1,713
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Cyclic Behaviour, Dynamic Analysis and Seismic Vulnerability of Historical Building Archetypes in Hungary

, &
Pages 1022-1042 | Received 15 Feb 2019, Accepted 03 Nov 2019, Published online: 15 Nov 2019

References

  • Armuth, M., D. Hegyi, and Á. Sipos. 2010. Structural analysis of the baroque parish church of Zsámbék. Periodica Polytechnica Architecture 41 (2):43–47. doi:10.3311/pp.ar.2010-2.01.
  • Azizi-Bondarabadi, H., N. Mendes, and P. B. Lourenço. 2019. Higher mode effects in pushover analysis of irregular masonry buildings. Journal of Earthquake Engineering 1–35. doi:10.1080/13632469.2019.1579770.
  • Caporale, A., F. Parisi, D. Asprone, R. Luciano, and A. Prota. 2015. Comparative micromechanical assessment of adobe and clay brick masonry assemblages based on experimental data sets. Composite Structures 120 (1):208–20. doi:10.1016/j.compstruct.2014.09.046.
  • Csicsely, Á. O. 2006. Experimental and theoretical examination of the load capacity of mud walls [in Hungarian]. PhD diss., Budapest University of Technology and Economics.
  • Ditlevsen, O. 1981. Uncertainty modelling with applications to multidimensional civil engineering systems. New York: McGraw-Hill.
  • Eisinger, U., R. Gutdeutsche, and C. Hammerl. 1992. Historical earthquake research - an example of interdisciplinary cooperation between geophysicists and historians. Abhandlungen Der Geologischen Bundesanstalt 48 (1):33–50.
  • EN 1996- 1-1. 2005. Design of masonry structures. General rules for reinforced and unreinforced masonry structures. 1st ed. Brussels: BEL.
  • EN 1998-1. 2004. Eurocode 8: Design of structures for earthquake resistance. 1st ed. Brussels: BEL.
  • Fajfar, P. 1999. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics 28 (1):979–93. doi:10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1.
  • Fajfar, P. 2000. A nonlinear analysis method for performance based seismic design. Earthquake Spectra 16 (3):573–92. doi:10.1193/1.1586128.
  • Freeman, S. A. 1998. Development and use of capacity spectrum method, Proceedings of the 6th US National Conference on Earthquake Engineering, Seattle, Washington, USA.
  • Furtado, A., H. Rodrigues, and A. Arêde. 2015. Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using OpenSEES. International Journal of Advanced Structural Engineering 7 (1):117–27. doi:10.1007/s40091-015-0086-5.
  • Guerrini, G., F. Graziotti, A. Penna, and G. Magenes. 2017. Improved evaluation of inelastic displacement demands for short-period masonry structures. Earthquake Engineering & Structural Dynamics 46 (9):1411–30. doi:10.1002/eqe.v46.9.
  • HAZUS-MH MR1. 2003. Multi-hazard loss estimation methodology: earthquake model HAZUS-MH MR1 technical manual. Washington DC., US: Fed. Emerg. Manag. Agency.
  • Istvánfi, G. 1995. Surveys of settlements completed during the summer stages for students of architecture between 1980 and 1994 [in Hungarian]. Budapest, Hungary: BME, Inst. of Theory and Hist. of Arch.
  • Kiss, B. 2017. Design and evaluation of the foundation piles of the Danube bridge of Komárom [in Hungarian], MSc diss., Budapest University of Technology and Economics.
  • Krawinkler, H. 2009. Loading histories for cyclic tests in support of performance assessment of structural components, 3rd International Conference on Advances in Experimental Structural Engineering, San Francisco, pp. 10.
  • Lagomarsino, S., A. Penna, A. Galasco, and S. Cattari. 2008. TREMURI: Seismic analysis program for 3D masonry buildings, User’s guide, University of Genova, Italy.
  • Lagomarsino, S., A. Penna, A. Galasco, and S. Cattari. 2013. TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures 56 (1):1787–99. doi:10.1016/j.engstruct.2013.08.002.
  • Lourenço, P. B., and J. A. Roque. 2006. Simplified indexes for the seismic vulnerability of ancient masonry buildings. Construction and Building Materials 20 (4):200–08. doi:10.1016/j.conbuildmat.2005.08.027.
  • Lowes, L., N. Mitra, and A. Altoontash 2004. A beam-column joint model for simulating the earthquake response of reinforced concrete frames. PEER Report 2003/10 Pacific Earthq. Eng. Res. Center, College of Engineering University of California, Berkeley, US.
  • Maio, R. 2013. Seismic vulnerability assessment of old building aggregates (MSc dissertation). University of Aveiro, Portugal.
  • Maio, R., T. Ferreira, R. Vicente, and J. Estevão. 2016. Seismic vulnerability assessment of historical urban centres: Case study of the old city centre of Faro, Portugal. Journal of Risk Research 19 (5):551–80. doi:10.1080/13669877.2014.988285.
  • Marino, S., S. Cattari, and S. Lagomarsino. 2018. Use of nonlinear static procedures for irregular URM buildings in literature and codes. In: Proc. of 16th European conference on Earthquake Engineering, Thessaloniki (GR), June 18–21.
  • McKenna, F., M. H. Scott, and G. L. Fenves. 2010. Nonlinear finite element analysis software architecture using object composition. Journal of Computing in Civil Engineering 24 (1):95–107. doi:10.1061/(ASCE)CP.1943-5487.0000002.
  • Morais, E. C. 2019. Estimation of the intensities of historical seismic events in moderately seismic regions, based on the damage analysis of Hungarian historical buildings. PhD diss., Budapest University of Technology and Economics.
  • Morais, E. C., L. G. Vigh, and J. Krähling. 2017. Fragility estimation and comparison using IDA and simplified macro-modeling of in-plane shear in old masonry walls. Springer Proceedings in Mathematics & Statistics 181 (1):277–91.
  • Morais, E. C., L. G. Vigh, and J. Krähling. 2018a. A methodology for the development of historical building archetypes for seismic performance assessment. Pollack Periodica 13 (1):203–15. doi:10.1556/606.2018.13.1.18.
  • Morais, E. C., L. G. Vigh, and J. Krähling. 2018b. Influence of prior distributions and fragility assessment methods in the estimation of the magnitude of a historical seismic event. MATEC Web of Conferences 149 (1):6. doi:10.1051/matecconf/201814902038.
  • MVM Paks II Ltd. 2016. Geology, geophysics, seismology, geotechnics and hydrology [in Hungarian]. Site Safety Analysis Report 2 (5):197. Accessed July 2, 2018. http://www.paks2.hu/hu/Kozerdeku/KozerdekuDokumentumok/telephely_engedelyezeDocuments.
  • Nakamura, Y., H. Derakhshan, M. C. Grith, G. Magenes, and A. H. Sheikh. 2017. Applicability of nonlinear static procedures for low-rise unreinforced masonry buildings with flexible diaphragms. Engineering Structures 137:1–18. doi:10.1016/j.engstruct.2017.01.049.
  • PEER. 2013. NGA-west2 ground motion prediction equations for vertical ground motions. PEER Report 2013/24, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
  • Pitilakis, K. 2004. Site effects. In Recent advances in earthquake geotechnical engineering and microzonation, ed. A. Ansal, 139–97. Dordrecht: Kluwer.
  • Raka, E., E. Spacone, V. Sepe, and G. Camata. 2015. Advanced frame element for seismic analysis of masonry structures: Model formulation and validation. Earthquake Engineering and Structural Dynamics 44 (1):2489–506. doi:10.1002/eqe.2594.
  • Rota, M., A. Penna, and G. Magenes. 2014. A framework for the seismic assessment of existing masonry buildings accounting for different sources of uncertainty. Earthquake Engineering and Structural Dynamics 43 (7):1045–66. doi:10.1002/eqe.v43.7.
  • Ryu, H., J. Kim, and J. Baker. 2009. A probabilistic method for the magnitude estimation of a historical damaging earthquake using structural fragility functions. Bulletin of the Seismological Society of America 99 (2):520–37. doi:10.1785/0120080032.
  • Sevieri, G., A. De Falco, M. Mori, and G. Guidetti. 2017. Model uncertainties in seismic analysis of existing masonry buildings: The equivalent-frame model within the structural element models approach. Pistoia: XVII Congress ANIDIS.
  • Silva, V., H. Crowley, and M. Colombi. 2014. Fragility function manager tool. In SYNER-G: Typology definition and fragility functions for physical elements at seismic risk, geotechnical, geological and earthquake engineering, ed.. K. Pitilakis, H. Crowley, and A. M. Kaynia, 27(1): 385–402. Netherlands: Springer. https://www.springer.com/gp/book/9789400778719
  • Stucchi, M., A. Rovida, A. A. Gomez Capera, P. Alexandre, T. Camelbeeck, M. B. Demircioglu, P. Gasperini, V. Kouskouna, R. M. W. Musson, M. Radulian, et al. 2013. The SHARE European earthquake catalogue (SHEEC) 1000–1899. Journal of Seismology 17 (1):523–54. doi:10.1007/s10950-012-9335-2.
  • Szeidovitz, G. 1986. Earthquakes in the region of komárom. Mór and Várpalota, Geophysical Transactions 32 (1):255–74.
  • Tarque, N., G. Camata, E. Spacone, H. Varum, and M. Blondet. 2014a. Non-linear dynamic analysis of a full-scaled unreinforced adobe module. Earthquake Spectra 30 (1):1643–61. doi:10.1193/022512EQS053M.
  • Tarque, N., G. Camata, H. Varum, E. Spacone, and M. Blondet. 2014b. Numerical simulation of an adobe wall under in-plane loading. Earthquake and Structures 6 (1):627–46. doi:10.12989/eas.2014.6.6.627.
  • Tarque, S. 2008. Seismic risk assessment of adobe dwellings. MSc diss., University of Pavia.
  • Tóth, L., E. Győri, P. Mónus, and T. Zsíros. 2006. Seismic hazard in the Pannonian region. In The Adria microplate: GPS Geod., tectonics and hazards, ed. N. Pinter, 369–84. Netherlands: Springer.
  • Vamvatsikos, D., and C. A. Cornell. 2002. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics 31 (1):491–514. doi:10.1002/eqe.141.
  • Varga, P., G. Szeidovitz, and R. Gutdeutsch. 2001. Isoseismal map and tectonical position of the Komárom earth-quake of 1763. Acta Geodaetica Et Geophysica Hungarica 36 (1):97–108. doi:10.1556/AGeod.36.2001.1.8.
  • Vicente, R. 2008. Strategies and methodologies for urban rehabilitation interventions. Vulnerability and risk assessment of the traditional building stock of the old city centre of Coimbra [in Portuguese]. PhD diss., University of Aveiro.
  • Vigh, L. G., A. B. Liel, G. G. Deierlein, E. Miranda, and S. Tipping. 2014. Component model calibration for cyclic behaviour of a corrugated shear wall. Thin-Walled Structures 75 (1):53–62. doi:10.1016/j.tws.2013.10.011.
  • Woessner, J., D. Laurentiu, D. Giardini, H. Crowley, F. Cotton, G. Grünthal, G. Valensise, R. Arvidsson, R. Basili, M. H. Demircioglu, et al. 2015. The 2013 European seismic hazard model: Key components and results. Bulletin of Earthquake Engineering 13 (1):3553–96. doi:10.1007/s10518-015-9795-1.
  • Zimmermann, T., A. Strauss, and K. Bergmeister. 2010. Numerical investigation of historic masonry walls under normal and shear load. Construction and Building Materials 24 (1):1385–91. doi:10.1016/j.conbuildmat.2010.01.021.