y-J. Zhao, M. Zhang, X-Y. Song, X-W. Li, T. Wu, & L-Z. Jiang. (2017). Experimental study on the seismic behaviour of mortise–tenon joints of the ancient timbers. Structural Engineering International, 27 (4):512–519.
  • Chui, Y. H., and Y. Li. 2005. Modeling timber moment connection under reversed cyclic loading. Journal of Structural Engineering 131 (11):1757–63. doi:10.1061/(ASCE)0733-9445(2005)131:11(1757).
  • Chun, Q., Z. Yue, and J. Pan. 2011. Experimental study on seismic characteristics of typical mortise-tenon joints of Chinese southern traditional timber frame buildings. Science China Technological Sciences 54 (9):2404–11. doi:10.1007/s11431-011-4448-3.
  • Crayssac, E., X. Song, Y. Wu, and K. Li. 2018. Lateral performance of mortise-tenon jointed traditional timber frames with wood panel infill. Engineering Structures 161:223–30. doi:10.1016/j.engstruct.2018.02.022.
  • Curling, S. F., C. A. Clausen, and J. E. Winandy. 2002. Relationships between mechanical properties, weight loss, and chemical composition of woodduring incipient brown-rot decay. Forest Products Journal 52 (7/8):34–39.
  • D’Ayala, D. F., and P. H. Tsai. 2008. Seismic vulnerability of historic Dieh–Dou timber structures in Taiwan. Engineering Structures 30 (8):2101–13. doi:10.1016/j.engstruct.2007.11.007.
  • De Moura, M. F. S. F., J. M. Q. Oliveira, J. J. L. Morais, and N. Dourado. 2011. Mixed-mode (I+ II) fracture characterization of wood bonded joints. Construction and Building Materials 25 (4):1956–62. doi:10.1016/j.conbuildmat.2010.11.060.
  • Fang, D. P., S. Iwasaki, M. H. Yu, Q. P. Shen, Y. Miyamoto, and H. Hikosaka. 2001. Ancient chinese timber timber structure. ii: Dynamic characteristics. Journal of Structural Engineering 127 (11):1358–64. doi:10.1061/(ASCE)0733-9445(2001)127:11(1358).
  • Foliente, G. C., R. H. Leicester, C. H. Wang, C. Mackenzie, and I. Cole. 2002. Durability design for wood construction. Forest Products Journal 52 (1):10–19.
  • Guan, Z. W., A. Kitamori, and K. Komatsu. 2008a. Experimental study and finite element modelling of Japanese “Nuki” joints—Part one: Initial stress states subjected to different wedge configurations. Engineering Structures 30 (7):2032–40. doi:10.1016/j.engstruct.2008.01.003.
  • Guan, Z. W., A. Kitamori, and K. Komatsu. 2008b. Experimental study and finite element modelling of Japanese “Nuki” joints—Part two: Racking resistance subjected to different wedge configurations. Engineering Structures 30 (7):2041–49. doi:10.1016/j.engstruct.2008.01.004.
  • Huang, H., Z. Sun, T. Guo, and P. Li. 2017. Experimental study on the seismic performance of traditional Chuan-dou style wood frames in Southern China. Structural Engineering International 27 (2):246–54. doi:10.2749/101686617X14881932435817.
  • Isaksson, T., C. Brischke, and S. Thelandersson. 2013. Development of decay performance models for outdoor timber structures. Materials and Structures 46 (7):1209–25. doi:10.1617/s11527-012-9965-4.
  • ISO 3129. 1975. Wood: Sampling methods and general requirements for physical and mechanical tests. Drawn up by the technical committee ISO/TC55: sawn timber and sawlogs. 1. ed. International Standard ISO (ISO). Norme Internationale ISO (ISO).
  • Kent, S. M., R. J. Leichti, D. V. Rosowsky, and J. J. Morrell. 2005. Effects of decay on the cyclic properties of nailed connections. Journal of Materials in Civil Engineering 17 (5):579–85. doi:10.1061/(ASCE)0899-1561(2005)17:5(579).
  • King, W. S., J. R. Yen, and Y. A. Yen. 1996. Joint characteristics of traditional Chinese wooden frames. Engineering Structures 18 (8):635–44. doi:10.1016/0141-0296(96)00203-9.
  • Lacourt, P. A., F. J. Crisafulli, and A. E. Mirasso. 2016. Finite element modelling of hysteresis, degradation and failure of dowel type timber joints. Engineering Structures 123:89–96. doi:10.1016/j.engstruct.2016.05.034.
  • Leicester, R. H., and G. C. Foliente. 1999. Models for timber decay and termite attack. Durability of Building Materials and Components 1:756–65.
  • Li, T. Y. (2005). The main structural damages and damage mechanism analysis on Yingxian Wooden Tower. Ph.D. thesis, Taiyuan University of Technology, Taiyuan, China. (in Chinese)
  • Li, X., J. Zhao, G. Ma, and W. Chen. 2015. Experimental study on the seismic performance of a double-span traditional timber frame. Engineering Structures 98:141–50. doi:10.1016/j.engstruct.2015.04.031.
  • Meghlat, E. M., M. Oudjene, H. Ait-Aider, and J. L. Batoz. 2013. A new approach to model nailed and screwed timber joints using the finite element method. Construction and Building Materials 41:263–69. doi:10.1016/j.conbuildmat.2012.11.068.
  • Meng, X., Q. Yang, J. Wei, and T. Li. 2018. Experimental investigation on the lateral structural performance of a traditional Chinese pre-Ming dynasty timber structure based on half-scale pseudo-static tests. Engineering Structures 167:582–91. doi:10.1016/j.engstruct.2018.04.077.
  • Ministry of construction of People’s Republic of China. 2003. Code for design of timber structures (GB50005-2003). Beijing: China Construction Industry Press.(in Chinese).
  • Ogawa, K., Y. Sasaki, and M. Yamasaki. 2016. Theoretical estimation of the mechanical performance of traditional mortise–Tenon joint involving a gap. Journal of Wood Science 62 (3):242–50. doi:10.1007/s10086-016-1544-9.
  • Ooka, Y., K. Izuno, H. Tanahashi, and Suzuki, Y. 2014. Seismic performance of aged and deteriorated wooden joints of Japanese traditional timber structures. WCTE2014. Paper No. ABS328. (2014.8.10 ~ 2014.8.14), Quebec City, Canada.
  • Pang, S. J., J. K. Oh, J. S. Park, C. Y. Park, and J. J. Lee. 2010. Moment-carrying capacity of dovetailed mortise and tenon joints with or without beam shoulder. Journal of Structural Engineering 137 (7):785–89. doi:10.1061/(ASCE)ST.1943-541X.0000323.
  • People’s Republic of China national standard. 2002. Standard for test method of wood structure (GB/T 50329-2002). Beijing: Construction Industry Press.
  • Poletti, E., G. Vasconcelos, J. M. Branco, and A. M. Koukouviki. 2016. Performance evaluation of traditional timber joints under cyclic loading and their influence on the seismic response of timber frame structures. Construction and Building Materials 127:321–34. doi:10.1016/j.conbuildmat.2016.09.122.
  • Po-Yuan, S. (2010). Mechanical performance of Taiwanese traditional “right-angled-notch-tenon” timber connections - by reviewing the effects of simulated termite infestation. Master’s Thesis, National Chen Kung University, Taiwan, China
  • Sawata, K., and Y. J. Sasaki. 2018. Lateral strength of nailed timber connections with decay. Journal of Wood Science 64 (5):601–11.
  • Seo, J. M., I. K. Choi, and J. R. Lee. 1999. Static and cyclic behavior of wooden frames with tenon joints under lateral load. Journal of Structural Engineering 125 (3):344–49. doi:10.1061/(ASCE)0733-9445(1999)125:3(344).
  • Shiratori, T., K. Komatsu, and A. Leijten. 2008. Modified traditional Japanese timber joint system with retrofitting abilities. Structural Control and Health Monitoring: the Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures 15 (7):1036–56. doi:10.1002/stc.v15:7.
  • Wang, X. L. (2008). Research on evaluation method of reliability-based residual life of historic timber structure. Ph.D. thesis, Wuhan University of Technology, Wuhan, China.
  • Xie, Q., P. Zheng, W. Xiang, Y. Cui, and F. Zhang. 2015. Experimental study on seismic behavior of damaged straight mortise-tenon joints of ancient timber buildings. Earthquake Engineering & Engineering Dynamics 35 (11):143–50. in Chinses.
  • Xue, J., and D. Xu. 2018. Shake table tests on the traditional column-and-tie timber structures. Engineering Structures 175:847–60. doi:10.1016/j.engstruct.2018.08.090.
  • Yang, N., P. Li, S. S. Law, and Q. Yang. 2011. Experimental research on mechanical properties of timber in ancient Tibetan building. Journal of Materials in Civil Engineering 24 (6):635–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.