Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 16, 2022 - Issue 7
310
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Understanding the Damages Caused by the 1999 Kocaeli Earthquake on One of the Towers of the Theodosian Walls of Constantinople

ORCID Icon, , , ORCID Icon, , , ORCID Icon & show all
Pages 1076-1100 | Received 25 Jun 2020, Accepted 11 Dec 2020, Published online: 02 Feb 2021

References

  • Ahunbay, M., and Z. Ahunbay. 2000. Recent work on the Land Walls of Istanbul: Tower 2 to tower 5. Dumbarton Oaks Papers 54:227–39.
  • Ambraseys, N. N. 2002. The seismic activity of the Marmara Sea region over the last 2000 Years. Bulletin of the Seismological Society of America 92:1–18.
  • Aras, F., L. Krstevska, G. Altay, and L. Tashkov. 2011. Experimental and numerical modal analyses of a historical masonry palace. Construction and Building Materials. doi:https://doi.org/10.1016/j.conbuildmat.2010.06.054.
  • Asteris, P. G., M. P. Chronopoulos, C. Z. Chrysostomou, H. Varum, V. Plevris, N. Kyriakides, and V. Silva. 2014. Seismic vulnerability assessment of historical masonry structural systems. Engineering Structures 62–63:118–34. doi:https://doi.org/10.1016/j.engstruct.2014.01.031.
  • Azevedo, J., G. Sincraian, and J. V. Lemos. 2000. Seismic behavior of blocky masonry structures. Earthquake Spectra 16 (2):337–65. doi:https://doi.org/10.1193/1.1586116.
  • Baraccani, S., M. Palermo, T. Trombetti, and M. DeJong. 2019. Seismic modelling of a masonry monument including the interaction of the vaults, Longitudinal Walls and Soil. In Structural analysis of historical constructions, R. Aguilar, D. Torrealva, S. Moreira, M. A. Pando, and L. F. Ramos. ed., Vol. 18, 235-253, Springer, Cham: RILEM Bookseries. doi:https://doi.org/10.1007/978-3-319-99441-3_119
  • Baraccani, S., S. Silvestri, G. Gasparini, M. Palermo, T. Trombetti, E. Silvestri, R. Lancellotta and A Capra. 2016. A structural analysis of the Modena Cathedral. International Journal of Architectural Heritage 10 (2–3):235–53. doi:https://doi.org/10.1080/15583058.2015.1113344.
  • Bassoli, E., L. Vincenzi, A. M. D’altri, S. de Miranda, M. Forghieri, and G. Castellazzi. 2018. Ambient vibration‐based finite element model updating of an earthquake‐damaged masonry tower. The Journal of the International Association for Structural Control and Monitoring, ASCE. 25(5). doi:https://doi.org/10.1002/stc.2150
  • Bićanić, N., C. Stirling, and C. J. Pearce. 2003. Discontinuous modelling of masonry bridges. Computational Mechanics. doi:https://doi.org/10.1007/s00466-002-0393-0.
  • Bilotta, E., L. de Sanctis, R. Di Laora, A. d’Onofrio, and F. Silvestri. 2015. Importance of seismic site response and soil-structure interaction in the dynamic behavior of a tall building founded on piles. Géotechnique 65 (5): 391–400. doi:https://doi.org/10.1680/geot.SIP.15.P.016
  • Binda, L., A. Saisi, and C. Tiraboschi. 2000. Investigation procedures for the diagnosis of historic masonries. Construction and Building Materials. doi:https://doi.org/10.1016/S0950-0618(00)00018-0.
  • Blaney, G. W., E. Kausel, and J. M. Roesset. 1976. Dynamic stiffness of piles. Proc. 2nd Int. Conf. Numerical Methods in Geomechanics, 1001–1012, Blacksburg, Virginia.
  • Cakir, F., and F. Kocyigit. 2016. Architectural and structural analysis of historical structures. Gradjevinar. doi:https://doi.org/10.14256/JCE.1182.2014.
  • CEN Eurocode 6—Design of Masonry Structures. 2005. Part 1–1: General Rules for Reinforced and Unreinforced Masonry Structures. British Standards Institution: London, UK.
  • Curras, C. J., R. W. Boulanger, B. L. Kutter, and D. W. Wilson. 2001. Dynamic experiments and analyses of a pile-group-supported structure. Journal of Geotechnical and Geoenvironmental Engineering 585–596:127–7. doi:https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(585).
  • D’Ayala, D., and H. Wang. 2006. Structural preservation of Chinese architectural heritage. Journal of Architectural Heritage. doi:https://doi.org/10.1080/13556207.2006.10784960.
  • De Felice, G., and A. Mauro. 2009. On overturning of the façade in churches with single nave: Some case studies from L’Aquila, Italy, 2009 earthquake. Advanced Materials Research 134:807–12. https://doi.org/http://dx.doi.org/10.4028/www.scientific.net/AMR.133-134.807.
  • De Felice, G., and R. Giannini. 2001. Out-of-plane seismic resistance of masonry walls. Journal of Earthquake Engineering 5 (2):253–71. doi:https://doi.org/10.1080/13632460109350394.
  • De Santis, S., and G. de Felice. 2012. Seismic analysis of masonry arches. In Proceedings of the fiftheenth world conference on earthquake engeneering, 2012. Lisbon, Portugal.
  • DeJong, M. J. 2009. Seismic assessment strategies for masonry structures. Doctor of Philosophy in Architecture: Building Technology at the Massachusetts Institute of Technology, June.
  • DeJong, M. J., and E. G. Dimitrakopoulos. 2019. Dynamically equivalent rocking structures. Earthquake Engineering & Structural Dynamics 43 (10):1543–63. doi:https://doi.org/10.1002/eqe.2410.
  • EC8 - Design of structures for earthquake resistance. 2004. Part 5: Foundations, retaining structures and geotechnical aspects. European Committee for Standardization, Bruxelles, Belgium.
  • Ensoft Inc. 2019. A program for the analysis of piles and drilled shafts under dynamic loads. Dynapile 3.0. Austin, TX: Ensoft.
  • Eslami, A., H. R. Ronagh, S. S. Mahini, and R. Morshed. 2012. Experimental investigation and nonlinear FE analysis of historical masonry buildings - A case study. Construction and Building Materials 35:251–60. doi:https://doi.org/10.1016/j.conbuildmat.2012.04.002.
  • Fabbrocino, F., G. Ramaglia, G. P. Lignola, and A. Prota. 2019. Ductility-based incremental analysis of curved masonry structures. Engineering Failure Analysis 97:653–75. doi:https://doi.org/10.1016/j.engfailanal.2019.01.027.
  • Galantucci, R. A., F. Fatiguso, and L. M. Galantucci. 2018. A proposal for a new standard quantification of damages of cultural heritages, based on 3D scanning. SCIRES-IT. doi:https://doi.org/10.2423/i22394303v8n1p121.
  • Gazetas, G. 1991. Foundation Vibrations. In: Fang HY. (eds) Foundation Engineering Handbook. Springer, Boston, MA. doi:https://doi.org/10.1007/978-1-4757-5271-7_15
  • Gentile, C., and A. Saisi. 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials 21(6):1311–1321.
  • Giordano, A., E. Mele, and A. De Luca. 2002. Modelling of historical masonry structures: Comparison of different approaches through a case study. Engineering Structures 24 (8):1057–69. doi:https://doi.org/10.1016/S0141-0296(02)00033-0.
  • IBC2018 Italian Building Code: Ministerial Decree 17 Geunary 2018, 2018. Aggiornamento Delle Norme Tecniche delle Costruzioni. Ministry of Infrastructure and Transport: Rome, Italy.
  • ICOMOS. 2001. Recommendations for the analysis, conservation and structural restoration of architectural heritage. Icomos International Scientific Committee for Analysis and Restoration of Structures of Architectural Heritage.
  • Ince, G. C., M. Yildirim, K. Ozaydin, and P. T. Ozner. 2008. Seismic microzonation of the historic peninsula of Istanbul. Bulletin of Engineering Geology and the Environment 67:41–51. doi:https://doi.org/10.1007/s10064-007-0099-9.
  • ISCARSAH. 2003. Icomos charter - principles for the analysis, conservation and structural restoration of architectural heritage. Principles Architectural Heritage.
  • Ispir, M., C. Demir, I. Alper I., and N. Kumbasar. 2014. An outline of the seismic damages of several monumental structures in Istanbul after historical earthquakes, Workshop on Seismicity of Historical Structures, Istanbul, November 2014.
  • Istanbul Metropolitan Municipality. 2007. Geological – geotechnical study report according to the construction plans as a result of settlement purposed microzonation works. Production of Microzonation Report and Maps European Side (South).
  • Kausel, E. 2010. Early history of soil-structure interaction. Soil Dynamics and Earthquake Engineering 30 (9):822–32. doi:https://doi.org/10.1016/j.soildyn.2009.11.001.
  • Kausel, E., J. M. Roesset, and J. T. Christian. 1976. Nonlinear behaviour in soil-structure interaction. Journal of the Geotechnical Engineering Division 102 (11):1159–70.
  • Kausel, E., R. V. Whitman, J. P. Morray, and F. Elsabee. 1978. The spring method for embedded foundations. Nuclear Engineering and Design 48 (2–3):377–92.
  • Kottke, A. R., X. Wang, and E. M. Rathje. 2019. Technical Manual for Strata. Geotechnical Engineering Center, University of Texas, Austin (USA).
  • Kržan, M., S. Gostič, S. Cattari, and V. Bosiljkov. 2015. Acquiring reference parameters of masonry for the structural performance analysis of historical buildings. Bulletin of Earthquake Engineering 13:203–36. doi:https://doi.org/10.1007/s10518-014-9686-x.
  • LEMOS, J. V. 1995. Assessment of the ultimate load of a masonry arch using discrete elements. Computer Methods in Structural Masonry – 3, eds. J. Middleton, and G. N. Pande, 294–302. Swansea, Reino Unido: Books & Journals International.
  • Lignola, G. P., A. Flora, and G. Manfredi. 2008. Simple method for the design of jet grouted umbrellas in tunneling. Journal of Geotechnical and Geoenvironmental Engineering 134 (12):1778–90. doi:https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1778).
  • Lou, M., H. Wang, X. Chen, and Y. Zhai. 2011. Structure-soil-structure interaction: Literature review. Soil Dynamics and Earthquake Engineering 31 (12):1724–31. doi:https://doi.org/10.1016/j.soildyn.2011.07.008.
  • Lourenço, P. B. 2002. Computations of historic masonry structures. Progress in Structural Engineering and Materials 4 (3):301–19. doi:https://doi.org/10.1002/pse.120.
  • Lourenço, P. B. 2006. Recommendations for restoration of ancient buildings and the survival of a masonry chimney. Construction and Building Materials 2006. doi:https://doi.org/10.1016/j.conbuildmat.2005.08.026.
  • Lourenço, P .B. 1998. Experimental and numerical issues in the modelling of the mechanical behaviour of masonry. In Structural Analysis of Historical Construction II, ed. P. Roca, J. L. González, E. Oñate, and P. B. Lourenço. CIMNE Barcelona.
  • Makris, N., and G. Gazetas. 1992. Dynamic pile‐soil‐pile interaction. Part II: Lateral and seismic response. Earthquake Engineering and Structural Dynamics 21:145–62. doi:https://doi.org/10.1002/eqe.4290210204.
  • Maravas, A., G. Mylonakis, and D. L. Karabalis. 2014. Simplified discrete systems for dynamic analysis of structures on footings and piles. Soil Dynamics and Earthquake Engineering 61 (Jun):29–39. doi:https://doi.org/10.1016/j.soildyn.2014.01.016.
  • McInerney, J., and M. J. Dejong. 2015. Discrete Element Modeling of Groin Vault Displacement Capacity. International Journal of Architectural Heritage 9 (8):1037–49. doi:https://doi.org/10.1080/15583058.2014.923953.
  • Meyer-Plath, B., and A. M. Schneider. 1943. Die Landmauer von Konstantinopel, Teil II (in German). Berlin: W. de Gruyter & Co.
  • NTC (Norme Tecniche per le Costruzioni). 2018. D.M. 14 Gennaio 2008, Norme Tecniche per le Costruzioni. Gazzetta Ufficiale della Repubblica Italiana N. 29. Roma, Italy: NTC.
  • Ortiz, R., and P. Ortiz. 2016. Vulnerability index: A new approach for preventive conservation of monuments. International Journal of Architectural Heritage. doi:https://doi.org/10.1080/15583058.2016.1186758.
  • Papantonopoulos, C., I. N. Psycharis, D. Y. Papastamatiou, J. V. Lemos, and H. P. Mouzakis. 2002. Numerical prediction of the earthquake response of classical columns using the distinct element method. Earthquake Engineering & Structural Dynamics 31 (9):1699–717. doi:https://doi.org/10.1002/eqe.185.
  • Park, W. J. 2010. Effect of degree of weathering on dynamic properties of weathered granite soils. Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego California.
  • Parmalee, R. A. 1967. Building-foundation interaction effects. Journal of the Engineering Mechanics Division, ASCE 93 (EM2):131–52.
  • Pena, F., F. Prieto, P. B. Laurenco, A. Campos Costa, and J. V. Lemos. 2007. On the dynamics of rocking motions of single rigid-block structures. Earthquake Engineering & Structural Dynamics 36(15):2383–99.
  • Peña, F., F. Prieto, P. B. Lourenço, A. Campos Costa, and J. V. Lemos. 2007. On the dynamics of rocking motion of single rigid-block structures. Earthquake Engineering & Structural Dynamics. doi:https://doi.org/10.1002/eqe.739.
  • Ramaglia, G., G. P. Lignola, and A. Prota. 2016. Simplified model for collapse analysis of masonry barrel vaults. Brick Block Mason. Trends, Innov. Challenges. Proc. 16th Int. Brick Block Mason. Conf. IBMAC 2016, 2016. Padua, Italy. doi:https://doi.org/10.1201/b21889-141.
  • Ramaglia, G., G. P. Lignola, F. Fabbrocino, and A. Prota. 2017. Impact of natural fibers on the ultimate behaviour of masonry elements. AIMETA 2017 - Proc. 23rd Conf. Ital. Assoc. Theor. Appl. Mech., 2017. Salerno, Italy.
  • Roca, P., M. Cervera, G. Gariup, and L. Pela’. 2010. Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering 17 (3):299–325. doi:https://doi.org/10.1007/s11831-010-9046-1.
  • Saloustros, S., L. Pelà, M. Cervera, and P. Roca. 2016. A macro-modelling finite element technique for the realistic simulation of cracking in masonry structures. Struct. Anal. Hist. Constr. Anamn. diagnosis, Ther. Control. Proc. 10th Int. Conf. Struct. Anal. Hist. Constr. SAHC 2016. doi:https://doi.org/10.1201/9781315616995-37.
  • Sarimese, F. 2018. Restoration and renovation of 18th and 19th Century Istanbul Land Walls. Master of Science (MSc) Thesis, Turkish Research Institute of Marmara University (in Turkish).
  • Seed, H. B., and I. M. Idriss. 1970. Soil moduli and damping factors for dynamic response analysis. Report No EERC 70-10, University of California, Berkeley, California, USA.
  • Sesigur, H., G. Erol, S. Soyoz, K. Kaynardag, and S. Gonen. 2016b. Repair and retrofit of Ketchaoua Mosque in Algeria. Struct. Anal. Hist. Constr. Anamn. diagnosis, Ther. Control. Proc. 10th Int. Conf. Struct. Anal. Hist. Constr. SAHC 2016. doi:https://doi.org/10.1201/9781315616995-267.
  • Singh, J. 2008. Architectural conservation: Principles and practice. Journal of Building Appraisal. doi:https://doi.org/10.1057/jba.2008.29.
  • Turnbull, S. 2004. The walls of constantinople AD 324–1453 (Fortress Series 25), Osprey Publishing, ISBN 1–84176–759–X
  • Veletsos, A. S., and J. W. Meek. 1974. Dynamic behaviour of buildingfoundation systems. Earthquake Engineering and Structural Dynamics 3 (2):121–38. doi:https://doi.org/10.1002/eqe.4290030203.
  • Veletsos, A. S., and V. V. Nair. 1975. Seismic interaction of structures on hysteretic foundations. Journal of the Structural Division 101 (1):109–29.
  • Viggiani, C. 2017. Geotechnics and Heritage. Second Kerisel Lecture, Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering. Seoul, Korea.
  • Vucetic, M., and R. Dobry. 1991. Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering, ASCE 117 (1):89–117.
  • İnce, G. Ç. 2011. The relationship between the performance of soil conditions and damage following an earthquake: A case study in Istanbul, Turkey, Nat. Hazards Earth Syst. Sci., 11, 1745–1758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.