160
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Torsion–Shear Behaviour at Interlocking Joints: Calibration of Discrete Element-Deformable Models Using Experimental and Numerical Analyses

, &
Pages 212-229 | Received 23 Mar 2022, Accepted 06 Jul 2022, Published online: 19 Jul 2022

References

  • Bazant, P. Z., and J. Planas. 1997. Fracture and size effect in concrete and other quasibrittle materials. 1st ed. New York, USA: Routledge.
  • Casapulla, C., E. Mousavian, L. Argiento, C. Ceraldi, and K. Bagi. 2021a. Torsion-shear behaviour at the interfaces of rigid interlocking blocks in masonry assemblages: Experimental investigation and analytical approaches. Materials and Structures 54 (3):1–20. doi:10.1617/s11527-021-01721-x.
  • Casapulla, C., E. Mousavian, L. Argiento, and C. Ceraldi. 2021b. Experimental investigation on the torsion-shear behaviour at the interfaces of interlocking masonry block assemblages, in 12th International Conference on Structural Analysis of Historical Constructions, P. Roca, L. Pelà, and C. Molins, ed. Barcelona: CIMNE
  • Chen, S., and K. Bagi. 2020. Crosswise tensile resistance of masonry patterns due to contact friction. Proceedings of the Royal Society A 476 (2240). Article Number: 20200439.
  • Cholewicki, A. 1971. Loadbearing capacity and deformability of vertical joints in structural walls of large panel buildings. Building Science 6 (4):163–84. doi:10.1016/0007-3628(71)90009-0.
  • Cundall, P. A. 1971. A computer model for simulating progressive, large-scale movements in blocky rock systems. In Proceedings of the Symposium of the International Society for Rock Mechanics (ISRM), Vol. 1, Paper No. II–8, Nancy, France: ISRM.
  • Djumas, L., A. Molotnikov, G. P. Simon, and Y. Estrin. 2016. Enhanced mechanical performance of bio-inspired hybrid structures utilising topological interlocking geometry. Scientific Reports 6 (1):1–10. doi:10.1038/srep26706.
  • Feng, Y., T. Siegmund, E. Habtour, and J. Riddick. 2015. Impact mechanics of topologically interlocked material assemblies. International Journal of Impact Engineering 75:140–49. doi:10.1016/j.ijimpeng.2014.08.003.
  • Forgács, T., V. Sarhosis, and K. Bagi. 2018. Influence of construction method on the load bearing capacity of skew masonry arches. Engineering Structures 168:612–27. doi:10.1016/j.engstruct.2018.05.005.
  • Gonen, S., B. Pulatsu, S. Soyoz, and E. Erdogmus. 2021. Stochastic discontinuum analysis of unreinforced masonry walls: Lateral capacity and performance assessments. Engineering Structures 238:112175. doi:10.1016/j.engstruct.2021.112175.
  • Hicks, M. A. 1998. Adaptive mesh simulation of passive earth pressure failure. In Application of numerical methods to geotechnical problems, edited by E. Guazzelli, A. Soldati, W. A. Wall, A. De Simone, 493–502. Udine: Springer Nature.
  • ITASCA (2022) 3DEC version 5.2 online manual, pp. problem solving with 3dec 3-13. Mineapolis, US.
  • Javan, A. R., H. Seifi, X. Lin, and Y. M. Xie. 2020. Mechanical behaviour of composite structures made of topologically interlocking concrete bricks with soft interfaces. Materials & Design 186:108347. doi:10.1016/j.matdes.2019.108347.
  • Jean, M. 1999. The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering 177 (3–4):235–57. doi:10.1016/S0045-7825(98)00383-1.
  • Kaneko, Y., J. J. Connor, T. C. Triantafillou, and C. K. Leung. 1993. Fracture mechanics approach for failure of concrete shear key. I: Theory. Journal of Engineering Mechanics 119 (4):681–700. doi:10.1061/(ASCE)0733-9399(1993)119:4(681).
  • Kao, G. T. C., A. Iannuzzo, B. Thomaszewski, S. Coros, T. Van Mele, and P. Block. 2022. Coupled rigid-block analysis: Stability-aware design of complex discrete-element assemblies. Computer-Aided Design 146:103216. doi:10.1016/j.cad.2022.103216.
  • Koziara, T., and N. Bićanić. 2008. Semismooth Newton method for frictional contact between pseudo-rigid bodies. Computer Methods in Applied Mechanics and Engineering 197 (33–40):2763–77. doi:10.1016/j.cma.2008.01.006.
  • Laurenco, P. B., J. G. Rots, and J. Blaauwendraad. 1995. Two approaches for the analysis of masonry structures: Micro and macro-modeling. Heron 40 (4):313–40.
  • Lemos, J. V. 2007. Discrete element modeling of masonry structures. International Journal of Architectural Heritage 1 (2):190–213. doi:10.1080/15583050601176868.
  • Lengyel, G., and K. Bagi. 2015. Numerical analysis of the role of ribs in masonry crossvaults. Computers & Structures 158:42–60. doi:10.1016/j.compstruc.2015.05.032.
  • Lourenço, P. B., and J. G. Rots. 1997. Multisurface interface model for analysis of masonry structures. Journal of Engineering Mechanics 123 (7):660–68. doi:10.1061/(ASCE)0733-9399(1997)123:7(660).
  • Macorini, L., and B. A. Izzuddin. 2011. A non‐linear interface element for 3D mesoscale analysis of brick‐masonry structures. International Journal for Numerical Methods in Engineering 85 (12):1584–608. doi:10.1002/nme.3046.
  • Malomo, D., M. J. DeJong, and A. Penna. 2021a. Influence of bond pattern on the in-plane behavior of URM piers. International Journal of Architectural Heritage 15 (10):1492–511. doi:10.1080/15583058.2019.1702738.
  • Malomo, D., and M. J. DeJong. 2021b. A macro-distinct element model (M-DEM) for out-of-plane analysis of unreinforced masonry structures. Engineering Structures 244:112754. doi:10.1016/j.engstruct.2021.112754.
  • Menna, C., J. Mata-Falcón, F. P. Bos, G. Vantyghem, L. Ferrara, D. Asprone, T. Salet, and W. Kaufmann. 2020. Opportunities and challenges for structural engineering of digitally fabricated concrete. Cement and Concrete Research 133:106079. doi:10.1016/j.cemconres.2020.106079.
  • Montazerolghaem, M., and W. Jäger. 2014. A comparative numerical evaluation of masonry initial shear test methods and modifications proposed for EN 1052-3. In 9th International Masonry Conference (9IMC), P. B. Lourenço, B. Haseltine, and G. Vasconcelos, eds. 1–10, Guimarães: UMinho
  • Mousavian, E., K. Bagi, and C. Casapulla. Forthcoming. Interlocking joint shape optimization for structurally informed design of block assemblages. Journal of Computational Design and Engineering.
  • Munjiza, A. 2004. The combined finite-discrete element method. London: Wiley.
  • Portioli, F., L. Cascini, C. Casapulla, and M. D’Aniello. 2013. Limit analysis of masonry walls by rigid block modelling with cracking units and cohesive joints using linear programming. Engineering Structures 57:232–47. doi:10.1016/j.engstruct.2013.09.029.
  • Pulatsu, B., S. Gonen, E. Erdogmus, P. B. Lourenço, J. V. Lemos, and R. Prakash. 2021. In-plane structural performance of dry-joint stone masonry Walls: A spatial and non-spatial stochastic discontinuum analysis. Engineering Structures 242:112620. doi:10.1016/j.engstruct.2021.112620.
  • Shi, G. H. 1992. Discontinuous deformation analysis: A new numerical model for the statics and dynamics of deformable block structures. Engineering Computations 9 (4):157–68. doi:10.1108/eb023855.
  • Shi, G. H. 2001. Three dimensional discontinuous deformation analysis. In 38th U.S. symposium on rock mechanics, ed. N. Bicanic, 1–21. Washington: USRMS.
  • Shi, T., X. Zhang, H. Hao, and C. Chen. 2021a. Experimental and numerical investigation on the compressive properties of interlocking blocks. Engineering Structures 228:111561. doi:10.1016/j.engstruct.2020.111561.
  • Shi, T., X. Zhang, H. Hao, and G. Xie. 2021b. Experimental and numerical studies of the shear resistance capacities of interlocking blocks. Journal of Building Engineering 44:103230. doi:10.1016/j.jobe.2021.103230.
  • Simon, J., and K. Bagi. 2016. Discrete element analysis of the minimum thickness of oval masonry domes. International Journal of Architectural Heritage 10 (4):457–75. doi:10.1080/15583058.2014.996921.
  • UNI EN. 2007. Methods of test for masonry - Part 3: Determination of initial shear strength, 1052–53. London, UK: International Organization for Standardization.
  • Weir, S., D. Moult, and S. Fernando. 2016. Stereotomy of wave jointed blocks. In Robotic fabrication in architecture, art and design 2016, edited byD. Reinhardt, S. Saunders, J. Burry, 284–93. Cham: Springer.
  • Weizmann, M., O. Amir, and Y. J. Grobman. 2021. The effect of block geometry on structural behavior of topological interlocking assemblies. Automation in Construction 128:103717. doi:10.1016/j.autcon.2021.103717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.