Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 9
300
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The Engineering Approach to Conservation of Massive Archaeological Structures in Seismic Areas: The Apollo Nymphaeum in Hierapolis of Phrygia

ORCID Icon, , , &
Pages 1590-1606 | Received 15 Nov 2021, Accepted 18 Mar 2022, Published online: 12 Apr 2022

References

  • Ambraseys, N. N. 2006. Earthquakes and Archaeology. Journal of Archaeological Science 33 (7):1008–16. doi:10.1016/j.jas.2005.11.006.
  • Aras, F., L. Krstevska, G. Altay, and L. Tashkov. 2011. Experimental and numerical modal analyses of a historical masonry palace. Construction and Building Materials 25 (1):81–91. doi:10.1016/j.conbuildmat.2010.06.054.
  • Autiero, F., G. De Martino, M. Di Ludovico, A. Mauro, and A. Prota. 2020. Multidrum stone columns at the Pompeii archaeological site: Analysis of geometrical properties and state of preservation. Heritage 3 (4):1069–82. doi:10.3390/heritage3040059.
  • Azevedo, J., G. Sincraian, and J. V. Lemos. 2000. Seismic behavior of blocky masonry structures. Earthquake Spectra 16 (2):337–65. h ttps://d oi.org/https://doi.org/1 0.1193/1.1586116.
  • Binda, L., A. Saisi, and C. Tiraboschi. 2000. Investigation procedures for the diagnosis of historic masonries. Construction and Building Materials 14 (4):199–233. doi:10.1016/S0950-0618(00)00018-0.
  • Brincker, R., C. Ventura, and P. Andersen. 2001. Damping estimation by frequency domain decomposition. In International Modal Analysis Conference IMAC 19. Kissimmee, FL, USA.
  • Bui, T. T., A. Limam, V. Sarhosis, and M. Hjiaj. 2017. Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Engineering Structures 136:277–94. doi:10.1016/j.engstruct.2017.01.020.
  • Building Seismic Safety Council (BSSC). 2001. NEHRP recommended provisions for seismic regulations for new buildings and other structures. part 1: Provisions. US. FEMA–368, Washington, D.C.
  • Campagna, L., and G. Scardozzi. 2013. Archeologia Delle Acque a Hierapolis Di Frigia: Tematiche Principali e Metodologie Integrate Di Ricerca. In L’Anatolie Des Peuples, Des Cités et Des Cultures (IIe Millénaire Av. J.-C. – Ve Siècle Ap. J.-C.). Colloque International de Besançon 26-27 November 2010, ed.H. Bru, and L. Guy, Approches Locales et Régionales, Collection de l’Institut Des Sciences et Techniques De, Vol. 2, Publications de l'Institut des Sciences et Techniques de l'Antiquité, France. 197–220.
  • Chiabrando, F., F. D’Andria, G. Sammartano, and A. Spanò. 2018. UAV photogrammetry for archaeological site survey. 3D models at the hierapolis in Phrygia (Turkey). Virtual Archaeology Review 9 (18):28. doi:10.4995/var.2018.5958.
  • Clementi, F., A. Pierdicca, A. Formisano, F. Catinari, and S. Lenci. 2017. Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: The case study of the podestà palace in montelupone (Italy). Journal of Civil Structural Health Monitoring 7 (5):703–17. doi:10.1007/s13349-017-0253-4.
  • Coulomb, C. A. 1776. Sur une application des regles maximis et minimis a quelques problems de statique, relatives a l’architecture. Acad. Sci. Paris Mem. Math. Phys 7:343–82.
  • Cundall, P. A. 1971. A computer model for simulating progressive, large scale movement in blocky rock systems. In Symposium of the International society for rock mechanics, Society for Rock Mechanics (ISRM), Nancy, France.
  • Cundall, P. A. 1988. Formulation of a three-dimensional distinct element model—part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 25 (3):107–16. doi:10.1016/0148-9062(88)92293-0.
  • D’Andria, F., M. P. Caggia, and T. Ismaelli. 2016. Hierapolis Di Frigia. Le Attività Delle Campagne Di Scavo e Restauro 2007-2011. Istanbul. http://www.thiasos.eu/about/
  • de Felice, G. 2011. Out-of-plane seismic capacity of masonry depending on wall section morphology. International Journal of Architectural Heritage 5 (4–5):466–82. doi:10.1080/15583058.2010.530339.
  • De Lorenzis, L., M. D. De, and J. Ochsendorf. 2007. Failure of masonry arches under impulse base motion Earthquake Engineering and Structural Dynamics . (June):2119–36. doi:10.1002/eqe.
  • DeJong, M. J. 2009. Seismic Assessment Strategies for Masonry Structures. PhD Thesis. Massachusetts Institute of Technology.
  • Dejong, M. J., G. Giardina, W. Plunkett, and J. A. Ochsendorf. 2015. Seismic design of a stone vault. In Society for Earthquake and Civil Engineering Dynamics Conference, Cambridge, United Kingdom.
  • Drei, A., and C. S. Oliveira. 2001. The seismic behaviour of the “Aqueduto Da Amoreira” in Elvas using distinct element modelling. In 3rd International Conference - Protection of Historical Constructions, Lisbon (Portugal), 903–11.
  • Elyamani, A., P. Roca, O. Caselles, and J. Clapes. 2017. Seismic safety assessment of historical structures using updated numerical models: The case of mallorca cathedral in Spain. Engineering Failure Analysis 74:54–79. doi:10.1016/j.engfailanal.2016.12.017.
  • Erdik, M., Y. A. Biro, T. Onur, K. Sesetyan, and G. Birgoren. 1999. Assessment of earthquake hazard in Turkey and Neighboring. Annals of Geophysics 42 (6). doi: 10.4401/ag-3773.
  • European Committee for Standardization. 2005. EN 1998-3 - eurocode 8: design of structures for earthquake resistance – Part 3. Assessment and Retrofitting of Buildings, Brussel (Belgium).
  • European Committee for Standardization. 2013. EN 1998-1 - eurocode 8: design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings, CEN, Brussel (Belgium).
  • Foti, D., M. Diaferio, N. I. Giannoccaro, and M. Mongelli. 2012. Ambient vibration testing, dynamic identification and model updating of a historic tower. NDT & E International 47 (April):88–95. doi:10.1016/j.ndteint.2011.11.009.
  • Gentile, C., and A. Saisi. 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials 21 (6):1311–21. doi:10.1016/j.conbuildmat.2006.01.007.
  • Giamundo, V., V. Sarhosis, G. P. Lignolo, Y. Sheng, and G. Manfredi. 2014. Evaluation of different computational modelling strategies for the analysis of low strength masonry structures. Engineering Structures 73:160–69. doi:10.1016/j.engstruct.2014.05.007.
  • Giordano, A., E. Mele, and A. De Luca. 2002. Modelling of historical masonry structures: Comparison of different approaches through a case study. Engineering Structures 24 (8):1057–69. doi:10.1016/S0141-0296(02)00033-0.
  • Gobbin, F., G. de Felice, and J. V. Lemos. 2020. A discrete element model for masonry vaults strengthened with externally bonded reinforcement. International Journal of Architectural Heritage 00 (1):1–14. doi:10.1080/15583058.2020.1743792.
  • Griffith, M. C., G. Magenes, G. Melis, and L. Picchi. 2003. Evaluation of out-of-plane stability of unreinforced masonry walls subjected to seismic excitation. Journal of Earthquake Engineering 7 (sup001):141–69. doi:10.1080/13632460309350476.
  • Hancock, P. L., and E. Altunel. 1997. Faulted archaeological relics at hierapolis (Pamukkale), Turkey. Journal of Geodynamics 24 (1–4):21–36. h ttps://doi.org/https://d oi.org/1 0.1016/S0264-37079700003-3.
  • Hart, R., P. A. Cundall, and J. Lemos. 1988. Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 25 (3):117–25. doi:10.1016/0148-9062(88)92294-2.
  • Heyman, J. 1966. The Stone Skeleton. International Journal of Solids and Structures 2 (2):249–56, IN1–4, 257–64, IN5–12, 265–79. doi:10.1016/0020-7683(66)90018-7.
  • Housner, G. W. 1963. The behavior of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America 53 (2):403–17. doi:10.1017/CBO9781107415324.004.
  • ICOMOS-ICAHM International Committee on Archaeological Heritage Management. 1990. Charter for the protection and management of the archaeological heritage. https://www.icomos.org/images/DOCUMENTS/Charters/arch_e.pdf
  • ICOMOS-ISCARSAH. 2003. Recommendations for the analysis, conservation, and structural restoration of architectural heritage. https://www.icomos.org/charters/structures_e.pdf
  • Inel, M., S. M. Senel, S. Toprak, and Y. Manav. 2008. Seismic risk assessment of buildings in urban areas: a case study for denizli, Turkey. Natural Hazards 46 (3):265–85. doi:10.1007/s11069-007-9187-1.
  • International Organization for Standardization. 2012. ISO 13822:2010-08 bases for design of structures - assessment of existing structures. bases for design of structures – assessment of existing structures. Vol. 13822. ISO Technical Committee: ISO/TC 98/SC, Switzerland.
  • Itasca Consulting Group Inc. 2013. 3DEC 5.0: 3-dimensional distinct element code, theory and background. Minneapolis, USA.
  • Kayabali, K., and M. Akin. 2003. seismic hazard map of Turkey using the deterministic approach. Engineering Geology 69 (1–2):127–37. doi:10.1016/S0013-7952(02)00272-7.
  • Kim, J., F. Lorenzoni, M. Salvalaggio, and M. R. Valluzzi. 2021. Seismic vulnerability assessment of free-standing massive masonry columns by the 3D discrete element method. Engineering Structures 246:113004. doi:10.1016/j.engstruct.2021.113004.
  • Lee, J. S., G. N. Pande, J. Middleton, and B. Kralj. 1996. Numerical modelling of brick masonry panels subject to lateral loadings. Computers and Structures Structures 61 (4):735–45. doi:10.1016/0045-7949(95)00361-4.
  • Lemos, J. V. 2007. Discrete element modeling of masonry structures. International Journal of Architectural Heritage 1 (2):190–213. doi:10.1080/15583050601176868.
  • Lemos, J. V., and A. Campos Costa. 2016. Simulation of shake table tests on out-of-plane masonry buildings. Part (V): discrete element approach. International Journal of Architectural Heritage 11 (1):1–8. doi:10.1080/15583058.2016.1237587.
  • Lemos, J. V., A. Campos Costa, and E. M. Bretas. 2011. Computational methods in earthquake engineering. In Computational methods in applied sciences, ed., M. Papadrakakis, M. Fragiadakis, and N. D. Lagaros. Computational Methods in Applied Sciences. Vol. 21. 221-235. Dordrecht: Springer Netherlands. doi:10.1007/978-94-007-0053-6.
  • Lorenzoni, F., M. Salvalaggio, M. R. Valluzzi, J. Boaga, and R. Deiana. 2020. A multidisciplinary approach for the assessment of the dynamic and seismic behaviour of archaeological structures in hierapolis of Phrygia, Turkey. In Proceedings of XI International Conference of Structural Dynamics - EURODYN 2020, Greece 23-26 November 2020, edited by M. Papadrakis, M. Fragiadakis, and C. Papadimitriou, 4340–48. Athens. 10.47964/1120.9355.21508
  • Lorenzoni F., Valluzzi M.R., Minello A., Salvalaggio M. and Modena C. 2017b. Calibration of the dynamic behaviour of incomplete structures in archeological sites: the case of Villa Diomede portico in Pompeii. Procedia Engineering 199: 3368–3373 https://doi.org/10.1016/j.proeng.2017.09.446. .
  • Lorenzoni, F., M. R. Valluzzi, and C. Modena. 2019. Seismic assessment and numerical modelling of the sarno baths, Pompeii. Journal of Cultural Heritage 40 (November):288–98. doi:10.1016/j.culher.2019.04.017.
  • Lorenzoni, F., M. R. Valluzzi, M. Salvalaggio, A. Minello, and C. Modena. 2017a. Operational Modal Analysis for the Characterization of Ancient Water Towers in Pompeii. Procedia Engineering 199:3374–79. doi:10.1016/j.proeng.2017.09.446.
  • Malomo, D., M. J. DeJong, and A. Penna. 2019. distinct element modelling of the in-plane cyclic response of URM walls subjected to shear-compression. Earthquake Engineering & Structural Dynamics 1–23. July 2018. doi:10.1002/eqe.3178.
  • Marson, C., G. Sammartano, A. Spanò, and M. R. Valluzzi. 2019. Lidar data analyses for assessing the conservation status of the so-called baths-church in hierapolis of Phrygia (TR). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W11 (May):823–30. doi:10.5194/isprs-archives-XLII-2-W11-823-2019.
  • Marson, C., S. Taffarel, F. da Porto, M. R. Valluzzi, C. Modena, M. Cohen, Y. Schaffer, and L. Sukhanov. 2016. The conservation of the government complex in caesarea maritima (IL). In structural analysis of historic construction: anamnesis, diagnosis, therapy, controls, ed. K. Van Balen, and E. Verstrynge, 970–77. The Netherlands: CRC Press/Balkema.
  • Mcinerney, J., and M. J. Dejong. 2015. Discrete element modeling of Groin vault displacement capacity. International Journal of Architectural Heritage. doi:10.1080/15583058.2014.923953.
  • Mendes, N. Alexandre A. Costa, Paulo B. Lourenço, Rita Bento, Katrin Beyer, Gianmarco de Felice, Matija Gams,Michael C. Griffith, Jason M. Ingham, Sergio Lagomarsino, José V. Lemos, Domenico Liberatore, Claudio Modena, Daniel V. Oliveira, Andrea Penna and Luigi Sorrentino . 2017. Methods and approaches for blind test predictions of out-of-plane behavior of masonry walls: A numerical comparative study. International Journal of Architectural Heritage 11 (1):59–71. doi:10.1080/15583058.2016.1238974.
  • Pietro Meriggi, Gianmarco de Felice, Stefano De Santis, Francesca Gobbin, Anna Mordanova and Bartolomeo Pantò. 2019. Distinct element modelling of masonry walls under out-of-plane seismic loading. International Journal of Architectural Heritage 13(7): 1110–23. doi:10.1080/15583058.2019.1615152
  • Ministero delle Infrastrutture e dei Trasporti. 2018. Decreto Ministeriale 17 Gennaio 2018. Norme Tecniche per le Costruzioni. Italy.
  • Ministero delle Infrastrutture e dei Trasporti. 2019. Circolare 21 Gennaio 2019 n.7 - Istruzioni per l’applicazione Dell’«Aggiornamento delle “Norme Tecniche per le Costruzioni”» di cui al Decreto Ministeriale 17 Gennaio 2018. Italy.
  • Ministry of Public Works and Settlement Government of Republic of Turkey. 2007. Specification for buildings to be built in seismic zones. https://iisee.kenken.go.jp/worldlist/53_Turkey/53_Turkey_Code.pdf
  • Mohr, O. 1900. Welche Umstände Bedingen Die Elastizitätsgrenze Und Den Bruch Eines Materials? Zeit Des Ver Deut Ing 44:1524–30.
  • Mordanova, A., and G. de Felice. 2020. Seismic assessment of archaeological Heritage using discrete element method. International Journal of Architectural Heritage 14 (3):345–57. doi:10.1080/15583058.2018.1543482.
  • Mosavi, A. A., D. Dickey, R. Seracino, and S. Rizkalla. 2012. Identifying damage locations under ambient vibrations utilizing vector autoregressive models and mahalanobis distances. Mechanical Systems and Signal Processing 26 (January):254–67. doi:10.1016/j.ymssp.2011.06.009.
  • Oliveira, D., G. Grecchi, J. McCall, E. Speer, and M. Tohidi. 2012. Seismic analysis of the roman temple of Évora, Portugal. In Proceeding of WCEE - World Conference Earthquake Engineering, Lisbon, Portugal.
  • ONSITEFORMASONRY On-site investigation techniques for the structural evaluation of historic masonry buildings. 2005. EC Project FP5 EESD, EVK4-CT-2001-00060.
  • Papantonopoulos, C., I. N. Psycharis, D. Y. Papastamatiou, J. V. Lemos, and H. P. Mouzakis. 2002. Numerical prediction of the earthquake response of classical columns using the distinct element method. Earthquake Engineering & Structural Dynamics 31 (9):1699–717. doi:10.1002/eqe.185.
  • Pappas, A., F. da Porto, and C. Modena. 2016. Seismic vulnerability assessment form for free-standing columns based on a simplified numerical analysis. International Journal of Architectural Heritage 10 (2–3):15583058. 2015. doi:10.1080/15583058.2015.1113336.
  • Park, C. B., R. D. Miller, and J. Xia. 1999. Multichannel analysis of surface waves. GEOPHYSICS 64 (3):800–08. doi:10.1190/1.1444590.
  • Peeters, B., and G. De Roeck. 1999. Reference-based stochastic subspace identification for output only modal analysis. Mechanical Systems and Signal Processing 13 (6):855–78. doi:10.1006/mssp.1999.1249.
  • Peña, F., F. Prieto, P. B. Lourenço, A. Campos Costa, and J. V. Lemos. 2007. On the dynamics of rocking motion of single rigid-block structures. Earthquake Engineering & Structural Dynamics 36 (15):2383–99. doi:10.1002/eqe.739.
  • Psycharis, I. N., A. E. Drougas, and M.-E. Dasiou. 2011. Seismic behaviour of the walls of the parthenon a numerical study. In Computational methods in earthquake engineering, ed. M. Papadrakakis, M. Fragiadakis, and N. D. Lagaros, 265–83. Dordrecht: Springer Netherlands. doi:10.1007/978-94-007-0053-6_12.
  • Psycharis, I. N., M. Fragiadakis, and I. Stefanou. 2013. Seismic reliability assessment of classical columns subjected to near-fault ground motions. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS 42 (June):2061–79. doi:10.1002/eqe.
  • Psycharis, I. N., J. V. Lemos, D. Y. Papastamatiou, C. Zambas, and C. Papantonopoulos. 2003. Numerical study of the seismic behaviour of a part of the parthenon pronaos. Earthquake Engineering & Structural Dynamics 32 (13):2063–84. doi:10.1002/eqe.315.
  • Psycharis, I. N., D. Y. Papastamatiou, and A. P. Alexandris. 2000. Parametric investigation of the stability of classical columns under harmonic and earthquake excitations. Earthquake Engineering & Structural Dynamics 29 (8):1093–109. doi:10.1002/1096-9845(200008)29:8<1093::AID-EQE953>3.0.CO;2-S.
  • Pulatsu, B., V. Sarhosis, E. M. Bretas, N. Nikitas, and P. B. Lourenço. 2017. Non-Linear static behaviour of ancient free-standing stone columns. Proceedings of the Institution of Civil Engineers - Structures and Buildings 170 (6):406–18. doi:10.1680/jstbu.16.00071.
  • Ramos, L. F., L. Marques, P. B. Lourenço, G. De Roeck, A. Campos-Costa, and J. Roque. 2010. Monitoring historical masonry structures with operational modal analysis: Two case studies. Mechanical Systems and Signal Processing 24 (5):1291–305. doi:10.1016/j.ymssp.2010.01.011.
  • Ricci, G., M. Secco, G. Artioli, F. Marzaioli, I. Passariello, and M. R. Valluzzi. 2020. The contribution of archaeometric analyses to the multi-disciplinary research in hierapolis of Phrygia, Turkey. In Proceedings IMEKO TC-4 MetroArchaeo 2020 - International Conference on Metrology for Archaeology and Cultural Heritage, October 22-24, Trento, Italy, 348–53.
  • Salvalaggio, M., J. Bonetto, M. Zampar, and M. R. Valluzzi. 2021. Numerical prediction of the seismic behavior of reassembled columns in ancient structures: An anastylosis model for the temple of apollo pythios in Gortyn (Crete). Heritage 4 (4):3421–41. doi:10.3390/heritage4040190.
  • Sarhosis, V., P. Asteris, T. Wang, W. Hu, and Y. Han. 2016. On the stability of colonnade structural systems under static and dynamic loading conditions. Bulletin of Earthquake Engineering 14 (4):1131–52. doi:10.1007/s10518-016-9881-z.
  • Saygili, Ö., and J. V. Lemos. 2020. Investigation of the structural dynamic behavior of the frontinus gate. Applied Sciences (Switzerland) 10 (17). doi:10.3390/app10175821.
  • SeismoSoft. 2016. SeismoArtif 2016. Pavia, Italy.
  • Semeraro, G. 2012. Fra Il Meandro e Il Lico. Archeologia e Storia in Un Paesaggio Anatolico. In Fra Il Meandro e Il Lico. Archeologia e Storia in Un Paesaggio Anatolico. Proceedings International Workshop, March 30, 2012, Rome (Italy). Scienze Dell’Antichità 20.2, edited by F. Guizzi, 11–29.
  • Spanò, A., F. Chiabrando, G. Sammartano, and L. Teppati Losè. 2018. Integrated imaging approaches supporting the excavation activities. multi-scale geospatial documentation in Hierapolis (TK). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42 (2):1075–82. doi:10.5194/isprs-archives-XLII-2-1075-2018.
  • Structural Vibration Solutions. 2006. ARTeMIS Extractor Pro. Denmark: Aalborg East.
  • Tóth, A. R., Z. Orbán, and K. Bagi. 2009. Discrete element analysis of a stone masonry arch. Mechanics Research Communications 36 (4):469–80. doi:10.1016/j.mechrescom.2009.01.001.
  • Ubertini, F., G. Comanducci, and N. Cavalagli. 2016. Vibration-based structural health monitoring of a historic bell-tower using output-only measurements and multivariate statistical analysis. Structural Health Monitoring 15 (4):438–57. doi:10.1177/1475921716643948.
  • Valluzzi, M. R., F. Lorenzoni, R. Deiana, S. Taffarel, and C. Modena. 2019a. Non-Destructive investigations for structural qualification of the sarno baths, Pompeii. Journal of Cultural Heritage 40 (November):280–87. doi:10.1016/j.culher.2019.04.015.
  • Valluzzi, M. R., C. Marson, S. Taffarel, M. Salvalaggio, R. Deiana, and J. Boaga. 2019b. Structural investigations and modelling of seismic behaviour on ruins in the monumental area of hierapolis of Phrygia. In Structural analysis of historical constructions, ed. R. Aguilar, D. Torrealva, S. Moreira, M. A. Pando, and L. F. Ramos, 1849–57. Cham: Springer International Publishing.
  • Yagiz, S. 2006. Overview on Geo-mechanical assessments of denizli travertines in Turkey. In Proceedings of 10th International Association of Engineering Geologists Congress, Engineering Geology for Tomorrow`s Cities, Paper No. 384. Nottingham, UK: The Geological Society of London. h ttps://d oi.org/1 0.1.1.626.9707.
  • Yagiz, S., and E. Akyol. 2005. Geomechanical assessment of travertines in antalya region, Turkey. In Proceedings of 1st international symposium on travertine, September 21-25, 2005, Denizli, Turkey, ed. M. Ozkul, S. Yagiz, and B. Jones, 235–39. Pammukkale (Turkey): Pamukkale University.
  • Young, M. P., A. E. Schultz, and J. V. Lemos. 2015. Seismic analysis of the panhellenic sanctuary of Nemea, Greece. In 12th North American Masonry Conference, Denver, Colorado, May 17–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.