Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 11
413
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Multi-Scenario Analysis of Rockfall Hazard for a Historical Vaulted Masonry Building in Sumela Monastery

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1876-1904 | Received 06 Mar 2022, Accepted 16 Jun 2022, Published online: 09 Jul 2022

References

  • ABAQUS Analysis User’s Manual (2008), Version 6.8
  • Ağcakoca, E., and E. Bıyıklıoğlu. 2020. Experimentally and Numerically Investigating the Performances of Aramid Fiber-Reinforced Steel Beams Under Impact Loadings. Arabian Journal for Science and Engineering 45:8053–68. doi:10.1007/s13369-020-04608-1.
  • Ahmad, S., A. Elahi, H. Pervaiz, A. G. A. Rahman, and S. Barbhuiya. 2014. Experimental study of masonry wall exposed to blast loading. Materiales de Construcción 64 (313):e007–e007. doi:10.3989/mc.2014.01513.
  • Alemdag, S., H. T. Bostanci, and E. Gacener. 2022. GIS-based determination of potential instabilities and source rock areas on the Torul-Kürtün (Gümüşhane) motorway, rockfall, and protection structure analyses. Bulletin of Engineering Geology and the Environment 81 (1):1–23. doi:10.1007/s10064-021-02498-7.
  • Altunişik, A. C., A. F. Genç, M. Günaydin, S. Adanur, and F. Y. Okur. 2018a. Ambient vibration-based system identification of a Medieval Masonry Bastion for health assessment using nonlinear analyses. International Journal of Nonlinear Sciences and Numerical Simulation 19 (2–3):107–24. doi:10.1515/ijnsns-2017-0004.
  • Altunişik, A. C., A. F. Genç, M. Günaydin, F. Y. Okur, and O. Ş. Karahasan. 2018b. Dynamic response of a historical armory building using the finite element model validated by the ambient vibration test. Journal of Vibration and Control 24 (22):5472–84. 1077546318755559. doi:10.1177/1077546318755559.
  • Asad, M., T. Zahra, D. P. Thambiratnam, T. H. Chan, and Y. Zhuge. 2021. Assessing vibration induced damage in unreinforced masonry walls subject to vehicular impact–A numerical study. Engineering Structures 245:112843. doi:10.1016/j.engstruct.2021.112843.
  • Barton, M. R., and V. Choubey. 1977. The shear strength of rock and rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 13 (9):255–79. doi:10.1016/0148-9062(76)90003-6.
  • Basha, M., A. Wagih, A. Melaibari, G. Lubineau, A. M. Abdraboh, and M. A. Eltaher. 2022. Impact and post-impact response of lightweight CFRP/wood sandwich composites. Composite Structures 279:114766. doi:10.1016/j.compstruct.2021.114766.
  • Bayraktar, A., E. Hökelekli, F. M. Halifeoğlu, A. Mosallam, and H. Karadeniz. 2018. Vertical strong ground motion effects on seismic damage propagations of historical masonry rectangular minarets. Engineering Failure Analysis 91:115–28. doi:10.1016/j.engfailanal.2018.04.029.
  • Castellazzi, G., A. M. D’Altri, S. de Miranda, and F. Ubertini. 2017. An innovative numerical modeling strategy for the structural analysis of historical monumental buildings. Engineering Structures 132:229–48. doi:10.1016/j.engstruct.2016.11.032.
  • Chen, Y., S. J. Hou, K. K. Fu, X. Han, and L. Ye. 2017. Low-velocity impact response of composite sandwich structures: Modelling and experiment. Composite Structures 168:322–34. doi:10.1016/j.compstruct.2017.02.064.
  • Chen, Y., K. K. Fu, S. J. Hou, X. Han, and L. Ye. 2018. Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings. Compos. Part B Eng 142:159–70.
  • Conde, B., L. Díaz-Vilariño, S. Lagüela, and P. Arias. 2016. Structural analysis of Monforte de Lemos masonry arch bridge considering the influence of the geometry of the arches and fill material on the collapse load estimation. Construction and Building Materials 120:630–42. doi:10.1016/j.conbuildmat.2016.05.107.
  • Dassault Systemes SIMULIA Corp. 2017. Abaqus 2017.
  • Eyuboglu, Y., O. Bektaş, A. Seren, N. Maden, W. R. Jacoby, and R. Ve Özer. 2006. Three axial extensional deformation and formation of the Liassic Rift Basins in the Eastern Pontides (NE Turkey. Geologica Carpathica 57 (5):337–46.
  • Funari, M. F., L. C. Silva, E. Mousavian, and P. B. Lourenço. 2021. Real-time structural stability of domes through limit analysis: Application to st. Peter’s Dome. International Journal of Architectural Heritage 1–23. doi: 10.1080/15583058.2021.1992539
  • Funari, M. F., L. C. Silva, N. Savalle, and P. B. Lourenço. 2022. A concurrent micro/macro FE-model optimized with a limit analysis tool for the assessment of dry-joint masonry structures. International Journal for Multiscale Computational Engineering.
  • Google Earth. 2022. “Trabzon.” 41°12’47.35’N and 39°35’14.66’’E. Google Earth. Accessed in 07 October 2020.
  • Griffith, M., and G. Magenes. 2003. Evaluationofout-of-plane stability of unreinforced masonry walls subjected to seismic excitation. Journal of Earthquake Engineering 7 (sup001):141–69. doi:10.1080/13632460309350476.
  • Güven, İ. H. (1993) Doğu Pontitler’in 1/250.000 Ölçekli Kompilasyonu, M.T.A. Genel Müdürlüğü, Ankara (in Turkish)
  • Heng, P., M. Hjiaj, J. M. Battini, and A. Limam. 2016. A simplified model for nonlinear dynamic analysis of steel column subjected to impact. International Journal of Non-Linear Mechanics 86:37–54. doi:10.1016/j.ijnonlinmec.2016.07.005.
  • Husem, M., S. I. Cosgun, and H. Sesli. 2018. Finite element analysis of RC walls with different geometries under impact loading. Computers and Concrete 21 (5):583–92.
  • Hüsem, M., C. S.i, and H. Sesli. 2018. Finite element analysis of RC walls with different geometries under impact loading. COMPUTERS AND CONCRETE 21 (5):583–93.
  • Ivañez, I., and S. Sanchez-Saez. 2013. Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core. Composite Structures 106:716–23. doi:10.1016/j.compstruct.2013.07.025.
  • Ju, S. J., and H. G. Kwak. 2021. A FE model to evaluate the resisting capacity of RC beams and columns under blast loading based on PI diagram. International Journal of Impact Engineering 104113.
  • Lazer scan of the Sumela Monstry, D2. 2015. Tasarım Co. in Turkish.
  • Lee, J., and G. Fenves. 1998. Plastic-damage model for cyclic loading of concrete structure. Journal of Engineering Mechanics 124 (8):892–900. doi:10.1061/(ASCE)0733-9399(1998)124:8(892).
  • Li, C., N. Zhang, and J. Ruiz. 2019. Measurement of the basic friction angle of planar rock discontinuities with three rock cores. Bulletin of Engineering Geology and the Environment 78 (2):847–56. doi:10.1007/s10064-017-1045-0.
  • Lourenço, P. B. (1996) Computational strategies for masonry structures. Delft Netherland: PhD Thesis.
  • Lourenço, P. B. 2002. Computations on historic masonry structures. Progress in Structural Engineering and Materials 4 (3):301–19. doi:10.1002/pse.120.
  • Lublinear, J., J. Oliver, S. Oller, and E. Onate. 1989. A plastic-damage model for concrete. International Journal of Solids and Structures 25 (3):299–326. doi:10.1016/0020-7683(89)90050-4.
  • Luo, G., Y. Zhang, Y. Ren, Z. Guo, and S. Pan. 2021. Dynamic response analysis of submerged floating tunnel under impact-vehicle load action. Applied Mathematical Modelling 99:346–58. doi:10.1016/j.apm.2021.06.024.
  • Macorini, L., and B. A. Izzuddin. 2014. Nonlinear analysis of unreinforced masonry walls under blast loading using mesoscale partitioned modeling. Journal of Structural Engineering 140 (8):A4014002. doi:10.1061/(ASCE)ST.1943-541X.0000931.
  • Maraş, E., and M. Nasery (2021). Investigating the length, area and volume measurement accuracy in UAV-based oblique photogrammetry models produced with and without ground control points.
  • McGrath, A., and G. Doudak. 2021. Investigating the response of bolted timber connections subjected to blast loads. Engineering Structures 236:112112. doi:10.1016/j.engstruct.2021.112112.
  • Melikoglu, E. (2015), Sumela monastery slope safety protection report. Kuzeydağcılık Co., (in Turkish)
  • Metashape, A. Available online: www.agisoft.com ( accessed on 8 March 2021).
  • Mortazavi, M., and Y. Heo. 2018. Nonlinear dynamic response of steel materials and plain plate systems to impact loads: Review and validation. Engineering Structures 173:758–67. doi:10.1016/j.engstruct.2018.07.012.
  • Oliveira, D. V., P. B. Lourenço, and C. Lemos. 2010. Geometric issues and ultimate load capacity of masonry arch bridges from the northwest Iberian Peninsula, Eng. Structure 32:3955–65.
  • Parlin, N. J., W. G. Davids, E. Nagy, and T. Cummins. 2014. Dynamic response of lightweight wood-based flexible wall panels to blast and impulse loading. Construction and Building Materials 50:237–45. doi:10.1016/j.conbuildmat.2013.09.046.
  • Pourfalah, S., D. M. Cotsovos, B. Suryanto, and M. Moatamedi. 2018. Out-of-plane behaviour of masonry specimens strengthened with ECC under impact loading. Engineering Structures 173:1002–18. doi:10.1016/j.engstruct.2018.06.078.
  • Rafsanjani, S. H., P. B. Lourenço, and N. Peixinho. 2015. Implementation and validation of a strain rate dependent anisotropic continuum model for masonry. International Journal of Mechanical Sciences 104:24–43. doi:10.1016/j.ijmecsci.2015.10.001.
  • Large Scale Map and Map Information Production Regulation. Resmi Gazete, T. C. 2018. Büyük Ölçekli Harita ve Harita Bilgileri Üretim Yönetmeliği. Approved on (30)2018:11962. Ankara (in Turkish.
  • Rocscience Inc. 2019. RocFall version 7.0 – Statistical analysis of rockfalls. Toronto, Ontario, Canada. https://www.rocscience.com
  • Sharma, S., L. C. Silva, F. Graziotti, G. Magenes, and G. Milani. 2021. Modelling the experimental seismic out-of-plane two-way bending response of unreinforced periodic masonry panels using a non-linear discrete homogenized strategy. Engineering Structures 242:112524. doi:10.1016/j.engstruct.2021.112524.
  • Silva, L. C., P. B. Lourenço, and G. Milani. 2017. Rigid block and spring homogenized model (HRBSM) for masonry subjected to impact and blast loading. International Journal of Impact Engineering 109:14–28. doi:10.1016/j.ijimpeng.2017.05.012.
  • Temsah, Y., A. Jahami, and C. Aouad. 2021. Silos structural response to blast loading. Engineering Structures 243:112671. doi:10.1016/j.engstruct.2021.112671.
  • Toker, S., and A. Ünay. 2004. Mathematıcal modeling and finite element analysis of masonry arch bridges. Gazi University Journal Science 17 (2):24–25.
  • Turkish Ministry of Culture and Tourism. http://www.kulturvarliklari.gov.tr/TR-144048/sumela-manastirinin-ziyarete-kapatilmasi.html, (In Turkish), Accessed in 07 October 2020.
  • Turkish Ministry of Culture and Tourism. http://www.trabzonkulturturizm.gov.tr/TR-57780/tarihce.html, (In Turkish), Accessed in 07 October 2020.
  • Ulusay, R., and J. A. Hudson, ed. 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In ISRM Turkish national group, Ankara, 628.
  • Valente, M., and G. Milani. 2016. Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM, Constr. Construction and Building Materials 108:74–104. doi:10.1016/j.conbuildmat.2016.01.025.
  • Wang, Y., T. P. Sah, S. Liu, and X. Zhai. 2022. Experimental and numerical studies on novel stiffener-enhanced steel-concrete-steel sandwich panels subjected to impact loading. Journal of Building Engineering 45:103479. doi:10.1016/j.jobe.2021.103479.
  • Widmann, R., and R. Steiger (2009, August). Impact loaded structural timber elements made from Swiss grown Norway spruce. In Proceedings of CIB-W18 meeting (Vol. 42), Dübendorf, Switzerland.
  • Xiao, W., M. Andrae, M. Steyerer, and N. Gebbeken. 2021. Investigations of blast loads on a two-storeyed building with a gable roof: Full-scale experiments and numerical study. Journal of Building Engineering 43:103111. doi:10.1016/j.jobe.2021.103111.
  • Yamada, H., K. Tateyama, H. Sasaki, S. Naruke, H. Kishimoto, and M. Yoshimoto. 2018. Impact resistance to ballistic ejecta of wooden buildings and a simple reinforcement method using aramid fabric. Journal of Volcanology and Geothermal Research 359:37–46. doi:10.1016/j.jvolgeores.2018.06.014.
  • Yang, B., H. Wang, Y. Yang, S. B. Kang, X. H. Zhou, and L. Wang. 2018. Numerical study of rigid steel beam-column joints under impact loading. Journal of Constructional Steel Research 147:62–73. doi:10.1016/j.jcsr.2018.04.004.
  • Yastikli, N. 2007. Documentation of cultural heritage using digital photogrammetry and laser scanning. Journal of Cultural Heritage 8 (4):423–27. doi:10.1016/j.culher.2007.06.003.
  • Zangeneh Kamali, A. (2012). Shear strength of reinforced concrete beams subjected to blast loading: Non-linear dynamic analysis.
  • Zhan, T., Z. Wang, and J. Ning. 2015. Failure behaviors of reinforced concrete beams subjected to high impact loading. Engineering Failure Analysis 56:233–43. doi:10.1016/j.engfailanal.2015.02.006.
  • Zhao, L., Z. X. Yu, Y. P. Liu, J. W. He, S. L. Chan, and S. C. Zhao. 2020. Numerical simulation of responses of flexible rockfall barriers under impact loading at different positions. Journal of Constructional Steel Research 167:105953. doi:10.1016/j.jcsr.2020.105953.
  • Zhong, H., L. Lyu, Z. Yu, and C. Liu. 2021, October. Study on mechanical behavior of rockfall impacts on a shed slab based on experiment and SPH–FEM coupled method. In Structures, Vol. 33, 1283–98. Elsevier.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.