Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 11
627
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental and Numerical Investigation of Unreinforced Masonry Walls with and without Opening

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1833-1854 | Received 21 Feb 2022, Accepted 09 May 2022, Published online: 14 Jun 2022

References

  • ABAQUS 6.14. Analysis User’s Manual. Simulia, Dassault Systèmes, 2014.
  • Abasi, A., R. Hassanli, T. Vincent, and A. Manalo. 2020. Influence of prism geometry on the compressive strength of concrete masonry. Construction and Building Materials 264:120182. doi:10.1016/j.conbuildmat.2020.120182.
  • Abdulla, K. F., L. S. Cunningham, and M. Gillie. 2017. Simulating masonry wall behaviour using a simplified micro-model approach. Engineering Structures 151:349–65. doi:10.1016/j.engstruct.2017.08.021.
  • Agnihotri, P., V. Singhal, and D. C. Rai. 2013. Effect of in-plane damage on out-of-plane strength of unreinforced masonry walls. Engineering Structures 57:1–11. doi:10.1016/j.engstruct.2013.09.004.
  • Akhaveissy, A. H., and G. Milani. 2013. Pushover analysis of large scale unreinforced masonry structures by means of a fully 2D non-linear model. Construction and Building Materials 41:276–95. doi:10.1016/j.conbuildmat.2012.12.006.
  • Alfano, G., and E. Sacco. 2006. Combining interface damage and friction in a cohesive-zone model. International Journal for Numerical Methods in Engineering 68 (5):542–82. doi:10.1002/nme.1728.
  • AlGohi, B. H., M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, and C. Demir. 2017. Plastic-damage modeling of unreinforced masonry walls (URM) subject to lateral loading. Arabian Journal for Science and Engineering 42 (9):4201–20. doi:10.1007/s13369-017-2626-8.
  • Angelillo, M., P. B. Lourenço, and G. Milani. 2014. Masonry behaviour and modelling. Mechanics of Masonry Structures 551:1–26. doi:10.1007/978-3-7091-1774-3_1.
  • Aref, A. J., and K. M. Dolatshahi. 2013. A three-dimensional cyclic meso-scale numerical procedure for simulation of unreinforced masonry structures. Computers and Structures 120:9–23. doi:10.1016/j.compstruc.2013.01.012.
  • ASTM C469/C469M. 2014. Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression. West Conshohocken, PA: ASTM International. doi:10.1520/C0469_C0469M-14E01.
  • ASTM C67/C67M-20. 2020. Standard test methods for sampling and testing brick and structural clay tile. West Conshohocken, PA: ASTM International. doi:10.1520/C0067_C0067M-20.
  • Attard, M. M., A. Nappi, and F. Tin-Loi. 2007. Modeling fracture in masonry. Journal of Structural Engineering 133 (10):1385–92. doi:10.1061/(ASCE)0733-9445(2007)133:10(1385).
  • Backes, H. P. 1985. Tensile strength of masonry. In Proceedings of the 7th international brick masonry conference, Melbourne, Australia, February, pp.779–90.
  • Barenblatt, G. I. 1962. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 7: 55–129.
  • Benzeggagh, M. L., and M. Kenane. 1996. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology 56 (4):439–49. doi:10.1016/0266-3538(96)00005-X.
  • Berto, L., A. Saetta, R. Scotta, and R. Vitaliani. 2002. An orthotropic damage model for masonry structures. International Journal for Numerical Methods in Engineering 55 (2):127–57. doi:10.1002/nme.495.
  • Bolhassani, M., A. A. Hamid, A. C. W. Lau, and F. L. Moon. 2015. Simplified micro modeling of partially grouted masonry assemblages. Construction and Building Materials 83:159–73. doi:10.1016/j.conbuildmat.2015.03.021.
  • Bolhassani, M., A. A. Hamid, and F. L. Moon. 2016. Enhancement of lateral in-plane capacity of partially grouted concrete masonry shear walls. Engineering Structures 108:59–76. doi:10.1016/j.engstruct.2015.11.017.
  • Castellazzi, G., A. M. D’Altri, S. de Miranda, A. Chiozzi, and A. Tralli. 2018. Numerical insights on the seismic behavior of a nonisolated historical masonry tower. Bulletin of Earthquake Engineering 16 (2):933–61. doi:10.1007/s10518-017-0231-6.
  • CEB-FIP Model Code 1990. 1993. International Federation for Structural Concrete Technical Report. London, UK: Thomas Telford.
  • CEB-FIP Model Code 2010. 2013. , International Federation for Structural Concrete Technical Reportx. Lausanne: Fédération Internationale du Béton (fib).
  • Chácara, C., N. Mendes, and P. B. Lourenço. 2017. Simulation of shake table tests on out-of-plane masonry buildings. Part (IV): Macro and micro FEM based approaches. International Journal of Architectural Heritage 11 (1):103–16. doi:10.1080/15583058.2016.1238972.
  • CSA S304.1-04. 2004. Design of masonry structures. Mississauga, Ontario, Canada: Canadian Standards Association
  • D’Altri, A. M., S. de Miranda, G. Castellazzi, and V. Sarhosis. 2018. A 3D detailed micro-model for the in-plane and out-of-plane numerical analysis of masonry panels. Computers and Structures 206:18–30. doi:10.1016/j.compstruc.2018.06.007.
  • D’Altri, A. M., V. Sarhosis, G. Milani, J. Rots, S. Cattari, S. Lagomarsino, E. Sacco, A. Tralli, G. Castellazzi, and S. de Miranda. 2020. Modeling strategies for the computational analysis of unreinforced masonry structures: Review and classification. Archives of Computational Methods in Engineering. doi:10.1007/s11831-019-09351-x.
  • Deng, M., and S. Yang. 2020. Experimental and numerical evaluation of Con Fi Ned masonry walls retrofitted with engineered cementitious composites. Engineering Structures 207 (December 2019):110249. doi:10.1016/j.engstruct.2020.110249.
  • Dolatshahi, K. M., and J. A. Amjad. 2011. Two-Dimensional computational framework of meso-scale rigid and line interface elements for masonry structures. Engineering Structures 33 (12):3657–67. doi:10.1016/j.engstruct.2011.07.030.
  • Doran, B., H. O. Koksal, S. Aktan, S. Ulukaya, D. Oktay, and N. Yuzer. 2017. In-plane shear behavior of traditional masonry walls. International Journal of Architectural Heritage 11 (2):278–91. doi:10.1080/15583058.2016.1207114.
  • Doran, B., N. Yuzer, S. Aktan, D. Oktay, and S. Ulukaya. 2020. Numerical modeling of traditional masonry walls strengthened with grout injection. International Journal of Architectural Heritage 14 (10):1517–32. doi:10.1080/15583058.2019.1618970.
  • Doran, B., S. Ulukaya, Z. Unsal Aslan, M. Karslioglu, and N. Yuzer. 2021. Experimental investigation of CFRP strengthened unreinforced masonry walls with openings. International Journal of Architectural Heritage 1–14. doi:10.1080/15583058.2021.1918286.
  • Drougkas, A., P. Roca, and C. Molins. 2016. Material characterization and micro-modeling of a historic brick masonry pillar. International Journal of Architectural Heritage 10 (7):887–902. doi:10.1080/15583058.2016.1157711.
  • Drysdale, R. G., A. H. Ahmad, and L. R. Baker. 1994. Masonry structures: Behaviour and design. Englewood Cliffs, New Jersey: Prentice-Hall.
  • Dugdale, D. S. 1960. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 8 (2):100–04. doi:10.1016/0022-5096(60)90013-2.
  • EN 1015-11. 2019. Methods of test for mortar for masonry–Part 11: Determination of flexural and compressive strength of hardened mortar. Brussels: European Committee for Standardization.
  • EN 1015-3. 1999. Methods of test for mortar for masonry–Part 3: Determination of consistence of fresh mortar (by flow table). Brussels: European Committee for Standardization.
  • EN 1996-1. 2006. Eurocode 6-Design of masonry structures. Part 1-1: General rules for buildings reinforced and unreinforced masonry. Brussels: CEN.
  • EN 771-1. 2011. Specification for masonry units – Part 1: Clay masonry units.
  • EN 772-1. 2011. Methods of test for masonry units – Part 1: Determination of compressive strength, p. 17.
  • EN-1015-2. 1999. Methods of test for mortar for masonry: Bulk sampling of mortars and preparation of test mortars. London: British Standards Institution.
  • FEMA306. 1998. Evaluation of earthquake damage concrete and masonry wall buildings, basic procedure manual. California: Applied Technology Council.
  • Gambarotta, L., and S. Lagomarsino. 1997. Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint model and its applications. Earthquake Engineering and Structural Dynamics 26 (4):423–39.
  • Ghiassi, B., M. Soltani, and A. A. Tasnimi. 2012. A simplified model for analysis of unreinforced masonry shear walls under combined axial, shear and flexural loading. Engineering Structures 42:396–409. doi:10.1016/j.engstruct.2012.05.002.
  • Kaushik, H. B., D. C. Rai, and S. K. Jain. 2007. Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of Materials in Civil Engineering 19 (9):728–39. doi:10.1061/(ASCE)0899-1561(2007)19:9(728).
  • Koksal, H. O., B. Doran, A. O. Kuruscu, and A. Kocak. 2016. Elastoplastic finite element analysis of masonry shear walls. KSCE Journal of Civil Engineering 20 (2):784–91. doi:10.1007/s12205-015-0393-1.
  • Kumar, N., R. Amirtham, and M. Pandey. 2014. Plasticity based approach for failure modelling of unreinforced masonry. Engineering Structures 80:40–52. doi:10.1016/j.engstruct.2014.08.021.
  • Lee, J., and G. L. Fenves. 1998. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics 124 (8):892–900. doi:10.1061/(ASCE)0733-9399(1998)124:8(892).
  • Lotfi, H. R., and P. B. Shing. 1994. Interface model applied to fracture of masonry structures. Journal of Structural Engineering 120 (1):63–80. doi:10.1061/(ASCE)0733-9445(1994)120:1(63).
  • Lourenço, P. B. 1996. Computational strategies for masonry structures. PhD Diss. Delft University, The Netherlands.
  • Lourenço, P. B., and J. G. Rots. 1997. Multisurface interface model for analysis of masonry structures. Journal of Engineering Mechanics 123 (7):660–68. doi:10.1061/(ASCE)0733-9399(1997)123:7(660).
  • Lourenço, P. B., R. De Borst, and J. G. Rots. 1997. A plane stress softening plasticity model for orthotropic materials. International Journal for Numerical Methods in Engineering 40 (21):4033–57. doi:10.1002/(SICI)1097-0207(19971115)40:21<4033::AID-NME248>3.0.CO;2-0.
  • Lourenço, P. B., J. Rots, and J. Blaauwendraad. 1998. Continuum model for masonry: Parameter estimation and validation. Journal of Structural Engineering 124 (6):642–52. doi:10.1061/(ASCE)0733-9445(1998)124:6(642).
  • Lubliner, J., J. Oliver, S. Oller, and E. Onate. 1989. A plastic-damage model. International Journal of Solids and Structures 25 (3):299–326. doi:10.1016/0020-7683(89)90050-4.
  • Masonry Standard Joint Committee (MSJC). 2002. Building code requirements for masonry structures. Detroit: American Concrete Institute, Structural Engineering Institute of the American Society of Civil Engineers, The Masonry Society. ACI 530-02/ASCE 5-02/TMS 402-2
  • Minaie, E., F. L. Moon, and A. A. Hamid. 2014. Nonlinear finite element modeling of reinforced masonry shear walls for bidirectional loading response. Finite Elements in Analysis and Design 84:44–53. doi:10.1016/j.finel.2014.02.001.
  • Morandi, P., L. Albanesi, F. Graziotti, T. Li Piani, A. Penna, and G. Magenes. 2018. Development of a dataset on the in-plane experimental response of URM piers with bricks and blocks. Construction and Building Materials 190:593–611. doi:10.1016/j.conbuildmat.2018.09.070.
  • Naciri, K., I. Aalil, A. Chaaba, and M. Al-Mukhtar. 2021. Detailed micromodeling and multiscale modeling of masonry under confined shear and compressive loading. Practice Periodical on Structural Design and Construction 26: 1–13 doi:10.1061/(ASCE)SC.1943-5576.0000538.
  • Page, A. W. 1978. Finite element model for masonry. ASCE J Struct Div 104 (8):1267–85.b. doi:10.1061/JSDEAG.0004969.
  • Page, A. W. 1981. Biaxial compressive strength of brick masonry. Proceedings of the Institution of Civil Engineers (London). Part 1 - Design & Construction 71 (pt 2):893–906. doi:10.1680/iicep.1981.1825.
  • Parisi, F., C. Balestrieri, and D. Asprone. 2016. Nonlinear micromechanical model for tuff stone masonry: Experimental validation and performance limit states. Construction and Building Materials 105:165–75. doi:10.1016/j.conbuildmat.2015.12.078.
  • Pelà, L., M. Cervera, and P. Roca. 2011. Continuum damage model for orthotropic materials: Application to masonry. Computer Methods in Applied Mechanics and Engineering 200 (9–12):917–30. doi:10.1016/j.cma.2010.11.010.
  • Pelà, L., M. Cervera, and P. Roca. 2013. An orthotropic damage model for the analysis of masonry structures. Construction and Building Materials 41:957–67. doi:10.1016/j.conbuildmat.2012.07.014.
  • Petracca, M., L. Pelà, R. Rossi, S. Zaghi, G. Camata, and E. Spacone. 2017. Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Construction and Building Materials 149:296–314. doi:10.1016/j.conbuildmat.2017.05.130.
  • Petry, S., and K. Beyer. 2014. Influence of boundary conditions and size effect on the drift capacity of URM walls. Engineering Structures 65:76–88. doi:10.1016/j.engstruct.2014.01.048.
  • Sacco, E., and J. Toti. 2010. Interface elements for the analysis of masonry structures. International Journal of Computational Methods in Engineering Science and Mechanics 11 (6):354–73. doi:10.1080/15502287.2010.516793.
  • Salsavilca, J., N. Tarque, J. Yacila, and G. Camata. 2020. Numerical analysis of bonding between masonry and steel reinforced grout using a plastic – damage model for lime – based mortar. Construction and Building Materials 262:120373. doi:10.1016/j.conbuildmat.2020.120373.
  • Scacco, J., G. Milani, and P. B. Lourenço. 2020. A micro-modeling approach for the prediction of term bond performance on curved masonry substrates. Composite Structures 113065. doi:10.1016/j.compstruct.2020.113065.
  • Thakur, A., K. Senthil, A. P. Singh, and M. A. Iqbal. 2020. Prediction of dynamic amplification factor on clay brick masonry assemblage. Structures 27:673–86. doi:10.1016/j.istruc.2020.06.009.
  • Valente, M., and G. Milani. 2019. Damage assessment and collapse investigation of three historical masonry palaces under seismic actions. Engineering Failure Analysis 98 (October 2018):10–37. doi:10.1016/j.engfailanal.2019.01.066.
  • van Der. Pluijm, R. 1993. Shear behaviour of bed joints, Proceedings of the 6th North American Masonry Conference, Philadelphia, USA, June 6-9, pp.125–36.
  • Zhang, S., D. Yang, Y. Sheng, S. W. Garrity, and L. Xu. 2017. Numerical modelling of frp-reinforced masonry walls under in-plane seismic loading. Construction and Building Materials 134:649–63. doi:10.1016/j.conbuildmat.2016.12.091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.