Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 4
504
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Numerical Assessment of Cracks on a Freestanding Masonry Minaret

ORCID Icon, &
Pages 526-547 | Received 09 Mar 2019, Accepted 04 Jun 2019, Published online: 26 Jun 2019

References

  • Altunişik, A. C., F. Y. Okur, A. F. Genç, M. Günaydin, and S. Adanur. 2018. Automated model updating of historical masonry structures based on ambient vibration measurements. Journal of Performance of Constructed Facilities 32 (1):04017126. doi:10.1061/(ASCE)CF.1943-5509.0001108.
  • Anooshehpoor, A., T. H. Heaton, B. Shi, and J. N. Brune. 1999. Estimates of the ground accelerations at point reyes station during the 1906 San Francisco earthquake. Bulletin of the Seismological Society of America 89 (4):845–53.
  • ANSYS® Academic Research Mechanical, Release 16.0, 2015.
  • Barka, A., and R. Reilinger. 1997. Active tectonics of the Eastern Mediterranean region: Deduced from GPS, neotectonic and seismicity data. Annali Di Geofisica 40 (3):587–610.
  • COSMOS Virtual Data Center. Accessed October 21, 2014. http://strongmotioncenter.org/vdc/scripts/default.plx
  • Demir, C., and A. İlki. 2014. Characterization of materials used in the multi-leaf masonry walls of monumental structures in İstanbul, Turkey. Construction and Building Materials 64:398–413. doi:10.1016/j.conbuildmat.2014.04.099.
  • Di Egidio, A., D. Zulli, and A. Contento. 2014. Comparison between the seismic response of 2D and 3D models of rigid blocks. Earthquake Engineering and Engineering Vibration 13 (1):151–62. doi:10.1007/s11803-014-0219-z.
  • Erdogan, Y. S. 2017. Discrete and continuous finite element models and their calibration via vibration and material tests for the seismic assessment of masonry structures. International Journal of Architectural Heritage 11 (7):1026–45. doi:10.1080/15583058.2017.1332255.
  • ERI. 1976. Report on the September 6, 1975 Lice Earthquake. Earthquake Research Institute, Ministry of Reconstruction and Resettlement, Ankara, Turkey. .
  • Feilden, B. M. 1987. Between two earthquakes: Cultural properties in seismic zones. US: Getty Conservation Institute.
  • Hinzen, K. G. 2012. Rotation of vertically oriented objects during earthquakes. Journal of Seismology 16 (4):797–814. doi:10.1007/s10950-011-9255-6.
  • Housner, G. W. 1963. The behavior of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America 53 (2):403–17.
  • İmamoğlu, M. Ş., and E. Çetin. 2007. The seismicity of southeast anatolian and vicinity. D.Ü. Ziya Gökalp Egitim Fakültesi Dergisi 9:93–103.
  • Kahveci, A. E., and A. Kadayıfçı. 2013. Investigation structural properties of basalt stone in diyarbakir region. SDU International Journal of Technological Science 5 (3):56–69.
  • Kalkan, E., and P. Gülkan. 2004. Site-dependent spectra derived from ground motion records in Turkey. EERI Earthquake Spectra 20 (4):1111–38. doi:10.1193/1.1812555.
  • Kazaz, İ., and İ. Kocaman. 2018. Seismic load capacity evaluation of stone masonry mosques. Journal of the Faculty of Engineering and Architecture of Gazi University 33 (2):557–73.
  • Kocaman, İ., İ. Kazaz, and E. Kazaz. 2019. Seismic load capacity of historical masonry mosques by rigid body kinetics. International Journal of Architectural Heritage. doi:10.1080/15583058.2019.1570389.
  • Lancellotta, R., and D. Sabia. 2015. Identification technique for soil-structure analysis of the Ghirlandina Tower. International Journal of Architectural Heritage 9 (4):391–407. doi:10.1080/15583058.2013.793438.
  • Lekshmy, P. R., and S. T. G. Raghukanth. 2019. Stochastic earthquake source model for ground motion simulation. Earthquake Engineering and Engineering Vibration 18 (1):1–34. doi:10.1007/s11803-019-0487-8.
  • Makris, N., and Y. Roussos. 1998. Rocking response and overturning of equipment under horizontal pulse-type motions. Report PEER-1998/05, Pacific Earthquake Engineering Research Center University of California, Berkeley.
  • Milani, G., S. Casolo, A. Naliato, and A. Tralli. 2012. Seismic assessment of a medieval masonry tower in Northern Italy by limit, nonlinear static, and full dynamic analyses. International Journal of Architectural Heritage 6 (5):489–524. doi:10.1080/15583058.2011.588987.
  • Mitchell, W. A. 1977. Partial recovery and reconstruction after disaster: The lice case. Mass Emergencies 2 (4):233–47.
  • Nalbant, S. S., J. McCloskey, S. Steacy, and A. A. Barka. 2002. Stress accumulation and increased seismic risk in eastern Turkey. Earth and Planetary Science Letters 195:291–98. doi:10.1016/S0012-821X(01)00592-1.
  • Ramana, Y. V., and B. S. Gogte. 1989. Dependence of coefficient of sliding fraction in rocks on lithology and mineral characteristics. Engineering Geology 26 (3):271–79. doi:10.1016/0013-7952(89)90014-8.
  • Ramos, L. F., A. C. Núñez García, F. M. Fernandes, and P. B. Lourenço. 2018. Evaluation of structural intervention in the quartel das Esquadras, Almeida (Portugal). International Journal of Architectural Heritage 12 (3):465–85. doi:10.1080/15583058.2017.1323975.
  • Sandoval, C., R. Valledor, and D. Lopez-Garcia. 2017. Numerical assessment of accumulated seismic damage in a historic masonry building. A case study. International Journal of Architectural Heritage 11 (8):1177–94. doi:10.1080/15583058.2017.1356945.
  • TBDY. 2018. Turkey building earthquake regulation. Ankara, Turkey: Disaster and Emergency Management Authority (AFAD).
  • Tsoutrelis, C. E., and G. E. Exadaktylos. 1993. Effect of rock discontinuities on certain rock strength and fracture energy parameters under uniaxial compression. Geotechnical & Geological Engineering 11 (2):81–105. doi:10.1007/BF00423337.
  • Veeraraghavan, V., T. H. Heaton, and S. Krishnan. 2019. Lower bounds on ground motion at point reyes during the 1906 San Francisco Earthquake from train toppling analysis. Seismological Research Letters 90 (2A):683–91. doi:10.1785/0220180327.
  • Yıldız, S., N. Işık, and O. Keleştemur. 2008. Investigation of the mechanical properties of basalt stones in the Diyarbakır-Karacadağ. International Journal of Science and Technology 20 (4):617–26. in Turkish.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.