Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 16, 2022 - Issue 12
397
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Experimental and Numerical Analysis of Fire Risk in Historic Chinese Temples: A Case in Beijing

ORCID Icon, , , ORCID Icon, &
Pages 1844-1858 | Received 11 Feb 2021, Accepted 09 Apr 2021, Published online: 22 Apr 2021

References

  • Altun, Y., M. Doğan, and E. Bayraml. 2016. Flammability and thermal degradation behavior of flame retardant treated wood flour containing intumescent LDPE composites. European Journal of Wood and Wood Products 74 (6):851–56. doi:10.1007/s00107-016-1042-1.
  • Bartlett, A. I., R. M. Hadden, J. P. Hidalgo, S. Santamaria, F. Wiesner, L. A. Bisby, S. Deeny, and B. Lane. 2017. Auto-extinction of engineered timber: Application to compartment fires with exposed timber surfaces. Fire Safety Journal 91:407–13. doi:10.1016/j.firesaf.2017.03.050.
  • Bernardini, G., M. Azzolini, M. D’Orazio, and E. Quagliarini. 2016. Intelligent evacuation guidance systems for improving fire safety of Italian-style historical theatres without altering their architectural characteristics. Journal of Cultural Heritage 22:1006–18. doi:10.1016/j.culher.
  • Bianchi, O., J. D. N. Martins, R. Fiorio, R. V. B. Oliveira, and L. B. Canto. 2011. Changes in activation energy and kinetics mechanism during eva crosslinking. Polymer Testing 30 (6):616–24. doi:10.1016/j.polymertesting.2011.05.001.
  • Byström, A., X. Cheng, U. Wickström, and M. Veljkovic. 2012. Full-scale experimental and numerical studies on compartment fire under low ambient temperature. Building and Environment 51 (C):255–62. doi:10.1016/j.buildenv.2011.11.010.
  • Chen, C. J., W. D. Hsieh, W. C. Hu, C. M. Lai, and T. H. Lin. 2010. Experimental investigation and numerical simulation of a furnished office fire. Building and Environment 45 (12):2735–42. doi:10.1016/j.buildenv.2010.06.003.
  • Chen, T. B. Y., A. C. Y. Yuen, C. Wang, G. H. Yeoh, V. Timchenko, S. C. P. Cheung, Q. N. Chan, and W. Yanga. 2018. Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. International Journal of Heat and Mass Transfer 125 (2018):310–22. doi:10.1016/j.ijheatmasstransfer.2018.04.093.
  • Chorlton, B., and J. Gales. 2019. Fire performance of cultural heritage and contemporary timbers. Engineering Structures 201 (2019):109739. doi:10.1016/j.engstruct.2019.109739.
  • Chorlton, B., and J. Gales. 2020. Fire performance of heritage and contemporary timber encapsulation materials. Journal of Building Engineering 29 (2020):101181. doi:10.1016/j.jobe.2020.101181.
  • Chow, C. L., and W. K. Chow. 2010. Heat release rate of accidental fire in a supertall building residential flat. Building and Environment 45 (7):1632–40. doi:10.1016/j.buildenv.2010.01.010.
  • Cordero, T., F. García, and J. J. Rodríguez. 1989. A kinetics study of holm oak wood pyrolysis from dynamic and isothermal TG experiments. Therm-ochimica Acta 149:225–37. doi:10.1016/0040-6031(89)85284-0.
  • Dong, Q., F. You, and S.-Q. Hu. 2014. Investigation of fire protection status for Nanjing representative historical buildings and future management measures. Procedia Engineering 71:377–84. doi:10.1016/j.proeng.2014.04.054.
  • Durak, S., Y. Erbil, and N. Akıncıtürk. 2011. Sustainability of an architectural heritage site in Turkey: Fire risk assessment in Misi village. International Journal of Architectural Heritag 5:334–48. doi:10.1080/1558305100.
  • Emberley, R., C. G. Putynska, A. Bolanos, A. Lucherini, A. Solarte, D. Soriguer, M. G. Gonzalez, K. Humphreys, J. P. Hidalgo, C. Maluk, et al. 2017. Description of small and large-scale cross laminated timber fire tests. Fire Safety Journal 91:327–35. doi:10.1016/jfiresaf.2017.03.024.
  • Fan, W.-C., J.-H. Sun, S.-X. Lu, Z.-L. Yang, G.-X. Liao, H.-Y. Yuan, H. Yuan, Y. Bin, T.-Z. Hu, and Z.-B. Fang. 2014. Fire risk assessment methodology. Beijing: Science Press.
  • Gašparovič, L., J. Labovský, J. Markoš, and L. Jelemenský. 2012. Calculation of kinetics parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chemical & Biochemical Engineering Quarterly 26 (1):102–14. doi:10.1007/978-94-011-7352-0_21.
  • GB 2677.1-1993. 2004. Fibrous raw material of sampling for analysis.
  • Hadjisophocleous, G., and Q. Jia. 2009. Comparison of FDS prediction of smoke movement in a 10-storey building with experimental data. Carleton University, Ottawa, ON, Canada. Journal of Fire Technology 45 (2):163–77. doi:10.1007/s10694-008-0075-3.
  • Hao, C., and G. V. Hadjisophocleous. 2011. Dynamic modeling of fire spread in building. Fire Safety Journal 46 (4):211–24. doi:10.1016/j.firesaf.2011.02.003.
  • Huang, D.-M., C.-M. Xu, L.-M. Li, Y. Li, H.-P. Zhang, H. Yang, and L. Shi. 2011. Recent progresses in research of fire protection on historic buildings. Journal of Applied Fire Science 19 (1):63–81. doi:10.2190/AF.19.1.d.
  • Ibrahim, M. N., K. Abdul-Hamid, M. S. Ibrahim, A. Mohd-Din, R. M. Yunus, and M. R. Yahya. 2011. The development of fire risk assessment method for heritage building. Procedia Engineering 20:317–24. doi:10.1016/j.proeng.2011.11.172.
  • Li, H.-Q., Y. Yu, and X. Yu. 2012. On fire protection problems and its countermeasures about chinese ancient architecture. Applied Mechanics and Materials 204 (208):3365–68. d o i:1 0.4 028/w w w.scientific.net/AMM.204-208.3365.
  • Lowden, L. A., and T. R. Hull. 2013. Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews 2 (4):1–19. doi:10.1186/2193-0414-2-4.
  • Lu, W.-L., and J.-X. Cheng. 2012. Numerical simulation analysis of fire in ancient building burning temple. Fire Science and Technology 04:290–93. doi:10.3969/j.1009-0029.2011.04.006.
  • Matheus, P., A. J. Zattera, and R. M. C. Santana. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology 126:7–12. doi:10.1016/j.biortech.2012.08.133.
  • Matsushima, D., and T. Takaya. 2017. Fire spreading simulation of a group of wooden houses. Reports of the Information and Computer Science Center (45): 16-42. in Japanese.
  • McGrattan, K. B., S. Hostikka, J. E. Floyd, H. R. Baum, and R. G. Rehm. 2007. Fire dynamics simulator (version 5), technical reference guide. Gaithersburg, Maryland: National Institute of Standards and Technology.
  • Meng, Q.-X., G.-Q. Zhu, -M.-M. Yu, and R.-L. Pan. 2018. The effect of thickness on plywood vertical fire spread. Procedia Engineering 211:555–64. doi:10.1016/j.proeng.2017.12.048.
  • Mohomane, S. M., T. E. Motaung, and N. Revaprasadu. 2017. Thermal degradation kinetics of sugarcane bagasse and soft wood cellulose. Materials 10 (11):1246. doi:10.3390/ma10111246.
  • Neto, J. T., and T. M. Ferreira. 2020. Assessing and mitigating vulnerability and fire risk in historic centres: A cost-benefit analysis. Journal of Cultural Heritage 45 (2020):279–90. doi:10.1016/j.culher.2020.04.003.
  • Östman, B., D. Brandon, and H. Frantzich. 2017. Fire safety engineering in timber buildings. Fire Safety Journal 91:11–20. doi:10.1016/j.firesaf.2017.05.002.
  • Östman, B., and L. Tsantaridis. 2016. Durability of the reaction to fire performance for fire retardant treated (FRT) wood products in exterior applications-A ten years report. MATEC Web of Conferences 46:05005. Lund (Sweden). doi:10.1051/matecconf/20164605005.
  • Poletto, M., A. J. Zattera, and R. M. C. Santana. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology 126:7–12. doi:10.1016/j.biortech.2012.08.133.
  • Regueira, R., and M. Guaita. 2018. Numerical simulation of the fire behaviour of timber dovetail connections. Fire Safety Journal 96:1–12. doi:10.1016/j.firesaf.2017.12.005.
  • Richter, F., and G. Rein. 2020. A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale. Combustion and Flame 216:316–25. doi:10.1016/j.combustflame.2020.02.029.
  • Sanchez-Silva, L., D. López-González, J. Villaseñor, P. Sánchez, and J. L. Valverde. 2012. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology 109 (none):163–72. doi:10.1016/j.biortech.2012.01.001.
  • Schmid, J., M. Klippel, A. Just, and A. Frangi. 2014. Review and analysis of fire resistance tests of timber members in bending, tension and compression with respect to the reduced cross-section method. Fire Safety Journal 68:81–99. doi:10.1016/j.firesaf.2014.05.006.
  • Sun, R. Y., M. A. Jenkins, S. K. Krueger, W. Mell, and J. J. Charney. 2011. An evaluation of fire-plume properties simulated with the fire dynamics simulator (FDS) and the Clark coupled wildfire model. Canadian Journal of Forest Research 36 (11):2894–908. doi:10.1139/x06-138.
  • Tapasvi, D., R. Khalil, G. Várhegyi, K.-Q. Tran, M. Grønli, and Ø. Skreiberg. 2013. Thermal decomposition kinetics of woods with an emphasis on torrefaction. Energy & Fuels 27 (10):6134–45. doi:10.1021/ef4016075.
  • Ten Provisions on Fire Safety Management of Cultural Relics. 2015. The State Administration of Cultural Heritage and the Ministry of Public Security issued the Ten Provisions on Fire Safety Management of Cultural Relics Buildings, 2015. Fire Industry 01:46.
  • Tian, D.-H., X.-S. Wu, Z.-G. Song, and H.-Y. Wang. 2016. Reverse analysis for fire pyrolysis parameters of timber buildings based on response surface method. Procedia Engineering 135:19–24. doi:10.1016/j.proeng.2016.01.073.
  • Tung, S. F., H.-C. Su, C.-T. Tzeng, and C.-M. Lai. 2018. Experimental and numerical investigation of a room fire in a wooden-frame historical building. International Journal of Architectural Heritage. doi:10.1080/15583058.2018.1510999.
  • Wang, H., N. Jia, and Y. Xin. 2017. Thermogravimetric analysis experiment and kinetics analysis of wood. Fire Science and Technology 36 (9):1209–12. doi:10.3969/j.1009-0029.2017.09.009.
  • Watts, J. M., and R. E. Solomon. 2002. Fire safety code for historic structures. Fire Technology 38:4. doi:10.1023/A:1020110214065.
  • Weinschenk, C. G., J. K. Overholt, and D. Madrzykowski. 2016. Simulation of an attic fire in a wood frame residential structure, Chicago, IL. Fire Technology 52 (6):1629–58. doi:10.1007/s10694-015-0533-7.
  • Wen, L.-H., S.-R. Wang, H.-Y. Shi, M.-X. Fang, Z.-Y. Luo, and K.-F. Chen. 2004. Study on pyrolysis characteristics and kinetics of wood. Journal of Fire Science and Technology 23 (1):2–5. doi:10.3969/j.1009-0029.2004.01.002.
  • Yan, H.-P., -X.-X. Lu, and T.-F. Qin. 1997. Study on chemical kinetics of wood pyrolysis by thermogravimetric analysis. Chinese Journal of Wood Industry 11 (2):14–18.
  • Zheng, Y. A. N., and B. Liu. 2013. Chinese historic buildings fire safety and countermeasure. Procedia Engineering 52:23–26. doi:10.1016/j.proeng.2013.02.099.
  • Zhou, B., H. Yoshioka, T. Noguchi, X. Wang, and C. C. Lam. 2018. Experimental study on fire performance of weathered cedar. International Journal of Architectural Heritage. doi:10.1080/15583058.2018.1501115.
  • Zhou, B., X.-M. Zhou, and M.-Y. Chao. 2012. Fire protection of historic buildings: A case study of group-living yard in Tianjin. Journal of Cultural Heritage 13(4):389–96. culher.2011.12.007. d o i:1 0.1 016/j.
  • Zhu, S., R. Huo, L.-H. Hu, and D. Yang. 2008. Influence of meshing and calculation of regional extension on FDS simulation results. Journal of Safety and Environment 8 (4):141–45. doi:10.3969/j.1009-6094.2008.04.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.