912
Views
44
CrossRef citations to date
0
Altmetric
Research Article

Wireless Sensor Networks for Continuous Structural Health Monitoring of Historic Masonry Towers

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 22-44 | Received 19 Jun 2019, Accepted 17 Jan 2020, Published online: 17 Feb 2020

References

  • Acito, M., M. Bocciarelli, C. Chesi, and G. Milani. 2014. Collapse of the clock tower in Finale Emilia after the May 2012 Emilia Romagna earthquake sequence: Numerical insight. Engineering Structures 72:70–91. doi:10.1016/j.engstruct.2014.04.026.
  • ANSI (American National Standards Institute). 1990. Vibration of buildings. Guidelines for the measurement ofvibrations and evaluation of their effects on buildings. ANSI S2. 47–1990.
  • Azzara, R. M., G. De Roeck, M. Girardi, C. Padovani, D. Pellegrini, and E. Reynders. 2018. The influence of environmental parameters on the dynamic behaviour of the San Frediano bell tower in Lucca. Engineering Structures 156:175–87. doi:10.1016/j.engstruct.2017.10.045.
  • Azzara, R. M., M. Girardi, V. Iafolla, D. M. Lucchesi, C. Padovani, and D. Pellegrini. 2019. Ambient vibrations of age-old masonry towers: Results of long-term dynamic monitoring in the historic centre of Lucca. International Journal of Architectural Heritage 1–17. doi:10.1080/15583058.2019.1695155.
  • Barlindhaug, S., I. M. Holm-Olsen, and H. Tømmervik. 2007. Monitoring archaeological sites in a changing landscape - Using multitemporal satellite remote sensing as an “early warning” method for detecting regrowth processes. Archaeological Prospection 14 (4):231–44. doi:10.1002/arp.307.
  • Barsocchi, P., P. Cassara, F. Mavilia, and D. Pellegrini. 2018. Sensing a city’s state of health: Structural monitoring system by internet-of-things wireless sensing devices. IEEE Consumer Electronics Magazine 7:22–31. doi:10.1109/MCE.2017.2717198.
  • Barsocchi, P., E. Ferro, L. Fortunati, F. Mavilia, and F. Palumbo. 2014. EMS@CNR: An Energy monitoring sensor network infrastructure for in-building location-based services. In Proceedings of the International Conference on High Performance Computing & Simulation (HPCS2014), Bologna, Italy, July 21–25. doi:10.1109/HPCSim.2014.6903779.
  • Bartoli, G., M. Betti, L. Galano, and G. Zini. 2019. Numerical insights on the seismic risk of confined masonry towers. Engineering Structures 180:713–27. doi:10.1016/j.engstruct.2018.10.001.
  • Bartoli, G., M. Betti, and S. Monchetti. 2017. Seismic risk assessment of historic masonry towers: Comparison of four case studies. Journal of Performance of Constructed Facilities 31 (5):04017039. doi:10.1061/(ASCE)CF.1943-5509.0001039.
  • Brincker, R., and C. E. Ventura. 2015. Introduction to operational modal analysis. New York: John Wiley & Sons Inc.
  • Cabboi, A., F. Magalhães, C. Gentile, and Á. Cunha. 2017. Automated modal identification and tracking: Application to an iron arch bridge. Structural Control Health Monitoring 24:e1854. doi:10.1002/stc.1854.
  • Cantieni, R. 2014. One-year monitoring of a historic bell tower. Key Engineering Materials 628:73–78. doi:10.4028/www.scientific.net/kem.628.73.
  • Cavalagli, N., G. Comanducci, C. Gentile, M. Guidobaldi, A. Saisi, and F. Ubertini. 2017. Detecting earthquake-induced damage in historic masonry towers using continuously monitored dynamic response-only data. Procedia Engineering 199:3416–21. doi:10.1016/j.proeng.2017.09.581.
  • Cavalagli, N., G. Comanducci, and F. Ubertini. 2018. Earthquake-induced damage detection in a monumental masonry bell-tower using long-term dynamic monitoring data. Journal of Earthquake Engineering 22 (1):96–119. doi:10.1080/13632469.2017.1323048.
  • Ceravolo, R., E. Matta, A. Quattrone, and L. Zanotti Fragonara. 2017. Amplitude dependence of equivalent modal parameters in monitored buildings during earthquake swarms. Earthquake Engineering Structural Dynamics 46 (14):2399–417. doi:10.1002/eqe.2910.
  • Cheynet, E., J. B. Jakobsen, and J. Snæbjörnsson. 2016. Buffeting response of a suspension bridge in complex terrain. Engineering Structures 128:474–87. doi:10.1016/j.engstruct.2016.09.060.
  • Clementi, F., A. Pierdicca, G. Milani, V. Gazzani, M. Poiani, and S. Lenci 2018. Numerical model upgrading of ancient bell towers monitored with a wired sensors network. In Proceedings of 10th International Masonry Conference (IMC), Milan, Italy, July 9–11.
  • Dessi, D., and G. Camerlengo. 2015. Damage identification techniques via modal curvature analysis: Overview and comparison. Mechanical Systems and Signal Processing 52–53:181–205. doi:10.1016/j.ymssp.2014.05.031.
  • DPCM2011 (Direttiva del Presidente del Consiglio dei Ministri). 2011. Direttiva del Presidente del Consiglio dei Ministri per la valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle NTC 2008. G. U. n. 47 del 26.02.2011 (in Italian).
  • Gentile, C., M. Guidobaldi, and A. Saisi. 2016. One-year dynamic monitoring of a historic tower: Damage detection under changing environment. Meccanica 51 (11):2873–89. doi:10.1007/s11012-016-0482-3.
  • Girardi, M., C. Padovani, and D. Pellegrini. 2015. The NOSA-ITACA code for the safety assessment of ancient constructions: A case study in Livorno. Advances in Engineering Software 89:64–76. doi:10.1016/j.advengsoft.2015.04.002.
  • Girardi, M., C. Padovani, D. Pellegrini, and L. Robol. 2019. Model updating procedure to enhance structural analysis in FE code NOSA-ITACA. Journal of Performance of Constructed Facilities 33 (4):04019041. doi:10.1061/(ASCE)CF.1943-5509.0001303.
  • Imregun, M., and D. J. Ewins 1995. Complex modes-origins and limits. In Proceedings of the 13th International Modal Analysis Conference, Nashville, Tennessee, USA, February 13–16, 1995.
  • Ivorra, S., F. J. Pallarés, and J. M. Adam. 2009. Experimental and numerical results from the seismic study of a masonry bell tower. Advances in Structural Engineering 12 (2):287–93. doi:10.1260/136943309788251641.
  • Ljung, L. 1987. System identification: Theory for user. New York: Prentice Hall, Englewood Cliffs.
  • Magalhães, F., A. Cunha, and E. Caetano. 2009. Online automatic identification of the modal parameters of a long span arch bridge. Mechanical Systems and Signal Processing 23:316–29. doi:10.1016/j.ymssp.2008.05.003.
  • Magalhães, F., A. Cunha, and E. Caetano. 2012. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. Mechanical Systems and Signal Processing 28:212–28. doi:10.1016/j.ymssp.2011.06.011.
  • Marwitz, S., and V. Zabel 2018. Relations between the quality of identified modal parame- ters and measured data obtained by structural monitoring. In Proceedingis of the International Conference on Noise and Vibration Engineering (ISMA2018), Leuven, Belgium, September 17–19.
  • Neu, E., F. Janser, A. A. Khatibi, and A. C. Orifici. 2017. Fully automated operational modal analysis using multi-stage clustering. Mechanical Systems and Signal Processing 84:308–23. doi:10.1016/j.ymssp.2016.07.031.
  • Pecorelli, M. L., R. Ceravolo, and R. Epicoco. 2018. An automatic modal identification procedure for the permanent dynamic monitoring of the sanctuary of vicoforte. International Journal of Architectural Heritage 1–15. doi:10.1080/15583058.2018.1554725.
  • Peeters, B., and G. De Roeck. 2001. Stochastic system identification for operational modal analysis: A review. Journal of Dynamic Systems, Measurement, and Control 123 (4):659–67. doi:10.1115/1.1410370.
  • Potenza, F., F. Federici, M. Lepidi, V. Gattulli, F. Graziosi, and A. Colarieti. 2015. Long-term structural monitoring of the damaged Basilica S. Maria di Collemaggio through a low-cost wireless sensor network. Journal of Civil Structural Health Monitoring 5:655–76. doi:10.1007/s13349-015-0146-3.
  • Rainieri, C., and G. Fabbrocino. 2014. Influence of model order and number of block rows on accuracy and precision of modal parameter estimates in stochastic subspace identification. International Journal of Lifecycle Performance Engineering 1 (4):317–34. doi:10.1504/IJLCPE.2014.064099.
  • Rainieri, C., and G. Fabbrocino. 2015. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation. Mechanical Systems and Signal Processing 60:512–34. doi:10.1016/j.ymssp.2015.01.019.
  • Ramos, L. F., L. Marques, P. B. Lourenço, G. De Roeck, A. Campos-Costa, and J. Roque. 2010. Monitoring historical masonry structures with operational modal analysis: Two case studies. Systems and Signal Processing 24:1291–305. doi:10.1016/j.ymssp.2010.01.011.
  • Reynders, E., J. Houbrechts, and G. De Roeck. 2012. Fully automated (operational) modal analysis. Mechanical Systems and Signal Processing 29:228–50. doi:10.1016/j.ymssp.2012.01.007.
  • Reynders, E., R. Pintelon, and G. De Roeck. 2008. Uncertainty bounds on modal parameters obtained from stochastic subspace identification. Mechanical Systems and Signal Processing 22:948–69. doi:10.1016/j.ymssp.2007.10.009.
  • Rizzo, M., M. Betti, O. Spadaccini, and A. Vignoli 2017. Improvement of structural monitoring of jacket platform. In Proceedings of The Twenty-seventh International Ocean and Polar Engineering Conference (ISOPE2017), San Francisco, CA, June 25–30.
  • Salawu, O. S. 1997. Detection of structural damage in frequency: Detection through changes a review. Engineering Structures 19 (9):718–23. doi:10.1016/S0141-0296(96)00149-6.
  • Shih, C. Y., Y. G. Tsuei, R. J. Allemang, and D. L. Brown. 1988. Complex mode indication function and its applications to spatial domain parameter estimation. Mechanical Systems and Signal Processing 2 (4):367–77. doi:10.1016/0888-3270(88)90060-X.
  • Sinou, J. J. 2009. A review of damage detection and health monitoring of mechanical systems from changes in the measurement of linear and non-linear vibrations. In Mechanical vibrations: Measurement, effects and control, ed. R. C. Sapri, 643–702. New York: Nova Science Publishers.
  • SMooHS – Smart Monitoring of Historic Structures7, 2011. EU-FP project. Grant agreement no. 212939, 01-12-2008-30-11-2011. https://cordis.europa.eu/project/id/212939.
  • Sohn, H., C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, B. R. Nadler, and J. J. Czarnecki 2004. A review of structural health monitoring literature : 1996-2001. Report, LA-13976-MS, Los Alamos National Laboratory.
  • Ubertini, F., N. Cavalagli, G. Comanducci, A. L. Materazzi, A. L. Pisello, and F. Cotana 2016. Automated post-earthquake damage detection in a monumental bell tower by continuous dynamic monitoring. In Proceedings of the 10th International Conference on Structural Analysis of Historical Constructions (SAHC2016), Leuven, Belgium, September 13–15.
  • Ubertini, F., G. Comanducci, N. Cavalagli, A. L. Pisello, A. L. Materazzi, and F. Cotana. 2017. Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mechanical Systems and Signal Processing 82:307–22. doi:10.1016/j.ymssp.2016.05.025.
  • Ubertini, F., C. Gentile, and A. L. Materazzi. 2013. Automated modal identification in operational conditions and its application to bridges. Engineering Structures 46:264–78. doi:10.1016/j.engstruct.2012.07.031.
  • Van Overschee, P., and B. De Moor. 1996. Subspace identification for linear systems. Theory-implementation-applications. New York: Kluwer Academic Publishers. doi:10.1007/978-1-4613-0465-4.
  • Verboven, P., E. Parloo, P. Guillaume, and M. Van Overmeiere. 2002. Autonomous structural health monitoring-part I: Modal parameter estimation and tracking. Mechanical Systems and Signal Processing 16 (4):637–57. doi:10.1006/mssp.1492.
  • Wu, W. H., S. W. Wang, C. C. Chen, and G. Lai. 2017. Assessment of environmental and nondestructive earthquake effects on modal parameters of an office building based on long-term vibration measurements. Smart Materials and Structures 26 (5):055034. doi:10.1088/1361-665X/aa6ae6.
  • Zini, G., M. Betti, G. Bartoli, and S. Chiostrini. 2018. Frequency vs time domain identification of heritage structures. Procedia Structural Integrity 11:460–69. doi:10.1016/j.prostr.2018.11.115.
  • Zonta, D., M. Pozzi, and P. Zanon. 2008. Managing the historical heritage using distributed technologies. International Journal of Architectural Heritage 2 (3):200–25. doi:10.1080/15583050802063691.
  • Zonta, D., H. Wu, M. Pozzi, P. Zanon, M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, and M. Corra. 2010. Wireless sensor networks for permanent health monitoring of historic buildings. Smart Structures and Systems 6 (5):595–618. doi:10.12989/sss.2010.6.5_6.595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.