Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 10
274
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Traditional High-rise Unreinforced Masonry Buildings: Modeling and Influence of Floor System Stiffening on Their Overall Seismic Response

, , ORCID Icon, ORCID Icon &
Pages 1547-1584 | Received 20 Nov 2018, Accepted 23 Dec 2019, Published online: 03 Jan 2020

References

  • Ahmed, I. M., and K. D. Tsavdaridis. 2019. The evolution of composite flooring systems: Applications, testing, modelling and eurocode design approaches. Journal of Constructional Steel Research 155:286–300. Elsevier. doi:10.1016/j.jcsr.2019.01.007.
  • Akhaveissy, A. H., and M. Abbassi. 2014. Pushover analysis of unreinforced masonry structures by fiber finite element method. Journal of Research in Civil and Environmental Engineering 2 (03):96–119.
  • Amadio, C., G. Rinaldin, and L. Macorini. 2011. An equivalent frame model for non-linear analysis of unreinforced masonry buildings under in-plane cyclic loading. Proceedings of the 14th National Conference of Earthquake Engineering, Bari, Italy.
  • ASCE/SEI 41-13. 2014. Seismic evaluation and retrofit of existing buildings. Reston, VA: American Society of Civil Engineers: Structural Engineering Institute.
  • ASCE/SEI 41-17. 2017. Seismic evaluation and retrofit of existing buildings. Reston, VA: American Society of Civil Engineers: Structural Engineering Institute.
  • ASCE/SEI 7-10. 2010. Minimum design loads for buildings and other structures. Reston, VA: American Society of Civil Engineers: Structural Engineering Institute.
  • Azizi-Bondarabadi, H., N. Mendes, and P. B. Lourenço. 2019. Higher mode effects in pushover analysis of irregular masonry buildings. Journal of Earthquake Engineering: 1–35. Taylor & Francis. doi:10.1080/13632469.2019.1579770.
  • Bahar, S., A. Benanane, and A. Belarbi. 2019. The influence of deformability of horizontal diaphragms in the distribution of seismic loads to bracing elements in rectangular buildings. Journal of Materials and Engineering Structures 6:105–18. Mouloud Mammeri University of Tizi-Ouzou.
  • Barron, J. M., and M. B. D. Hueste. 2004. Diaphragm effects in rectangular reinforced concrete buildings. ACI Structural Journal 3:89–98. American Concrete Institute (ACI).
  • Bazarchi, E., Y. Hosseinzadeh, and P. Panjebashi Aghdam. 2018. Investigating the in-plane flexibility of steel-deck composite floors in steel structures. International Journal of Structural Integrity 9(5):705–20. Emerald Group Publishing. doi:10.1108/ijsi-02-2018-0010.
  • BHRC. 2015. Iranian code of practice for seismic resistant design of buildings (Standard No. 2800). Fourth Revision. Tehran, Iran: Building and Housing Research Center, Iran (in Persian).
  • Bonett, R. 2003. Vulnerabilidad y riesgo sísmico de edificios: Aplicación a entornos urbanos en zonas de amenaza alta y moderada. PhD Thesis, Universidad Politécnica de Cataluña, Barcelona.
  • Bothara, J. K., R. P. Dhakal, and J. B. Mander. 2009. Seismic performance of an unreinforced masonry building: an experimental investigation. Earthquake Engineering & Structural Dynamics 39 45–68. doi: 10.1002/(ISSN)1096-9845.
  • Branco, J. M., M. Kekeliak, and P. B. Lourenço. 2015. In-plane stiffness of timber floors strengthened with CLT. European Journal of Wood and Wood Products 73(3):313–23. Springer. doi:10.1007/s00107-015-0892-2.
  • Brando, G., G. De Matteis, and E. Spacone. 2017. Predictive model for the seismic vulnerability assessment of small historic centres: Application to the inner Abruzzi Region in Italy. Engineering Structures 153:81–96. doi:10.1016/j.engstruct.2017.10.013.
  • Brignola, A. 2009. Evaluation of the in-plane stiffness of timber floors for the performance-based retrofit of URM buildings. PhD Thesis, University of Genoa, Italy.
  • Brignola, A., S. Pampanin, and S. Podestà. 2009. Evaluation and control of the in-plane stiffness of timber floors for the performance-based retrofit of URM buildings. Bull New Zealand Society for Earthquake Engineering 42:204–21. New Zealand Society for Earthquake Engineering (NZSEE). doi:10.5459/bnzsee.42.3.204-221.
  • Brignola, A., S. Pampanin, and S. Podestà. 2012. Experimental evaluation of the in-plane stiffness of timber diaphragms. Earthquake Spectra 28(4):1687–709. Instituto de Investigación de Ingeniería de Terremotos (EERI). doi:10.1193/1.4000088.
  • Bucchi, F., S. Arangio, and F. Bontempi. 2013. Seismic assessment of an historical masonry building using nonlinear static analysis. In Proceedings of the fourteenth international conference on civil, structural and environmental engineering computing, ed. B. H. V. Topping, and P. Iványi. Stirlingshire, UK. Volume: electronic format. doi:10.4203/ccp.102.72
  • Calderini, C., S. Cattari, and S. Lagomarsino. 2009. In plane seismic response of unreinforced masonry walls: Comparison between detailed and equivalent frame models. In Proceedings of COMPDYN 2009: 2nd international conference on computational methods in structural dynamics and earthquake engineering, ed. M. Papadrakakis, N. Lagaros, and M. Fragiadakis. Rhodes, Greece. Volume: electronic format
  • Calderini, C., S. Cattari, A. S. Degli, S. Lagomarsino, D. Ottonelli, and M. Rossi. 2012. Modelling strategies for seismic global response and local mechanisms. Deliverable D26, WP No5, PERPETUATE Project (FP7), European Research Project on the Seismic Protection of Cultural Heritage. UNIGE, Genoa, Italy
  • Caliò, I., M. Marletta, and B. Pantò. 2012. A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings. Engineering Structures 40:327–38. Elsevier. doi:10.1016/j.engstruct.2012.02.039.
  • Calvi, G. M., and G. Magenes. 1994. Experimental research on response of URM building systems. Technical Report NCEER-94-0021. Proceedings of U.S.-Italy Workshop on Guidelines for Seismic Evaluation and Rehabilitation of Unreinforced Masonry Buildings 21 (3):41–57.
  • Carr, A. 2007a. Theory. Ruaumoko manuals, Vol. 1. Christchurch, New Zealand: University of Canterbury.
  • Carr, A. 2007b. User manual for the 2-dimensional version - Ruaumoko 2D. Ruaumoko manuals, Vol. 2. Christchurch, New Zealand: University of Canterbury.
  • Carr, A. 2007c. User manual for the 3-dimensional version - Ruaumoko 3D. Ruaumoko manuals, Vol. 3. Christchurch, New Zealand: University of Canterbury.
  • Carr, A. 2007d. Appendices. Ruaumoko manuals, Vol. 5. Christchurch, New Zealand: University of Canterbury.
  • Cattari, S., S. Lagomarsino, D. D’Ayala, V. Novelli, and V. Bosiljkov. 2012. Correlation of performance levels and damage states for types of buildings. Deliverable D17, WP No6, PERPETUATE Project (FP7), European Research Project on the Seismic Protection of Cultural Heritage. UNIGE, Genoa, Italy
  • Cattari, S., and K. Beyer 2015. Influence of spandrel modelling on the seismic of existing masonry buildings. Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific, Sydney, Australia.
  • Cattari, S., S. Lagomarsino, and S. Marino. 2015. Reliability of nonlinear static analysis in case of irregular URM buildings with flexible diaphragms. Proceedings of the Conference SECED: Earthquaque Risk and Engineering towards a Resilient World, Cambridge, UK.
  • Chen, S. Y., F. Moon, and T. Yi. 2008. A macro-element for the nonlinear analysis of in plane unreinforced masonry piers. Engineering Structures 30 (8):2242–52. doi:10.1016/j.engstruct.2007.12.001.
  • Corradi, M., E. Speranzini, A. Borri, and A. Vignoli. 2006. In-plane shear reinforcement of wood beam floors with frp. Composites Part B: Engineering 37 (4–5):310-319. doi: 10.1016/j.compositesb.2005.11.003.
  • Diana, L., A. Manno, and P. Lestuzzi. 2019. Seismic displacement demand prediction in non-linear domain: Optimization of the N2 method. Earthquake Engineering and Engineering Vibration 18(1):141–58. Springer. doi:10.1007/s11803-019-0495-8.
  • Dolatshahi, K. M., M. T. Nikoukalam, and K. Beyer. 2018. Numerical study on factors that influence the in-plane drift capacity of unreinforced masonry walls. Earthquake Engineering & Structural Dynamics 47(6):1440–59. Wiley-Blackwell. doi:10.1002/eqe.3024.
  • Dolce, M. 1991. Schematizzazione e modellazione degli edifici in muratura soggetti ad azioni sismiche (Drafting and modeling of masonry buildings subjected to seismic actions) [in Italian]. L’Industria Delle Costr. 25:44–57.
  • Eivani, H., A. S. Moghadam, A. Aziminejad, and M. Nekooei. 2018. Seismic response of plan-asymmetric structures with diaphragm flexibility. Shock and Vibration 2018:1–18. Hindawi Publishing Corp. doi:10.1155/2018/4149212.
  • Esposito, R., F. Messali, G. J. P. Ravenshorst, H. R. Schipper, and J. G. Rots. 2019. Seismic assessment of a lab-tested two-storey unreinforced masonry Dutch terraced house. Bulletin of Earthquake Engineering 17(8):4601–23. Springer. doi:10.1007/s10518-019-00572-w.
  • FEMA 273. 1997. NEHRP guidelines for the seismic rehabilitation of buildings. Washington, DC: Federal Emergency Management Agency.
  • FEMA 306. 1998. Evaluation of earthquake damaged concrete and masonry wall buildings: Basic procedures manual. Washington, DC: Federal Emergency Management Agency.
  • FEMA 356. 2000. Prestandard and commentary for the seismic rehabilitation of buildings. Washington, DC: Federal Emergency Management Agency.
  • Fleischman, R. B., and K. T. Farrow. 2001. Dynamic behavior of perimeter lateral-system structures with flexible diaphragms. Earthquake Engineering and Structural Dynamics 30(5):745–63. Wiley-Blackwell. doi:10.1002/eqe.36.
  • Galasco, A., S. Lagomarsino, and A. Penna. 2002. Tremuri program: Seismic analyser of 3D masonry buildings. Italy: University of Genoa.
  • Galasco, A., S. Lagomarsino, and A. Penna. 2006. On the use of pushover analysis for existing masonry buildings. Proceedings of the First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland.
  • Gattesco, N., I. Clemente, L. Macorini, and S. Noè. 2008. Experimental investigation on the behavior of spandrels in ancient masonry buildings. Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China.
  • Gattesco, N., and L. Macorini. 2014. In-plane stiffening techniques with nail plates or CFRP strips for timber floors in historical masonry buildings. Construction and Building Materials 58:64–76. Elsevier. doi:10.1016/j.conbuildmat.2014.02.010.
  • Giongo, I. 2013. Role of the timber diaphragms in the seismic response of unreinforced masonry (URM) buildings. PhD Thesis, University of Trento, Italy.
  • Giongo, I., A. Wilson, D. Dizhur, H. Derakhshan, R. Tomasi, M. Griffith, P. Quenneville, and J. M. Ingham. 2014. Detailed seismic assessment and improvement procedure for vintage flexible timber diaphragms. Bulletin of the New Zealand Society for Earthquake Engineering 47 (2):97118. doi:10.5459/bnzsee.47.2.97-118.
  • Giongo, I., G. Schiro, R. Tomasi, D. Dizhur, and J. Ingham. 2016. Seismic assessment procedures for flexible timber diaphragms. Historical Earthquake-Resistant Timber Framing in the Mediterranean Area: 263–74. Springer. doi:10.1007/978-3-319-39492-3_22.
  • Gonzalez-Drigo, R., J. Avila, A. Barbat, L. Pujades, Y. Vargas, S. Lagomarsino, and S. Cattari. 2015. Modernist URM buildings of Barcelona: Seismic vulnerability and risk assessment. International Journal of Architectural Heritage 9 (3):214–30. Taylor & Francis. doi:10.1080/15583058.2013.766779.
  • Gonzalez-Drigo, R., J. Avila-Haro, L. G. Pujades, and A. H. Barbat. 2017. Non-linear static procedures applied to high-rise residential URM buildings. Bulletin of Earthquake Engineering 15(1):149–74. Springer Netherlands. doi:10.1007/s10518-016-9951-2.
  • Gubana, A. 2015. State-of-the-Art Report on high reversible timber to timber strengthening interventions on wooden floors. Construction and Building Materials 97:25–33. Elsevier. doi:10.1016/j.conbuildmat.2015.06.035.
  • Guerrini, G., F. Graziotti, A. Penna, and G. Magenes. 2017. Improved evaluation of inelastic displacement demands for short-period masonry structures. Earthquake Engineering & Structural Dynamics 46(9):1411–30. Wiley Online Library. doi:10.1002/eqe.2862.
  • Halici, O. F., K. Ugurlu, C. Demir, M. Comert, and A. Ilki. 2018. Evaluation of diaphragm conditions in AAC floor structures with RC beams. Bulletin of Earthquake Engineering 16(12):6131–62. Springer. doi:10.1007/s10518-018-0434-5.
  • Indirli, M., L. A. S. Kouris, A. Formisano, R. P. Borg, and F. M. Mazzolani. 2013. Seismic damage assessment of unreinforced masonry structures after the Abruzzo 2009 earthquake: The case study of the historical centers of L’Aquila and Castelvecchio Subequo. International Journal of Architectural Heritage 7 (5):536–78. doi:10.1080/15583058.2011.654050.
  • Jain, S. K., and P. C. Jennings. 1985. Analytical models for low-rise buildings with flexible floor diaphragms. Earthquake Engineering and Structural Dynamics 13(2):225–41. Wiley-Blackwell. doi:10.1002/eqe.4290130207.
  • Jiménez-Pacheco, J. 2016. Evaluación sísmica de edificios de mampostería no reforzada típicos de Barcelona: modelización y revisión de la aplicación del Método del Espectro de Capacidad. PhD Thesis, Politechnica University of Cataluña, Spain.
  • Ju, S. H., and M. C. Lin. 1999. Comparison of building analyses assuming rigid or flexible floors. Journal of Structural Engineering 125(1):25–31. American Society of Civil Engineers (ASCE). doi:10.1061/(ASCE)0733-9445(1999)125:1(25).
  • Kallioras, S., G. Guerrini, U. Tomassetti, B. Marchesi, A. Penna, F. Graziotti, and G. Magenes. 2018. Experimental seismic performance of a full-scale unreinforced clay-masonry building with flexible timber diaphragms. Engineering Structures 161:231–49. doi:10.1016/j.engstruct.2018.02.016.
  • Kappos, A., G. Penelis, and C. Drakopoulos. 2002. Evaluation of simplified models for lateral load analysis of unreinforced masonry buildings. Journal of Structural Engineering 128 (7):890–97. doi:10.1061/(asce)0733-9445(2002)128:7(890).
  • Kim, S., and D. White. 2004. MDOF response of low-rise buildings. ST-5 Project Final Report, Georgia Institute of Technology, Atlanta, USA.
  • Knox, C. L., and J. M. Ingham. 2012. Non-linear equivalent frame modelling: Assessment of a two storey perforated unreinforced masonry wall. New Zealand Society for Engineering Earthquake. Proceedings of the Annual Technical Conference, Christchurch, New Zealand.
  • Koliou, M., A. Filiatrault, D. J. Kelly, and J. Lawson. 2016. Buildings with rigid walls and flexible roof diaphragms. I: Evaluation of current U.S. Seismic provisions. Journal of Structural Engineering 142(3). American Society of Civil Engineers (ASCE). doi:10.1061/(asce)st.1943-541x.0001438.
  • Kollerathu, J. A., and A. Menon. 2017. Role of diaphragm flexibility modelling in seismic analysis of existing masonry structures. Structures 11:22–39. Elsevier. doi:10.1016/j.istruc.2017.04.001.
  • Kouris, A., P. Borg, and M. Indirli 2010. The L’Aquila Earthquake, April 6th, 2009: A review of seismic damage mechanisms. Proceedings of COST action C26 “Urban Habitat Constructions Under Catastrophic Events”, Naples, Italy.
  • Kunnath, S. K., N. Panahshahi, and A. M. Reinhorn. 1991. Seismic response of RC buildings with inelastic floor diaphragms. Journal of Structural Engineering 117(4):1218–37. American Society of Civil Engineers (ASCE). doi:10.1061/(ASCE)0733-9445(1991)117:4(1218).
  • Kyvelou, P., L. Gardner, and D. A. Nethercot. 2017. Testing and analysis of composite cold-formed steel and wood−based flooring systems. Journal of Structural Engineering 143(11):04017146. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)st.1943-541x.0001885.
  • Lagomarsino, S., S. Cattari, and C. Calderini. 2012. European Guidelines for the seismic preservation of cultural heritage assets. Deliverable D41, WP No8, PERPETUATE Project (FP7), European Research Project on the Seismic Protection of Cultural Heritage. UNIGE, Genoa, Italy
  • Lagomarsino, S., and S. Cattari. 2015b. Seismic performance of historical masonry structures through pushover and nonlinear dynamic analyses. In Perspectives on European earthquake engineering and seismology. Geotechnical, geological and earthquake engineering, ed. A. Ansal, Vol. 39, 265–92. Cham: Springer. ISBN 978-3-319-16963-7.
  • Lagomarsino, S., D. Camilletti, S. Cattari, and S. Marino. 2018. Seismic assessment of existing irregular masonry buildings by nonlinear static and dynamic analyses. In Recent advances in Earthquake Engineering in Europe (ECEE 2018). Geotechnical, geological and earthquake engineering, ed. K. Pitilakis, Vol. 46, 123–51. Cham: Springer. ISBN 978-3-319-75741-4.
  • Lagomarsino, S., A. Galasco, A. Penna, and S. Cattari. 2008. Tremuri program: Seismic analyses of 3D masonry buildings – user guide. Italy: University of Genoa.
  • Lagomarsino, S., A. Penna, A. Galasco, and S. Cattari. 2013. Tremuri program: An equivalent frame model for the non-linear seismic analysis of masonry buildings. Engineering Structures 56:1787–99. Elsevier. doi:10.1016/j.engstruct.2013.08.002.
  • Lagomarsino, S., and S. Cattari. 2015a. PERPETUATE: Guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bulletin of Earthquake Engineering 13(1):13–47. Springer Netherlands. doi:10.1007/s10518-014-9674-1.
  • Lang, K. 2002. Seismic vulnerability of existing buildings. PhD Thesis, Institute of Structural Engineering and Swiss Federal Institute of Technology.
  • Lantada, N. 2007. Evaluación del Riesgo Sísmico Mediante Métodos Avanzados y Técnicas GIS. Aplicación a Barcelona. PhD Thesis, Politechnical University of Cataluña, Spain.
  • Liberatore, D., G. Spera, and D. Palermo. 2000. Seismic response of typical masonry buildings in the commune of Catania. Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
  • Lourenço, P. B., N. Mendes, L. F. Ramos, and D. V. Oliveira. 2011. Analysis of masonry structures without box behavior. International Journal of Architectural Heritage 5(4–5):369–82. Taylor & Francis. doi:10.1080/15583058.2010.528824.
  • Luttrell, L. D. 1995. Steel Deck Institute Diaphragm Design Manual. 2nd ed. Steel Deck Institute. https://scholarsmine.mst.edu/ccfss-sdi/12
  • Magenes, G. 2000. A method for pushover analysis in seismic assessment of masonry buildings. Proceedings of the 12th World Conference on Earthquake Engineering, 1–8. Auckland, New Zealand.
  • Magenes, G., and A. Penna. 2011. Seismic design and assessment of masonry buildings in Europe: Recent research and code development issues. Proceedings of the 9th Australasian Masonry Conference, Queenstown, New Zealand.
  • Magenes, G., A. Penna, I. Senaldi, M. Rota, and A. Galasco. 2014. Shaking table test of a strengthened full-scale stone masonry building with flexible diaphragms. International Journal of Architectural Heritage 8(3):349–75. Taylor & Francis. doi:10.1080/15583058.2013.826299.
  • Magenes, G., D. Bolognini, and C. Braggio. 2000. Analisi dell’ edificio in via Verdi. In Progetto Catania: Indagine sulla risposta sísmica di due edifici in muratura. Gruppo Nazionale per la Difesa dai Terremoti, GNDT-Monographs: Liberatore, Rome, Italy. ftp://ftp.ingv.it/pro/gndt/Pubblicazione/ [In Italian].
  • Magenes, G., and G. M. Calvi. 1997. In plane seismic response of brick masonry walls. Earthquake Engineering & Structural Dynamics 26(11):1091–112. Wiley-Blackwell. doi:10.1002/(SICI)1096-9845(199711)26:11<1091::AID-EQE693>3.0.CO;2-6.
  • Magenes, G., M. Remino, C. Manzini, P. Morandi, and D. Bolognini. 2006. SAM II: Software for the simplified seismic analysis of masonry buildings. Italy: University of Pavia and EUCENTRE.
  • Mahdizadeh, A., J. Borzouie, and M. Raessi. 2012. New approach to seismic rehabilitation of masonry school buildings. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
  • Maheri, M. 2004. Seismic evaluation and design of jack arch slabs. Proceedings of the 13th World Conference on Earthquake Engineering (13WCEE), Vancouver, Canada.
  • Mann, W., and H. Muller. 1982. Failure of shear-stressed masonry. An enlarged theory, tests and application to shear walls. Proceedings of the British Ceramic Society 30:223.
  • Marino, S., S. Cattari, and S. Lagomarsino. 2019. Are the nonlinear static procedures feasible for the seismic assessment of irregular existing masonry buildings? Engineering Structures 200. doi:10.1016/j.engstruct.2019.109700.
  • Marques, R., and P. B. Lourenço. 2011. Possibilities and comparison of structural component models for the seismic assessment of modern unreinforced masonry buildings. Computers & Structures 89:2079–91. Elsevier. doi:10.1016/j.compstruc.2011.05.021.
  • Marques, R., and P. B. Lourenço. 2014. Unreinforced and confined masonry buildings in seismic regions: Validation of macro-element models and cost analysis. Engineering Structures 64:52–67. Elsevier. doi:10.1016/j.engstruct.2014.01.014.
  • Mendes, N., P. B. Lourenço, and A. Campos-Costa. 2014. Shaking table testing of an existing masonry building: Assessment and improvement of the seismic performance. Earthquake Engineering & Structural Dynamics 43(2):247–66. Wiley-Blackwell. doi:10.1002/eqe.2342.
  • Milutinovic, Z., and G. Trendafiloski. 2003. WP4: Vulnerability of current buildings. RISK-UE Project handbook: An advanced approach to earthquake risk scenarios with applications to different European towns. European Comission. Available at: http://www.risk-ue.net.
  • Moeini, M., and B. Rafezy. 2011. Investigation into the floor diaphragms flexibility in reinforced concrete structures and code provision. Global Journal of Research in Engineering 11 (1):25–35. Global Journals Inc.
  • Moon, S. K., and D. G. Lee. 1994. Effects of in plane floor slab flexibility on the seismic behavior of building structures. Engineering Structures 16(2):129–44. Elsevier. doi:10.1016/0141-0296(94)90038-8.
  • Moreno-González, R., and J. M. Bairán. 2011. Análisis del comportamiento sísmico de los edificios de obra de fábrica, típicos del distrito Eixample de Barcelona. Informes De La Construcción 63 (524):21–32. Instituto Técnico de la Construcción y del Cemento. doi:10.3989/ic.2011.v63.i524.
  • Nakamura, Y., G. Magenes, H. Derakhshan, M. C. Griffith, and A. H. Sheikh. 2017a. Applicability of nonlinear static procedures for low-rise unreinforced masonry buildings with flexible diaphragms. Engineering Structures 137:1–18. Elsevier. doi:10.1016/j.engstruct.2017.01.049.
  • Nakamura, Y., H. Derakhshan, G. Magenes, and M. C. Griffith. 2017b. Influence of diaphragm flexibility on seismic response of unreinforced masonry buildings. Journal of Earthquake Engineering 21(6):935–60. Taylor & Francis. doi:10.1080/13632469.2016.1190799.
  • NZSEE. 2006. Assessment and improvement of the structural performance of buildings in Earthquakes. In Recommendations of a NZSEE study group on earthquake risk buildings, 1–94. Wellington: New Zealand Society for Earthquake Engineering (NZSEE) Inc. Available at: nzsee.org.nz/library/guidelines.
  • NZSEE. 2017. The seismic assessment of existing buildings: Technical guidelines for engineering assessments. Wellington: New Zealand Society for Earthquake Engineering (NZSEE) Inc.
  • Ortega, J., G. Vasconcelos, H. Rodrigues, and M. Correia. 2018. A vulnerability index formulation for the seismic vulnerability assessment of vernacular architecture. Bulletin of Earthquake Engineering 16 (9):3871–904. Springer Netherlands. doi:10.1007/s10518-018-0318-8.
  • Pantò, B. 2003. Un nuovo macromodello per la valutazione della resistenza sismica di edifici in muratura. Master Thesis, Università Degli Studi Di Catania, Facoltà di Ingegneria, Dipartimento di ingegneria Civile ed Ambientale, Italy.
  • Pantò, B., F. Cannizaro, I. Caliò, and P. Lourenço. 2017. Numerical and experimental validation of a 3D macro-model for the in-plane and out-of-plane behaviour of unreinforced masonry walls. International Journal of Architectural Heritage 11 (7):946–64.
  • Pantò, B., I. Caliò, and P. Lourenço. 2018. A 3D discrete macro-element for modelling the out-of-plane behaviour of infilled frame structures. Engineering Structures 175:371–85. doi:10.1016/j.engstruct.2018.08.022.
  • Paquette, J., and M. Bruneau. 2003. Pseudo-Dynamic testing of unreinforced masonry building with flexible diaphragm. Journal of Structural Engineering 129(6):708–16. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)0733-9445(2003)129:6(708).
  • Paricio, A. 2008. Secrets d’un sistema constructiu: L’Eixample. Barcelona, Spain: Edicions UPC, Universitat Politecnica de Catalunya, Segona edició. ISBN 9788498802788.
  • Park, J., P. Towashiraporn, J. I. Craig, and B. J. Goodno. 2009. Seismic fragility analysis of low-rise unreinforced masonry structures. Engineering Structures 31(1):125–37. Elsevier. doi:10.1016/j.engstruct.2008.07.021.
  • Pasticier, L., C. Amadio, and M. Fragiacomo. 2008. Non-linear seismic analysis and vulnerability evaluation of a masonry building by means of the SAP2000 v.10 Code. Earthquake Engineering & Structural Dynamics 37(3):467–85. Wiley-Blackwell. doi:10.1002/eqe.770.
  • Penna, A., I. Senaldi, A. Galasco, and G. Magenes. 2015. Numerical simulation of shaking table tests on full-scale stone masonry buildings. International Journal of Architectural Heritage 10 (2–3):146–63. doi:10.1080/15583058.2015.1113338.
  • Penna, A., S. Lagomarsino, and A. Galasco. 2014. A nonlinear macroelement model for the seismic analysis of masonry buildings. Earthquake Engineering & Structural Dynamics 43(2):159–79. Wiley-Blackwell. doi:10.1002/eqe.2335.
  • Peralta, D. F., J. M. Bracci, and M. B. D. Hueste. 2000. Seismic performance of rehabilitated floor and roof diaphragms. In Mid-America earthquake center project ST-8 final report. University of Illinois, EE. UU. Available at: mae.cee.illinois.edu/publications/reports.
  • Petry, S., and K. Beyer. 2014. Influence of boundary conditions and size effect on the drift capacity of URM walls. Engineering Structures 65:76–88. Elsevier. doi:10.1016/j.engstruct.2014.01.048.
  • Pujades, L., A. Barbat, R. Gonzalez, J. Avila, and S. Lagomarsino. 2012. Seismic performance of a block of buildings representative of the typical construction in the Eixample district in Barcelona (Spain). Bulletin of Earthquake Engineering 10(1):331–49. Springer Netherlands. doi:10.1007/s10518-010-9207-5.
  • Quagliarini, E., G. Maracchini, and F. Clementi. 2017. Uses and limits of the Equivalent Frame Model on existing unreinforced masonry buildings for assessing their seismic risk: A review. Journal of Building Engineering 10:166–82. Elsevier. doi:10.1016/j.jobe.2017.03.004.
  • Raka, E., E. Spacone, V. Sepe, and G. Camata. 2015. Advanced frame element for seismic analysis of masonry structures: Model formulation and validation. Earthquake Engineering & Structural Dynamics 44(14):2489–506. Wiley-Blackwell. doi:10.1002/eqe.2594.
  • Rinaldin, G. 2012. Modellazione e analisi non lineare di structure in muratura e in legno. PhD Thesis, Università Degli Studi Di Trieste, Italy.
  • Rinaldin, G., C. Amadio, and L. Macorini. 2016. A macro-model with non-linear springs for seismic analysis of URM buildings. Earthquake Engineering & Structural Dynamics 45(14):2261–81. Wiley-Blackwell. doi:10.1002/eqe.2759.
  • Sadashiva, V., G. MacRae, B. Deam, and M. Spooner. 2012. Quantifying the seismic response of structures with flexible diaphragms. Earthquake Engineering & Structural Dynamics 41(10):1365–89. Wiley-Blackwell. doi:10.1002/eqe.1187.
  • Saffarini, H. S., and M. M. Qudaimat. 1992. In-plane floor deformations in RC structures. Journal of Structural Engineering 118(11):3089–102. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)0733-9445(1992)118:11(3089).
  • Senaldi, I., G. Magenes, A. Penna, A. Galasco, and M. Rota. 2014. The effect of stiffened floor and roof diaphragms on the experimental seismic response of a full-scale unreinforced stone masonry building. Journal of Earthquake Engineering 18 (3):407–43. doi:10.1080/13632469.2013.876946.
  • Shakib, H., A. Mirjalili, S. Dardaei, and A. Mazroei. 2015. Experimental investigation of the seismic performance of retrofitted masonry flat arch diaphragms. Journal of Performance of Constructed Facilities 29(4):1–11. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)cf.1943-5509.0000611.
  • Shakib, H., and A. R. Mirjalili. 2010. Experimental Investigation of the effect of transverse beams on the in-plane behavior of brick-flat-arch roofs. Journal of Seismology and Earthquake Engineering 12 (1–2):51–59. International Institute of Earthquake Engineering and Seismology (IIEES).
  • Srisangeerthanan, S., M. J. Hashemi, P. Rajeev, E. Gad, and S. Fernando. 2018. Numerical study on the effects of diaphragm stiffness and strength on the seismic response of multi-story modular buildings. Engineering Structures 163:25–37. Elsevier. doi:10.1016/j.engstruct.2018.02.048.
  • Tena-Colunga, A., and D. P. Abrams. 1996. Seismic behaviour of structures with flexible diaphragms. Journal of Structural Engineering 122(4):439–45. American Society of Civil Engineers (ASCE). doi:10.1061/(ASCE)0733-9445(1996)122:4(439).
  • Tena-Colunga, A., K. L. Chinchilla-Portillo, and G. Juárez-Luna. 2015. Assessment of the diaphragm condition for floor systems used in urban buildings. Engineering Structures 93:70–84. Elsevier. doi:10.1016/j.engstruct.2015.03.025.
  • Tomazevic, M. 1999. Earthquake-resistance design of masonry buildings. London: Imperial College Press, (Series on innovation in structures and construction).
  • Valluzzi, M., E. Garbin, B. Dalla, and C. Modena. 2010. In-plane strengthening of timber floors for the seismic improvement of masonry buildings. Proceedings of the 11th World Conference on Timber Engineering WCTE, Trentino, Italy.
  • Vila, J. 1989. La casa original del Ensanche de Barcelona: parámetros formales y métricos de la unidad residencial de la manzana Cerdá. PhD Thesis, Universitat Politècnica de Catalunya, Spain.
  • Wilson, A. W. 2012. Seismic assessment of timber floor diaphragms in unreinforced masonry buildings. PhD Thesis, University of Auckland, New Zealand.
  • Wilson, A. W., P. J. H. Quenneville, and J. M. Ingham. 2014. In-Plane orthotropic behavior of timber floor diaphragms in unreinforced masonry buildings. Journal of Structural Engineering 140(1):1–43. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)st.1943-541x.0000819.
  • Zahrai, S. M., and L. Sarkissian. 2015. In-plane rigidity of laterally loaded composite floor systems, a finite element approach. Asian Journal of Civil Engineering 16 (2):161–81. Springer.
  • Zahrai, S. M., S. A. Zahraei, and M. R. Edalat. 2006. Evaluation of retrofitting methods for flexible floor slab. Proceedings of the First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.