653
Views
19
CrossRef citations to date
0
Altmetric
Articles

Analytical Derivation of Seismic Fragility Curves for Historical Masonry Structures Based on Stochastic Analysis of Uncertain Material Parameters

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 1142-1164 | Received 14 Jan 2019, Accepted 28 Jun 2019, Published online: 22 Jul 2019

References

  • Acito, M., M. Bocciarelli, C. Chesi, and G. Milani. 2014. ‘Collapse of the clock tower in Finale Emilia after the May 2012 Emilia Romagna earthquake sequence: Numerical insight. Engineering Structures. Elsevier Ltd 72 (May 2012):70–91. doi:10.1016/j.engstruct.2014.04.026.
  • Applied Technology Council (ATC). 2009. ATC-58, Guidelines for Seismic Performance Assessment of Buildings, Applied Technology Council. Redwood City, CA.
  • Atamturktur, S., F. M. Hemez, and J. A. Laman. 2012. Uncertainty quantification in model verification and validation as applied to large scale historic masonry monuments. Engineering Structures 43:221–34. doi:10.1016/j.engstruct.2012.05.027.
  • Ballio, F., and A. Guadagnini. 2004. Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology. Water Resources Research 40 (4):1–5. doi:10.1029/2003WR002876.
  • Bartoli, G., M. Betti, L. Facchini, A. M. Marra, and S. Monchetti. 2017. Bayesian model updating of historic masonry towers through dynamic experimental data. Procedia Engineering 199:1258–63. doi:10.1016/j.proeng.2017.09.267.
  • Bažant, Z. P., and B. Oh. 1983. Crack band theory for fracture of concrete. Materials and Structures 16:155–77. doi:10.1007/BF02486267.
  • Bosiljkov, V., D. D’Ayala, and V. Novelli. 2015. Evaluation of uncertainties in determining the seismic vulnerability of historic masonry buildings in Slovenia: Use of macro-element and structural element modelling. Bulletin of Earthquake Engineering 13:311–29. doi:10.1007/s10518-014-9652-7.
  • Bracchi, S., M. Rota, A. Penna, and G. Magenes. 2015. Consideration of modelling uncertainties in the seismic assessment of masonry buildings by equivalent-frame approach. Bulletin of Earthquake Engineering 13:3423–48. doi:10.1007/s10518-015-9760-z.
  • Bracchi, S., M. Rota, G. Magenes, and A. Penna. 2016. Seismic assessment of masonry buildings accounting for limited knowledge on materials by Bayesian updating. Bulletin of Earthquake Engineering 14:2273–97. doi:10.1007/s10518-016-9905-8.
  • Castellazzi, G., A. M. D’Altri, S. de Miranda, and F. Ubertini. 2017. An innovative numerical modeling strategy for the structural analysis of historical monumental buildings. Engineering Structures. Elsevier Ltd 132:229–48. doi:10.1016/j.engstruct.2016.11.032.
  • CNR-DT 212/2013. 2014. Guide for the Probabilistic Assessment of the Seismic Safety of Existing Buildings. Italy: Rome.
  • Comisión Permanente de Normas Sismo resistentes. 2002. Norma de construcción sismo resistente NCSE-02, Real Decreto 997/2002, Spanish Ministry of Public Works, [in Spanish]. Madrid, Spain: Spanish Ministry of Public Works (Ministerio de Fomento).
  • Contrafatto, F. R. 2017. Vulnerability assessment of monumental masonry structures including uncertainty. Barcelona, Spain: Universitat Politècnica de Catalunya.
  • D’Ayala, D. F., and A. Ansal. 2012. Non linear pushover assessment of heritage buildings in Istanbul to define seismic risk. Bulletin of Earthquake Engineering 10 (1):285–306. doi:10.1007/s10518-011-9311-1.
  • DIANA FEA BV. 2017. DIsplacement method ANAlyser (DIANA FEA), release 10.1, Delft, Netherlands. Delft, Netherlands: DIANA FEA BV.
  • EN 1998-1 (Eurocode 8). 2003. Design of structures for earthquake resistance, Part 1 General rules seismic actions and rules for buildings. Brussels, Belgium: European Committee for Standardisation.
  • Fajfar, P. 1999. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering & Structural Dynamics. John Wiley & Sons, Ltd. 28 (9):979–93. doi:10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1.
  • Federal Emergency Management Agency. 2010. HAZUS-MH MR4: Technical Manual, Vol. Earthquake Model. Washington DC: FEMA.
  • Fontserè, E. 1971. Recopilació de dades sísmiques de les terres catalanes entre 1100 i 1906. Barcelona: Generalitat de Catalunya.
  • Franchin, P., L Ragni, M Rota, A. Zona. 2018. Modelling uncertainties of Italian code-conforming structures for the purpose of seismic response analysis modelling uncertainties of Italian code-conforming structures for the purpose of seismic response analysis. Journal of Earthquake Engineering 22 (sup 2):1964–1989. doi:10.1080/13632469.2018.1527262.
  • Franchin, P., P. E. Pinto, and P. Rajeev. 2010. Confidence Factor? Journal of Earthquake Engineering 14 (7):989–1007. doi:10.1080/13632460903527948.
  • González, R. 2008. Construction process, damage and structural analysis. Two case studies.. In Structural analysis of historic construction: Preserving safety and significance, ed. D’Ayala, D. and Fodde, E., 643–51. Bath: CRC Press.
  • Graf, W., M. Götz, and M. Kaliske. 2015. Analysis of dynamical processes under consideration of polymorphic uncertainty. Structural Safety 52:194–201. doi:10.1016/j.strusafe.2014.09.003.
  • International Federation for Structural Concrete. 2013. CEB-FIP model code 2010, final draft. Technical Report. Lausanne: Fédération Internationale du Béton (fib).
  • Irizzary, I. P. 2004. An advanced approach to seismic risk assessment. Application to the cultural heritage and the urban system of Barcelona. Barcelona, Spain: Universitat Politècnica de Catalunya (UPC-BarcelonaTech).
  • Jalayer, F., I. Iervolino, and G. Manfredi. 2010. Structural modeling uncertainties and their influence on seismic assessment of existing RC structures. Structural Safety. Elsevier Ltd 32 (3):220–28. doi:10.1016/j.strusafe.2010.02.004.
  • Lagomarsino, S., and S. Cattari. 2014a. Fragility Functions of Masonry Buildings. In SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk, ed. K. Pitilakis, H. Crowley, and A. Kaynia, 111–56. Dordrecht: Springer. doi:10.1007/978-94-007-7872-6_5.
  • Lagomarsino, S., and S. Cattari. 2014b. PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bulletin of Earthquake Engineering 13 (1):13–47. doi:10.1007/s10518-014-9674-1.
  • Lagomarsino, S., and S. Giovinazzi. 2006. Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bulletin of Earthquake Engineering 4 (4):415–43. doi:10.1007/s10518-006-9024-z.
  • Lagomarsino, S., and S. Resemini. 2009. The Assessment of Damage Limitation State in the Seismic Analysis of Monumental Buildings. Earthquake Spectra 25 (2):323–46. doi:10.1193/1.3110242.
  • Lourenço, P. B. 2009. Recent Advances in Masonry Modelling: Micromodelling and Homogenisation. Multiscale Modeling in Solid Mechanics: Computational Approaches 251–94. doi:10.1142/9781848163089_0006.
  • Mayer, P. 2008. Barcelona, Església de Santa Maria del Mar-PM 15932, Wikimedia Commons. https://commons.wikimedia.org/wiki/File: Barcelona,_Església_de_Santa_Maria_del_Mar-PM_15932.jpg.
  • MIT. 2009. Ministero delle Infrastrutture e dei Transporti (M.I.T) Circolare 2 febbraio 2009, n. 617, Istruzioni per l’applicazione delle “Nuove norme tecniche per le costruzioni” di cui al decreto ministeriale 14 gennaio 2008. Rome, Italy: Ministry of Infrastructures and Transport (MIT).
  • Mouroux, P., and B. Le Brun. 2006. Presentation of RISK-UE project. Bulletin of Earthquake Engineering 4 (4):323–39. doi:10.1007/s10518-006-9020-3.
  • Murcia, J. 2008. Seismic Analysis of Santa Maria del Mar Church in Barcelona. Barcelona, Spain: Universitat Politècnica de Catalunya.
  • Ortega, J., G. Vasconcelos, H. Rodrigues, and M. Correia. 2018. Assessment of the efficiency of traditional earthquake resistant techniques for vernacular architecture. Engineering Structures. Elsevier 173 (February):1–27. doi:10.1016/j.engstruct.2018.06.101.
  • Pagnini, L. C., R. Vicente, S. Lagomarsino, and H. Varum. 2011. A mechanical model for the seismic vulnerability assessment of old masonry buildings. Earthquakes and Structures. Techno-Press 2 (1):25–42. doi:10.12989/eas.2011.2.1.025.
  • Parisi, F., and N. Augenti. 2012. Uncertainty in Seismic Capacity of Masonry Buildings. Buildings 2:218–30. doi:10.3390/buildings2030218.
  • Park, J., P. Towashiraporn, J. I. Craig, and B. J. Goodno. 2009. Seismic fragility analysis of low-rise unreinforced masonry structures. Engineering Structures. Elsevier Ltd 31 (1):125–37. doi:10.1016/j.engstruct.2008.07.021.
  • Pelà, L., J. Bourgeois, P. Roca, M. Cervera, and M. Chiumenti. 2016. Analysis of the Effect of Provisional Ties on the Construction and Current Deformation of Mallorca Cathedral. International Journal of Architectural Heritage. Taylor & Francis 10 (4):418–37. doi:10.1080/15583058.2014.996920.
  • Petromichelakis, Y., S. Saloustros, and L. Pelà. 2014. Seismic assessment of historical masonry construction including uncertainty. In 9th International Conference on Structural Dynamics, EURODYN 2014, ed. Cunha, Á., Caetano, E., Ribeiro, P., and Müller, G., 297–304. Porto: Portugal.
  • Roca, P., A. Vacas, R. Cuzzilla, J. Murcia-Delso, and A. Das. 2009. Assessment and strengthening of historical stone masonry structures subjected to seismic action. Proceedings of the ISCARSAH Symposium Mostar-09, Mostar, Bosnia and Herzegovina, July 12.
  • Roca, P., M. Cervera, L. Pelà, R. Clemente, and M. Chiumenti. 2013. Continuum FE models for the analysis of Mallorca Cathedral. Engineering Structures. Elsevier Ltd 46:653–70. doi:10.1016/j.engstruct.2012.08.005.
  • Rota, M., A. Penna, and G. Magenes. 2010. A methodology for deriving analytical fragility curves for masonry buildings based on stochastic nonlinear analyses. Engineering Structures. Elsevier Ltd 32 (5):1312–23. doi:10.1016/j.engstruct.2010.01.009.
  • Rota, M., A. Penna, and G. Magenes. 2014. A framework for the seismic assessment of existing masonry buildings accounting for different sources of uncertainty. Earthquake Engineering & Structural Dynamics 43:1045–66. doi:10.1002/eqe.2386.
  • Saloustros, S., L. Pelà, F. R. Contrafatto, P. Roca, and I. Petromichelakis. 2019. Vulnerability assessment of monumental masonry structures including uncertainty. In Structural analysis of historical constructions - An interdisciplinary approach, ed. Aguilar, R., et al., 1219–28. Cham: Springer. doi:10.1007/978-3-319-99441-3_131.
  • Saloustros, S., L. Pelà, P. Roca, and J. Portal. 2014. Numerical analysis of structural damage in the church of the Poblet monastery. Engineering Failure Analysis. Elsevier Ltd 48:41–61. doi:10.1016/j.engfailanal.2014.10.015.
  • Simões, A., J. Milošević, H. Meireles, R. Bento, S. Cattari, and S. Lagomarsino. 2015. Fragility curves for old masonry building types in Lisbon. Bulletin of Earthquake Engineering 13 (10):3083–105. doi:10.1007/s10518-015-9750-1.
  • Snoj, J., and M. Dolšek. 2011. Simplified probabilistic seismic performance assessment of masonry buildings with consideration of aleatoric and epistemic uncertainties. Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium.
  • Sykora, M., and M. Holicky. 2010. Probabilistic model for masonry strength of existing structures. Engineering Mechanics 17 (1):61–70.
  • Tondelli, M., M. Rota, A. Penna, and G. Magenes. 2012. Evaluation of Uncertainties in the Seismic Assessment of Existing Masonry Buildings. Journal of Earthquake Engineering 16 (sup1):36–64. doi:10.1080/13632469.2012.670578.
  • Vamvatsikos, D., and M. Fragiadakis. 2010. Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty. Earthquake Engineering & Structural Dynamics 39:141–63. doi:10.1002/eqe.935.
  • Vanin, F., D. Zaganelli, A. Penna, and K. Beyer. 2017. Estimates for the stiffness, strength and drift capacity of stone masonry walls based on 123 quasi-static cyclic tests reported in the literature. Bulletin of Earthquake Engineering. Springer Netherlands (August) 15:5435–79. doi:10.1007/s10518-017-0188-5.
  • Vendrell, M., P. Giràldez, F. Caballé, R. González, and P. Roca. 2007. La Basílica de Santa Maria del Mar. Barcelona, Spain: Study of the Construction and History, Construction Materials and Structural Stability. (in Catalan).
  • Vlachakis, G., M. Cervera, G. B. Barbat, and S. Saloustros. 2019. Out-of-plane seismic response and failure mechanism of masonry structures using finite elements with enhanced strain accuracy. Engineering Failure Analysis. Pergamon 97:534–55. doi:10.1016/J.ENGFAILANAL.2019.01.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.