337
Views
18
CrossRef citations to date
0
Altmetric
Articles

Fast Vulnerability Evaluation of Masonry Towers by Means of an Interactive and Adaptive 3D Kinematic Limit Analysis with Pre-assigned Failure Mechanisms

Pages 941-962 | Received 21 Jan 2019, Accepted 15 Jul 2019, Published online: 31 Aug 2019

References

  • ABAQUS®. 2014. Theory manual, version 6.14. Simulia Place: Providence, Rhode Island, US
  • Abruzzese, D., L. Miccoli, and J. Yuan. 2009. Mechanical behavior of leaning masonry Huzhu Pagoda. Journal of Cultural Heritage 10:480–86. doi:10.1016/j.culher.2009.02.004.
  • Acito, M., C. Chesi, G. Milani, and S. Torri. 2016. Collapse analysis of the Clock and Fortified towers of Finale Emilia, Italy, after the 2012 Emilia Romagna seismic sequence: Lesson learned and reconstruction hypotheses. Construction and Building Materials 115C:193–213. doi:10.1016/j.conbuildmat.2016.03.220.
  • Acito, M., M. Bocciarelli, C. Chesi, and G. Milani. 2014. Collapse of the clock tower in Finale Emilia after the May 2012 Emilia Romagna earthquake sequence: Numerical insight. Engineering Structures 72:70–91. doi:10.1016/j.engstruct.2014.04.026.
  • Anzani, A., L. Binda, A. Carpinteri, S. Invernizzi, and G. Lacidogna. 2010. A multilevel approach for the damage assessment of Historic masonry towers. Journal of Cultural Heritage 11:459–70. doi:10.1016/j.culher.2009.11.008.
  • Bartoli, G., M. Betti, and A. Vignoli. 2016. A numerical study on seismic risk assessment of historic masonry towers: A case study in San Gimignano. Bulletin of Earthquake Engineering 14:1475–518. doi:10.1007/s10518-016-9892-9.
  • Bartoli, G., M. Betti, and S. Giordano. 2013. In situ static and dynamic investigations on the “Torre Grossa” masonry tower. Engineering Structures 52:718–33. doi:10.1016/j.engstruct.2013.01.030.
  • Bartoli, G., M. Betti, and S. Monchetti. 2017. Seismic risk assessment of historic masonry towers: Comparison of four case studies. Journal of Performance of Constructed Facilities 31 (5):04017039. doi:10.1061/(ASCE)CF.1943-5509.0001039.
  • Bassoli, E., L. Vincenzi, A. M. D’Altri, S. de Miranda, M. Forghieri, and G. Castellazzi. 2018. Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower. Structural Control and Health Monitoring 25 (5):art. no. e2150. doi:10.1002/stc.2150.
  • Bayraktar, A., A. Sahin, M. Özcan, and F. Yildirim. 2010. Numerical damage assessment of Haghia Sophia bell tower by nonlinear FE modeling. Applied Mathematical Modelling 34:92–121. doi:10.1016/j.apm.2009.03.033.
  • Bernardeschi, K., C. Padovani, and G. Pasquinelli. 2004. Numerical modelling of the structural behaviour of Buti’s bell tower. Journal of Cultural Heritage 5:371–78. doi:10.1016/j.culher.2004.01.004.
  • Binda, L., L. Zanzi, M. Lualdi, and P. Condoleo. 2005. The use of georadar to assess damage to a masonry bell tower in Cremona, Italy. NDT & E International 38:171–79. doi:10.1016/j.ndteint.2004.03.010.
  • Carpinteri, A., S. Invernizzi, and G. Lacidogna. 2005. In situ damage assessment and nonlinear modelling of a historical masonry tower. Engineering Structures 27 (3):387–95. doi:10.1016/j.engstruct.2004.11.001.
  • Carpinteri, A., S. Invernizzi, and G. Lacidogna. 2006. Numerical assessment of three medieval masonry towers subjected to different loading conditions. Masonry International 19:65–75.
  • Casolo, S. 1998. A three dimensional model for vulnerability analyses of slender masonry medieval towers. Journal of Earthquake Engineering 2 (4):487–512. doi:10.1080/13632469809350332.
  • Casolo, S. 2001. Significant ground motion parameters for evaluation of the seismic performance of slender masonry towers. Journal of Earthquake Engineering 5 (2):187–204. doi:10.1080/13632460109350391.
  • Casolo, S., G. Milani, G. Uva, and C. Alessandri. 2013. Comparative seismic vulnerability analysis on ten masonry towers in the coastal Po Valley in Italy. Engineering Structures 49:465–90. doi:10.1016/j.engstruct.2012.11.033.
  • Casolo, S., V. Diana, and G. Uva. 2017. Influence of soil deformability on the seismic response of a masonry tower. Bulletin of Earthquake Engineering 15:1991–2014. doi:10.1007/s10518-016-0061-y.
  • Castellazzi, G., A. M. D’Altri, S. De Miranda, A. Chiozzi, and A. Tralli. 2018. Numerical insights on the seismic behavior of a non isolated historical masonry tower. Bulletin of Earthquake Engineering 16 (2):933–61. doi:10.1007/s10518-017-0231-6.
  • Cavalagli, N., G. Comanducci, and F. Ubertini. 2018. Earthquake-induced damage detection in a monumental masonry bell-tower using long-term dynamic monitoring data. Journal of Earthquake Engineering 22 (sup1):96–119. doi:10.1080/13632469.2017.1323048.
  • Chiozzi, A., G. Milani, and A. Tralli. 2017a. A Genetic Algorithm NURBS-based new approach for fast kinematic limit analysis of masonry vaults. Computers & Structures 182:187–204. doi:10.1016/j.compstruc.2016.11.003.
  • Chiozzi, A., G. Milani, and A. Tralli. 2017b. Fast kinematic limit analysis of FRP-reinforced masonry vaults. I: A general Genetic Algorithm NURBS-based formulation. ASCE Journal of Engineering Mechanics 143 (9):Paper #04017071.
  • Chiozzi, A., N. Grillanda, G. Milani, and A. Tralli. 2018. UB-ALMANAC: An adaptive limit analysis NURBS-based program for the automatic assessment of partial failure mechanisms in masonry churches. Engineering Failure Analysis 85:201–20. doi:10.1016/j.engfailanal.2017.11.013.
  • Circolare. 2009. Circolare no 617 del 2 febbraio 2009. In Istruzioni per l’applicazione delle nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008. [Instructions for the application of the new technical norms on constructions]. Gazzetta Ufficiale GU Serie Generale n.47 del 26-02-2009 - Suppl. Ordinario n. 27. Istituto Poligrafico e Zecca delloStato, Rome (Italy). pp. 1–447
  • Clementi, F., A. Pierdicca, A. Formisano, F. Catinari, and S. Lenci. 2017. Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: The case study of the Podestà palace in Montelupone (Italy). Journal of Civil Structural Health Monitoring 7 (5):703–17. doi:10.1007/s13349-017-0253-4.
  • Clementi, F., G. Milani, V. Gazzani, M. Poiani, G. Cocchi, and S. Lenci. 2018. The non-smooth contact dynamics method for the analysis of an ancient masonry tower. Proc. ICCMSE 2018, 14th International Conference of Computational Methods in Sciences and Engineering, Thessaloniki, Greece, 14-18 March 2018 (Editor: Prof. Theodore E. Simos). AIP Conference Proceedings 2040, 090004. doi: 10.1063/1.5079150.
  • D’Altri, A. M., G. Milani, S. de Miranda, G. Castellazzi, and V. Sarhosis. 2018. Stability analysis of leaning historic masonry structures. Automation in Construction 92:199–213. doi:10.1016/j.autcon.2018.04.003.
  • D’Ambrisi, A., V. Mariani, and M. Mezzi. 2012. Seismic assessment of a historical masonry tower with nonlinear static and dynamic analyses tuned on ambient vibration tests. Engineering Structures 36:210–19. doi:10.1016/j.engstruct.2011.12.009.
  • de Silva, F., F. Ceroni, S. Sica, and F. Silvestri. 2018. Non-linear analysis of the Carmine bell tower under seismic actions accounting for soil–Foundation–Structure interaction. Bulletin of Earthquake Engineering 92:199–213.
  • Gazzani, V., M. Poiani, F. Clementi, G. Milani, and S. Lenci. 2018. Modal parameters identification with environmental tests and advanced numerical analyses for masonry bell towers: A meaningful case study. Procedia Structural Integrity 11:306–13. doi:10.1016/j.prostr.2018.11.040.
  • Gentile, C., and A. Saisi. 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials 21 (6):1311–21. doi:10.1016/j.conbuildmat.2006.01.007.
  • Gentile, C., A. Saisi, and A. Cabboi. 2015. Structural identification of a masonry tower based on operational modal analysis. International Journal of Architectural Heritage 9:98–110. doi:10.1080/15583058.2014.951792.
  • Guidelines. 2011. DPCM 9/2/2011. Italian guidelines for the evaluation and the reduction of the seismic risk for the built heritage, with reference to the Italian norm of constructions. Gazzetta Ufficiale GU Serie Generale n.47 del 26-02-2011 - Supplemento Ordinario n. 54. Istituto Poligrafico eZecca dello Stato. Rome (Italy). pp. 1-83.
  • Heyman, J. 1992. Leaning towers. Meccanica 27:153–59. doi:10.1007/BF00430041.
  • Ivorra, S., V. Brotons, D. Foti, and M. Diaferio. 2016. A preliminary approach of dynamic identification of slender buildings by neuronal networks. International Journal of Non-linear Mechanics 80:183–89. doi:10.1016/j.ijnonlinmec.2015.11.009.
  • Lee, J., and G. L. Fenves. 1998. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics 124:892–900. doi:10.1061/(ASCE)0733-9399(1998)124:8(892).
  • Lubliner, J., J. Oliver, S. Oller, and E. Oñate. 1989. A plastic-damage model for concrete. International Journal of Solids and Structures 25:299–326. doi:10.1016/0020-7683(89)90050-4.
  • Lucchesi, M., B. Pintucchi, and N. Zani. 2004. Dynamic analysis of slender towers made of no-tension material with limited compressive strength. Structures and Materials 15:323–33.
  • Marra, A. M., L. Salvatori, P. Spinelli, and G. Bartoli. 2017. Incremental dynamic and nonlinear static analyses for seismic assessment of medieval masonry towers. ASCE Journal of Performance of Constructed Facilities 31:1–10. doi:10.1061/(ASCE)CF.1943-5509.0001022.
  • Milani, G. 2013. Lesson learned after the Emilia Romagna, Italy, 20-29 May 2012 earthquakes: A limit analysis insight on three masonry churches. Engineering Failure Analysis 34:761–78. doi:10.1016/j.engfailanal.2013.01.001.
  • Milani, G., P. B. Lourenco, and A. Tralli. 2006. Homogenised limit analysis of masonry walls. Part I: Failure Surfaces. Computers and Structures 84 (3–4):166–80.
  • Milani, G., R. Shehu, and M. Valente. 2017. Role of inclination in the seismic vulnerability of bell towers: FE models and simplified approaches. Bulletin of Earthquake Engineering 15:1707–37. doi:10.1007/s10518-016-0043-0.
  • Milani, G., R. Shehu, and M. Valente. 2018. A kinematic limit analysis approach for seismic retrofitting of masonry towers through steel tie-rods. Engineering Structures 160:212–28. doi:10.1016/j.engstruct.2018.01.033.
  • Milani, G., S. Casolo, A. Naliato, and A. Tralli. 2012a. Seismic assessment of a medieval masonry tower in northern Italy by limit, nonlinear static, and full dynamic analyses. International Journal of Architectural Heritage 6 (5):37–41. doi:10.1080/15583058.2011.588987.
  • Milani, G., S. Russo, M. Pizzolato, and A. Tralli. 2012b. Seismic behavior of the San Pietro di Coppito church bell tower in Italy. Open Civil Engineering Journal 6 (SI1):131–47. doi:10.2174/1874149501206010131.
  • Minghini, F., E. Bertolesi, A. Del Grosso, G. Milani, and A. Tralli. 2016. Modal pushover and response history analyses of a masonry chimney before and after shortening. Engineering Structures 110:307–24. doi:10.1016/j.engstruct.2015.11.016.
  • Modena, C., M. R. Valluzzi, R. Tongini Folli, and L. Binda. 2002. Design choices and intervention techniques for repairing and strengthening of the Monza cathedral bell-tower. Construction and Building Materials 16:385–95. doi:10.1016/S0950-0618(02)00041-7.
  • NTC2008. 2008. DM 14/ 01/2008.Nuove norme tecniche per le costruzioni. Ministero delle Infrastrutture (GU n.29 04/ 02/2008). Rome, Italy. [New technical norms on constructions].
  • Page, A. 1981. 71 893-906 doi:10.1680/iicep.1981.1825 (PART 2 3): 71 893–906 doi:10.1680/iicep.1981.1825. doi: 71 893-906 doi:10.1680/iicep.1981.1825.
  • Peña, F., P. B. Lourenço, N. Mendes, and D. V. Oliveira. 2010. Numerical models for the seismic assessment of an old masonry tower. Engineering Structures 32 (5):1466–78. doi:10.1016/j.engstruct.2010.01.027.
  • Poiani, M., V. Gazzani, F. Clementi, G. Milani, M. Valente, and S. Lenci. 2018. Iconic crumbling of the clock tower in Amatrice after 2016 central Italy seismic sequence: Advanced numerical insight. Procedia Structural Integrity 11:314–21. doi:10.1016/j.prostr.2018.11.041.
  • Preciado, A., S. T. Sperbeck, and A. Ramirez-Gaytan. 2016. Seismic vulnerability enhancement of medieval and masonry bell towers externally prestressed with unbonded smart tendons. Engineering Structures 122:50–61. doi:10.1016/j.engstruct.2016.05.007.
  • Russo, S., O. Bergamo, L. Damiani, and D. Lugato. 2010. Experimental analysis of the “Saint Andrea” masonry bell tower in Venice. A new method for the determination of “Tower Global Young’s Modulus E”. Engineering Structures 32:353–60. doi:10.1016/j.engstruct.2009.08.002.
  • Saisi, A., M. Guidobaldi, and C. Gentile. 2016. On site investigation and health monitoring of a historic tower in Mantua, Italy. Applied Sciences (Switzerland) 6 (6):art. no. 173. doi:10.3390/app6060173.
  • Sarhosis, V., G. Milani, A. Formisano, and F. Fabbrocino. 2018. Evaluation of different approaches for the estimation of the seismic vulnerability of masonry towers. Bulletin of Earthquake Engineering 16 (3):1511–45. doi:10.1007/s10518-017-0258-8.
  • Shakya, M., H. Varum, R. Vicente, and A. Costa. 2014. Seismic sensitivity analysis of the common structural components of Nepalese Pagoda temples. Bulletin of Earthquake Engineering 12:1679–703. doi:10.1007/s10518-013-9569-6.
  • Ubertini, F., N. Cavalagli, A. Kita, and G. Comanducci. 2018. Assessment of a monumental masonry bell-tower after 2016 central Italy seismic sequence by long-term SHM. Bulletin of Earthquake Engineering 16 (2):775–801. doi:10.1007/s10518-017-0222-7.
  • Valente, M., and G. Milani. 2016a. Non-linear dynamic and static analyses on eight historical masonry towers in the North-East of Italy. Engineering Structures 114:241–70. doi:10.1016/j.engstruct.2016.02.004.
  • Valente, M., and G. Milani. 2016b. Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM. Construction and Building Materials 108:74–104. doi:10.1016/j.conbuildmat.2016.01.025.
  • Valente, M., and G. Milani. 2018. Effects of geometrical features on the seismic response of historical masonry towers. Journal of Earthquake Engineering 22-S1:2–34. doi:10.1080/13632469.2016.1277438.
  • Van Der Pluijm, R. 1993. Shear Behaviour of bed joints. Proceedings of 6th North American masonry conference, Philadelphia, 125–36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.