Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 6
197
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Simulating the Nonlinear Mechanical Behavior of FRCM-strengthened Irregular Stone Masonry Walls

, &
Pages 938-954 | Received 08 Jun 2021, Published online: 14 Nov 2021

References

  • Abbass, A., P. B. Lourenço, and D. V. Oliveira. 2020. The use of natural fibers in repairing and strengthening of cultural heritage buildings. Materials Today: Proceedings 31:S321–S328.
  • ACI549.4R, Guide to design and construction of externally bonded fabric-reinforced cementitious matrix (frcm) systems for repair and strengthening concrete and masonry structures, Technical Document. .
  • Almeida, J. A., E. B. Pereira, and J. A. Barros. 2015. Assessment of overlay masonry strengthening system under in-plane monotonic and cyclic loading using the diagonal tensile test. Construction and Building Materials 94:851–65. doi:10.1016/j.conbuildmat.2015.07.040.
  • Alnaggar, M., G. Di Luzio, and G. Cusatis. 2017. Modeling time-dependent behavior of concrete affected by alkali silica reaction in variable environmental conditions. Materials 10 (5):471. doi:10.3390/ma10050471.
  • Aloisio, A., M. Fragiacomo, and G. D’Alò . 2020. The 18th-century baraccato of l’aquila. International Journal of Architectural Heritage 14 (6): 870–884. doi:10.1080/15583058.2019.1570390.
  • Aloisio, A., M. Fragiacomo, and G. D’Alò . 2021. Traditional tf masonries in the city centre of l’aquila–the baraccato aquilano. International Journal of Architectural Heritage 15 (3): 437–454. doi:10.1080/15583058.2019.1624874.
  • Angiolilli, M., and A. Gregori. 2020. Triplet test on rubble stone masonry: Numerical assessment of the shear mechanical parameters. Buildings 10:49. doi:10.3390/buildings10030049.
  • Angiolilli, M., A. Gregori, M. Pathirage, and G. Cusatis. 2020. Fiber reinforced cementitious matrix (frcm) for strengthening historical stone masonry structures: Experiments and computations. Engineering Structures 224:111102. doi:10.1016/j.engstruct.2020.111102.
  • Angiolilli, M., A. Gregori, and M. Vailati. 2020. Lime-based mortar reinforced by randomly oriented short fibers for the retrofitting of the historical masonry structure. Materials 13 (16):3462. doi:10.3390/ma13163462.
  • Angiolilli, M., A. Gregori, and S. Cattari. 2021. Performance of fiber reinforced mortar coating for irregular stone masonry: Experimental and analytical investigations. Construction and Building Materials 294:123508. doi:10.1016/j.conbuildmat.2021.123508.
  • Angiolilli, M., M. Pathirage, A. Gregori, and G. Cusatis. 2021b. Lattice discrete particle model for the simulation of irregular stone masonry. Journal of Structural Engineering 147 (9):04021123. doi:10.1061/(ASCE)ST.1943-541X.0003093.
  • Angiolilli, M., S. Lagomarsino, S. Cattari, and S. Degli Abbati. 2021a. Seismic fragility assessment of existing masonry buildings in aggregate. Engineering Structures 247:113218. doi:10.1016/j.engstruct.2021.113218.
  • ASTM. 2010. Standard e 519, standard test method for diagonal tension (shear) in masonry assemblages.
  • Augenti, N., and F. Parisi. 2010. Learning from construction failures due to the 2009 l’aquila. Italy, Earthquake, Journal of Performance of Constructed Facilities 24 (6):536–55. doi:10.1061/(ASCE)CF.1943-5509.0000122.
  • Babaeidarabad, S., D. Arboleda, G. Loreto, and A. Nanni. 2014. Shear strengthening of un-reinforced concrete masonry walls with fabric-reinforced-cementitious-matrix. Construction and Building Materials 65:243–53. doi:10.1016/j.conbuildmat.2014.04.116.
  • Babaeidarabad, S., F. De Caso, and A. Nanni. 2014. Urm walls strengthened with fabric-reinforced cementitious matrix composite subjected to diagonal compression. Journal of Composites for Construction 18 (2):04013045. doi:10.1061/(ASCE)CC.1943-5614.0000441.
  • Balsamo, A., I. Iovinella, and G. Morandini, Frg strengthening systems for masonry building, in: NZSEE Conference. Wellington, New Zealand, 2014.
  • Bazant, Z. P., and J. Planas. 1997. Fracture and size effect in concrete and other quasibrittle materials, Vol. 16. Boca Raton, Florida, USA: CRC press.
  • Bellini, A., A. Incerti, M. Bovo, and C. Mazzotti. 2018. Effectiveness of frcm reinforcement applied to masonry walls subject to axial force and out-of-plane loads evaluated by experimental and numerical studies. International Journal of Architectural Heritage 12 (3):376–94. doi:10.1080/15583058.2017.1323246.
  • Benedetti, A. 2019. In plane behaviour of masonry walls reinforced with mortar coatings and fibre meshes. International Journal of Architectural Heritage 13 (7):1029–41. doi:10.1080/15583058.2019.1618972.
  • Bertolesi, E., G. Milani, and C. Poggi. 2016. Simple holonomic homogenization model for the non-linear static analysis of in-plane loaded masonry walls strengthened with frcm composites. Composite Structures 158:291–307. doi:10.1016/j.compstruct.2016.09.027.
  • Borri, A., M. Corradi, G. Castori, and A. De Maria. 2015. A method for the analysis and classification of historic masonry. Bulletin of Earthquake Engineering 13 (9):2647–65. doi:10.1007/s10518-015-9731-4.
  • Bosiljkov, V., A. Page, and B. V. Bokan, Performance based studies of in-plane loaded unreinforced masonry walls.0000
  • Capanna, I., A. Aloisio, F. Di Fabio, and M. Fragiacomo. 2021. Sensitivity assessment of the seismic response of a masonry palace via non-linear static analysis: A case study in l’aquila (Italy). Infrastructures 6 (1):8. doi:10.3390/infrastructures6010008.
  • Carol, I., and Z. P. Bazant. 1997. Damage and plasticity in microplane theory. International Journal of Solids and Structures 34 (29):3807–35. doi:10.1016/S0020-7683(96)00238-7.
  • Carozzi, F. G., A. Bellini, T. D’Antino, G. de Felice, F. Focacci, Ł. Hojdys, L. Laghi, E. Lanoye, F. Micelli, M. Panizza, et al. 2017. Experimental investigation of tensile and bond properties of carbon-frcm composites for strengthening masonry elements. Composites Part B: Engineering 128:100–19. doi:10.1016/j.compositesb.2017.06.018.
  • Ceccato, C., J. Teng, and G. Cusatis. 2020. Numerical prediction of the ultimate condition of circular concrete columns confined with a fiber reinforced polymer jacket. Composite Structures 112103. doi:10.1016/j.compstruct.2020.112103.
  • Ceccato, C., M. Salviato, C. Pellegrino, and G. Cusatis. 2017. Simulation of concrete failure and fiber reinforced polymer fracture in confined columns with different cross sectional shape. International Journal of Solids and Structures 108:216–29. doi:10.1016/j.ijsolstr.2016.12.017.
  • CNR-DT215. 2018. Istruzioni per la progettazione, l’esecuzione ed il controllo di interventi di consolidamento statico mediante l’utilizzo di compositi fibrorinforzati a matrice inorganica. In italian. Italian Council of Research (CNR). Rome (Italy): Technical document.
  • Corradi, M., A. Borri, G. Castori, and R. Sisti. 2014. Shear strengthening of wall panels through jacketing with cement mortar reinforced by gfrp grids. Composites Part B: Eng 64:33–42.
  • Cusatis, G., A. Mencarelli, D. Pelessone, and J. Baylot. 2011. Lattice discrete particle model (ldpm) for failure behavior of concrete. ii: Calibration and validation. Cement and Concrete Composites 33 (9):891–905. doi:10.1016/j.cemconcomp.2011.02.010.
  • Cusatis, G., D. Pelessone, and A. Mencarelli. 2011. Lattice discrete particle model (ldpm) for failure behavior of concrete. i: Theory. Cement and Concrete Composites 33 (9):881–90. doi:10.1016/j.cemconcomp.2011.02.011.
  • Cusatis, G., and X. Zhou. 2013. High-order microplane theory for quasi-brittle materials with multiple characteristic lengths. Journal of Engineering Mechanics 140 (7):04014046. doi:10.1061/(ASCE)EM.1943-7889.0000747.
  • Cusatis, G., Z. P. Bažant, and L. Cedolin. 2003a. Confinement-shear lattice model for concrete damage in tension and compression: Ii. computation and validation. Journal of Engineering Mechanics 129 (12):1449–58. doi:10.1061/(ASCE)0733-9399(2003)129:12(1449).
  • Cusatis, G., Z. P. Bažant, and L. Cedolin. 2003b. Confinement-shear lattice model for concrete damage in tension and compression: I. theory. Journal of Engineering Mechanics 129 (12):1439–48. doi:10.1061/(ASCE)0733-9399(2003)129:12(1439).
  • D’Antino, T., F. G. Carozzi, and C. Poggi. 2019. Diagonal shear behavior of historic walls strengthened with composite reinforced mortar (crm). Materials and Structures 52 (6):114. doi:10.1617/s11527-019-1414-1.
  • D’Ayala, D. F., and S. Paganoni. 2011. Assessment and analysis of damage in l’aquila historic city centre after 6th April 2009. Bulletin of Earthquake Engineering 9 (1):81–104. doi:10.1007/s10518-010-9224-4.
  • Del Zoppo, M., M. Di Ludovico, A. Balsamo, and A. Prota. 2020. Diagonal compression testing of masonry panels with irregular texture strengthened with inorganic composites. Materials and Structures 53 (4):1–17. doi:10.1617/s11527-020-01539-z.
  • Del Zoppo, M., M. Di Ludovico, and A. Prota. 2019. Analysis of frcm and crm parameters for the in-plane shear strengthening of different urm types. Composites Part B: Engineering 171:20–33. doi:10.1016/j.compositesb.2019.04.020.
  • Di Napoli, B., M. P. Ciocci, T. Celano, L. U. Argiento, C. Casapulla, and P. B. Lourenço, Seismic behaviour of a mixed iron-masonry church: Santa maria maddalena, ischia, Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics (2020) 1–38.
  • EC6. 2004. Eurocode 6: Design of masonry structures—part 1-1: General rules for reinforced and unreinforced masonry structures. Brussels, Belgium: de Normalisation, Comité Européen and others.
  • Faella, C., E. Martinelli, E. Nigro, and S. Paciello. 2010. Shear capacity of masonry walls externally strengthened by a cement-based composite material: An experimental campaign. Construction and Building Materials 24 (1):84–93. doi:10.1016/j.conbuildmat.2009.08.019.
  • Ferretti, F., A. Incerti, A. R. Tilocca, and C. Mazzotti. 2019. In-plane shear behavior of stone masonry panels strengthened through grout injection and fiber reinforced cementitious matrices. International Journal of Architectural Heritage 15 (10): 1375–1394. doi:10.1080/15583058.2019.1675803.
  • Ferretti, F., and C. Mazzotti. 2021. Frcm/srg strengthened masonry in diagonal compression: Experimental results and analytical approach proposal. Construction and Building Materials 283:122766. doi:10.1016/j.conbuildmat.2021.122766.
  • Gattesco, N., C. Amadio, and C. Bedon. 2015. Experimental and numerical study on the shear behavior of stone masonry walls strengthened with gfrp reinforced mortar coating and steel-cord reinforced repointing. Engineering Structures 90:143–57. doi:10.1016/j.engstruct.2015.02.024.
  • Gattesco, N., and I. Boem. 2015. Experimental and analytical study to evaluate the effectiveness of an in-plane reinforcement for masonry walls using gfrp meshes. Construction and Building Materials 88:94–104. doi:10.1016/j.conbuildmat.2015.04.014.
  • Gattesco, N., I. Boem, and A. Dudine. 2015. Diagonal compression tests on masonry walls strengthened with a gfrp mesh reinforced mortar coating. Bulletin of Earthquake Engineering 13 (6):1703–26. doi:10.1007/s10518-014-9684-z.
  • Grünthal, G. 1998. European macroseismic scale 1998, Tech. rep. Luxembourg: European Seismological Commission (ESC.
  • ICOMOS, Recommendations for the analysis, conservation and structural restoration of architectural heritage, Technical Document. 2005.
  • Ismail, N., and J. M. Ingham. 2014. Polymer textiles as a retrofit material for masonry walls. Proceedings of the Institution of Civil Engineers-Structures and Buildings 167 (1):15–25. doi:10.1680/stbu.11.00084.
  • Karnopp, D., 1985. Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control. 107(1):100–03. doi:10.1115/1.3140698.
  • Kouris, L. A. S., and T. C. Triantafillou. 2018. State-of-the-art on strengthening of masonry structures with textile reinforced mortar (trm). Construction and Building Materials 188 1221–33. doi:10.1016/j.conbuildmat.2018.08.039.
  • Lagomarsino, S., and S. Cattari. 2015. Perpetuate guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bulletin of Earthquake Engineering 13 (1):13–47. doi:10.1007/s10518-014-9674-1.
  • Lagomarsino, S. 2006. On the vulnerability assessment of monumental buildings. Bulletin of Earthquake Engineering 4 (4):445–63. doi:10.1007/s10518-006-9025-y.
  • Lourenço, P. J. B. B. 1996. Computational strategies for masonry structures.
  • Mercuri, M., M. Pathirage, A. Gregori, and G. Cusatis. 2020. Computational modeling of the out-of-plane behavior of unreinforced irregular masonry. Engineering Structures 223:111181. doi:10.1016/j.engstruct.2020.111181.
  • MIT2019, Circolare n. 7 del 21 gennaio 2019, istruzioni per l’applicazione dell’ aggiornamento delle “norme tecniche per le costruzioni” di cui al dm 17 gennaio 2018, in italian, Technical document (2019)
  • Morandi, P., L. Albanesi, F. Graziotti, T. L. Piani, A. Penna, and G. Magenes. 2018. Development of a dataset on the in-plane experimental response of urm piers with bricks and blocks. Construction and Building Materials 190:593–611. doi:10.1016/j.conbuildmat.2018.09.070.
  • NTC18, Norme tecniche per le costruzioni in zone sismiche, in italian D. D. M. Ministerial. Rome (Italy).2018
  • Papanicolaou, C., T. Triantafillou, and M. Lekka. 2011. Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Construction and Building Materials 25 (2):504–14. doi:10.1016/j.conbuildmat.2010.07.018.
  • Parisi, F., I. Iovinella, A. Balsamo, N. Augenti, and A. Prota. 2013. In-plane behaviour of tuff masonry strengthened with inorganic matrix–grid composites. Composites Part B: Engineering 45 (1):1657–66. doi:10.1016/j.compositesb.2012.09.068.
  • Pathirage, M., D. Bentz, G. Di Luzio, E. Masoero, and G. Cusatis. 2019. The onix model: A parameter-free multiscale framework for the prediction of self-desiccation in concrete. Cement and Concrete Composites 103:36–48. doi:10.1016/j.cemconcomp.2019.04.011.
  • Penna, A., P. Morandi, M. Rota, C. F. Manzini, F. Da Porto, and G. Magenes. 2014. Performance of masonry buildings during the emilia 2012 earthquake. Bulletin of Earthquake Engineering 12 (5):2255–73. doi:10.1007/s10518-013-9496-6.
  • Prota, A., G. Marcari, G. Fabbrocino, G. Manfredi, and C. Aldea. 2006. Experimental in-plane behavior of tuff masonry strengthened with cementitious matrix–grid composites. Journal of Composites for Construction 10 (3):223–33. doi:10.1061/(ASCE)1090-0268(2006)10:3(223).
  • Scacco, J., B. Ghiassi, G. Milani, and P. B. Lourenço. 2020. A fast modeling approach for numerical analysis of unreinforced and frcm reinforced masonry walls under out-of-plane loading. Composites Part B: Engineering 180:107553. doi:10.1016/j.compositesb.2019.107553.
  • Sorrentino, L., S. Cattari, F. Da Porto, G. Magenes, and A. Penna. 2019. Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bulletin of Earthquake Engineering 17 (10):5583–607. doi:10.1007/s10518-018-0370-4.
  • Valluzzi, M., F. Da Porto, and C. Modena. 2004. Behavior and modeling of strengthened three-leaf stone masonry walls. Materials and Structures 37 (3):184–92. doi:10.1007/BF02481618.
  • Vasconcelos, G., and P. Lourenço. 2009. Experimental characterization of stone masonry in shear and compression. Construction and Building Materials 23 (11):3337–45. doi:10.1016/j.conbuildmat.2009.06.045.
  • Zuccaro, G., M. Della Bella, and F. Papa. 1999. Caratterizzazione tipologico strutturali a scala nazionale. In Proceedings of the 9th National Conference ANIDIS, L’ingegneria Sismica in Italia, 20–23. Italy: Torino.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.