Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 7
529
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural Fire Risk for Heritage Buildings by the Performance-Based Engineering Format

, &
Pages 1171-1194 | Received 12 May 2021, Accepted 20 Dec 2021, Published online: 09 Feb 2022

References

  • Audebert, M., D. Dhima, M. Taazount, and A. Bouchaïr. 2011. Numerical investigations on the thermo-mechanical behavior of steel-to-timber joints exposed to fire. Engineering Structures 33 (12):3257–68. doi:10.1016/j.engstruct.2011.08.021.
  • Augusti, G., and M. Ciampoli. 2008. Performance-Based Design in risk assessment and reduction. Probabilistic Engineering Mechanics 23 (4):496–508. doi:10.1016/j.probengmech.2008.01.007.
  • Bernardini, G. 2017. Fire safety of historical buildings. Traditional versus innovative “behavioural design” solutions by using wayfinding systems. Switzerland: Springer International Publishing.
  • Buchanan, A. H., ed. 2001. Fire engineering design guide. New Zeland: Centre for Advanced Engineering, University of Canterbury.
  • Buchanan, A. H., and A. K. Abu. 2017. Structural design for fire safety. Chichester, Uk: John Wiley & Sons.
  • Carattin, E., and V. Brannigan 2012. Controlled evacuation in historical and cultural structures: Requirements, limitations and the potential for evacuation models, Proceedings of the 5th International Symposium on Human Behavior in Fire, Interscience Communications Ltd., London, UK, pp. 447–59.
  • CFPA-E (confederation of fire protection associations in Europe), 2013. Guideline No 30: Managing fire safety in historical buildings. [ Online]. https://cfpa-e.eu/wp-content/uploads/files/guidelines/CFPA_E_Guideline_No_30_2013_F.pdf.
  • Duthin, D. 2014. Structural design for fire: A survey of building codes and standards. Gaithersburg, MD, Maryland: NIST Technical Note 1842. doi:10.6028/NIST.TN.1842.
  • Ferreira, T. M. 2019. Notre dame cathedral: Another case in a growing list of heritage landmarks destroyed by fire. Fire 2 (2):20. doi:10.3390/fire2020020.
  • Franchin, P., F. Petrini, and F. Mollaioli. 2018. Improved risk-targeted performance-based seismic design of reinforced concrete frame structures. Earthquake Engineering & Structural Dynamics 47 (1):49–67. doi:10.1002/eqe.2936.
  • Gernay, T., N. E. Khorasani, and M. Maria Garlock. 2016. Fire fragility curves for steel buildings in a community context: A methodology. Engineering Structures 113:259–76. doi:10.1016/j.engstruct.2016.01.043.
  • Gernay, T., R. V. Coile, N. E. Khorasani, and D. Hopkin. 2019. Efficient uncertainty quantification method applied to structural fire engineering computations. Engineering Structures 183:1–17. doi:10.1016/j.engstruct.2019.01.002.
  • Guanquan, C., W. Jinhui, and W. Qingsong. 2012. Time-dependent fire risk assessment for occupant evacuation in public assembly buildings. Structural Safety 38:22–31. doi:10.1016/j.strusafe.2012.02.001.
  • Günay, S., and K. M. Mosalam. 2013. PEER performance-based earthquake engineering methodology, revisited. Journal of Earthquake Engineering 17 (6):829–58. doi:10.1080/13632469.2013.787377.
  • Guo, H., Y. Dong, and X. Gu. 2020. Durability assessment of reinforced concrete structures considering global warming: A performance-based engineering and experimental approach. Construction and Building Materials 233:117251. doi:10.1016/j.conbuildmat.2019.117251.
  • Hietaniemi, J. 2007. Probabilistic simulation of fire endurance of a wooden beam. Structural Safety 29 (4):322–36. doi:10.1016/j.strusafe.2006.07.016.
  • Huang, Y.-H. 2020. The use of parallel computing to accelerate fire simulations for cultural heritage buildings. Sustainability 12 (23):10005. doi:10.3390/su122310005.
  • Hurley, M. J., and E. R. Rosenbaum. 2015. Performance-Based Fire Safety Design. Boca Raton, FL: CRC Press.
  • Jingji, L., L. Hongwen, B. Zhou, X. Wang, and H. Zhang. 2020. Investigation and statistical analysis of fire loads of 83 historic buildings in Beijing. International Journal of Architectural Heritage 14 (3):471–82. doi:10.1080/15583058.2018.1550535.
  • Kerber, S. 2012. Analysis of changing residential fire dynamics and its implications on firefighter operational timeframes. Fire Technology 48 (4):865–91. doi:10.1007/s10694-011-0249-2.
  • Lange, D., S. Devaney, and A. Usmani. 2014. An application of the PEER performance-based earthquake engineering framework to structures in fire. Engineering Structures 66:100–15. doi:10.1016/j.engstruct.2014.01.052.
  • Li, J., H. Li, B. Zhou, X. Wang, and H. Zhang. 2020. Investigation and statistical analysis of fire loads of 83 historic buildings in Beijing. International Journal of Architectural Heritage 14: 3 (3):471–82. doi:10.1080/15583058.2018.1550535.
  • Maio, R., T. M. Ferreira, J. M. C. Estêvão, B. Pantò, I. Caliòe, and R. Vicente. 2020. Seismic performance-based assessment of urban cultural heritage assets through different macroelement approaches. Journal of Building Engineering 29:101083.
  • McGrattan, K., B. Klein, S. Hostikka, and J. Floyd. 2009. Fire research division building and fire laboratory in cooperation with building and transport: Fire dynamics simulator (version 5) – user guide. Washington: NIST: NIST Special Publication 1019 – 5.
  • Memari, M., and H. Mahmoud. 2018. Framework for a performance-based analysis of fires following earthquakes. Engineering Structures 171:794–805. doi:10.1016/j.engstruct.2018.05.099.
  • NFPA 914. 2001. National fire protection association, Code for fire protection of historic structures. Quincy, MA: National Fire Protection Association.
  • NFPA. 2017. National Fire Protection Association, NFPA 550: Guide to the Fire Safety Concepts Tree. [ Online] https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=550.
  • O’Reilly, G. J., and G. M. Calvi. 2019. Conceptual seismic design in performance‐basedearthquake engineering. Engineering & Structural Dynamics 48 (4):389–411. doi:10.1002/eqe.3141.
  • Pau, D., C. Duncan, and C. Fleischmann. 2019. Performance-based fire engineering design of a heritage building: McDougall house case study. Safety 5 (3):45. doi:10.3390/safety5030045.
  • Petrini, F., K. Gkoumas, C. Rossi, and F. Bontempi. 2020. Multi-Hazard assessment of bridges in case of hazard chain: State of Play and Application to Vehicle-Pier Collision Followed by Fire. Frontiers in Built Environment - Bridge Engineering 6. doi:10.3389/fbuil.2020.580854.
  • Pizarro, A., and E. Tubaldi. 2019. Quantification of modelling uncertainties in bridge scour risk assessment under multiple flood events. Geosciences 9 (10):445. doi:10.3390/geosciences9100445.
  • Ponticelli, L., M. Caciolai, and C. De Angelis. 2008. Resistenza al fuoco delle costruzioni. Milan, Italy: UTET. italian.
  • Quin, R., A. Zhou, C. L. Chow, and D. Lau. 2021. Structural performance and charring of loaded wood under fire. Engineering Structures 228:111491. doi:10.1016/j.engstruct.2020.111491.
  • Salvi, R. 2002. The Navier-Stokes Equations. Theory and Numerical Methods. London, UK: CRC Press.
  • Särdqvist, S., and G. Holmstedt. 2000. Correlation between firefighting operation and fire area: Analysis of statistics. Fire Technology 36 (2):109–29. doi:10.1023/A:1015450308130.
  • SFPE. 2000. The SFPE engineering guide to performance-based fire protection analysis and design of buildings. Quincy, MA: Society of Fire Protection Engineers and National Fire Protection Association.
  • SFPE. 2002. SFPE Handbook of Fire Protection Engineering. Quincy, MA: Society of Fire Protection Engineers and National Fire Protection Association.
  • Skelton, R. E. 2002. Structural system: A marriage of structural engineering and system science. Journal of Structural Control 9 (2):113–33. doi:10.1002/stc.8.
  • Sydenham, P. H. 2004. Systems approach to engineering design. Boston, US: Artech house.
  • Tesfamariam, S., and K. Goda. 2015. Seismic performance evaluation framework considering maximum and residual inter-story drift ratios: Application to non-code conforming reinforced concrete buildings in Victoria, BC, Canada. Frontiers of Built Environment 1:18. doi:10.3389/fbuil.2015.00018.
  • Thi, V. D., M. Khelifa, M. Oudjene, M. El Ganaoui, and Y. Rogaume. 2017. Finite element analysis of heat transfer through timber elements exposed to fire. Engineering Structures 143:11–21. DOI:10.1016/j.engstruct.2017.04.014.
  • Torero, J. L. 2019. Fire safety of historical buildings: Principles and methodological approach. International Journal of Architectural Heritage 13 (7):926–40. doi:10.1080/15583058.2019.1612484.
  • Tubaldi, E., L. Macorini, B. A. Izzuddin, C. Manes, and F. Laio. 2017. A framework for probabilistic assessment of clear-water scour around bridge piers. Structural Safety 69:11–22. doi:10.1016/j.strusafe.2017.07.001.
  • UNI EN 1995–1–2. 2005. Eurocode 5 – Design of wooden structures – Part 1–2: General Rules – Structural design against fire (CEN: Bruxelles).
  • Wang, Y., I. Burgess, F. Wald, and M. Gillie. 2013. Performance-Based Fire Engineering of Structures. Boca Raton, FL: CRC Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.