240
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Seismic Damage Scenarios Induced by Site Effects on Masonry Clustered Buildings: A Case Study in South Italy

ORCID Icon &
Pages 262-283 | Received 06 Apr 2022, Accepted 12 Jul 2022, Published online: 27 Jul 2022

References

  • Aguilar-Meléndez, A., L. G. Pujades, A. H. Barbat, M. G. Ordaz, J. de la Puente, N. Lantada, and H. E. Rodríguez-Lozoya. 2019. A probabilistic approach for seismic risk assessment based on vulnerability functions’. Bulletin of Earthquake Engineering 17 (4):1863–90. doi:10.1007/s10518-018-0516-4.
  • Allen, J., C. Davis, S. Giovinazzi, D. E. Hart, T. Cochrane, B. Deam, G. De Pascale, M. Hicks, D. Holland, and M. Hughes. 2014. Geotechnical & flooding reconnaissance of the 2014 March flood event post 2010-2011 Canterbury earthquake sequence, New Zealand. Report No. GEER035.
  • Angiolilli, M., S. Lagomarsino, S. Cattari, and S. Degli Abbati. 2021. Seismic fragility assessment of existing masonry buildings in aggregate. Engineering Structures 247:113218. doi:10.1016/j.engstruct.2021.113218.
  • Baggio, C., A. Bernardini, R. Colozza, L. Corazza, M. Della Bella, G. Di Pasquale, M. Dolce, A. Goretti, A. Martinelli, G. Orsini, et al.2009. Manuale per la compilazione della scheda di primo livello di rilevamento danno, pronto intervento e agibilità per edifici ordinari nell’emergenza post-sismica (AeDES), 113. Accessed December 2, 2021. (In Italian). http://www.protezionecivile.gov.it/media-comunicazione/pubblicazioni/dettaglio//asset_publisher/default/content/manuale-per-la-compilazione-della-scheda-di-1-livello-di-rilevamento-di-danno-pronto-intervento-e-agibilita-per-edifici-ordinari-nell-emergenza-post-s
  • Basaglia, A., G. Cianchino, G. Cocco, D. Rapone, M. Terrenzi, E. Spacone, and G. Brando. 2021. An automatic procedure for deriving building portfolios using the Italian “CARTIS” online database. Structures 34:2974–86. doi:10.1016/j.istruc.2021.09.054.
  • Battaglia, L., T. M. Ferreira, and P. B. Lourenço. 2021. Seismic fragility assessment of masonry building aggregates: A case study in the old city Centre of Seixal, Portugal. Earthquake Engineering and Structural Dynamics 50 (5):1358–77. doi:10.1002/eqe.3405.
  • Benedetti, D., and V. Petrini. 1984. On the seismic vulnerability of masonry buildings: An evaluation method’. L’Industria Delle Costruzioni 149:66–74. in Italian.
  • Bernardini, G., and T. M. Ferreira. 2022. Combining structural and non-structural risk-reduction measures to improve evacuation safety in historical built environments. International Journal of Architectural Heritage Conservation, Analysis, and Restoration 16:820–38.
  • Biglari, M., M. D’Amato, and A. Formisano. 2021. Rapid seismic vulnerability and risk assessment of Kermanshah historic mosques. The Open Civil Engineering Journal 15 (1):135–48. doi:10.2174/1874149502115010135.
  • Biglari, M., A. Formisano, and A. Davino. 2021. Seismic vulnerability assessment and fragility analysis of Iranian historical mosques in Kermanshah city. Journal of Building Engineering 103673.
  • Biglari, M., and A. Formisano. 2021. Urban seismic risk analysis using empirical fragility curves for kerend-e-gharb after Mw 7.3, 2017 Iran Earthquake.
  • Capanna, I., A. Aloisio, F. Di Fabio, and M. Fragiacomo. 2021. Sensitivity assessment of the seismic response of a masonry palace via non-linear static analysis: A case study in L’Aquila (Italy). Infrastructures 6 (1):8. doi:10.3390/infrastructures6010008.
  • Ceroni, F., N. Caterino, and A. Vuoto. 2020. Simplified seismic vulnerability assessment methods: A comparative analysis with reference to regional school building stock in Italy. Applied Sciences 10 (19):6771. doi:10.3390/app10196771.
  • Chieffo, N., F. Clementi, A. Formisano, and S. Lenci. 2019. Comparative fragility methods for seismic assessment of masonry buildings located in Muccia (Italy). Journal of Building Engineering 25:100813. doi:10.1016/j.jobe.2019.100813.
  • Chieffo, N., and A. Formisano. 2019a. Comparative seismic assessment methods for masonry building aggregates: A case study. Frontiers in Built Environment 5:123. doi:10.3389/fbuil.2019.00123.
  • Chieffo, N., and A. Formisano. 2019b. Geo-hazard-based approach for the estimation of seismic vulnerability and damage scenarios of the old city of senerchia (Avellino, Italy). Geosciences 9 (2):59. doi:10.3390/geosciences9020059.
  • Chieffo, N., and A. Formisano. 2019c. The influence of geo-hazard effects on the physical vulnerability assessment of the built heritage: An application in a district of Naples. Buildings 9 (1):26. doi:10.3390/buildings9010026.
  • Chieffo, N., and A. Formisano. 2020. Induced seismic-site effects on the vulnerability assessment of a historical centre in the Molise Region of Italy: Analysis method and real behaviour calibration based on 2002 earthquake. Geosciences 10 (1):21. doi:10.3390/geosciences10010021.
  • Chieffo, N., A. Formisano, G. Mochi, and M. Mosoarca. 2021. Seismic vulnerability assessment and simplified empirical formulation for predicting the vibration periods of structural units in aggregate configuration. Geosciences 11 (7):287. doi:10.3390/geosciences11070287.
  • Consortium of the network of university laboratories in seismic and structural engineering. 2022. ReLUIS. Accessed July 3, 2022. (In Italian). https://www.reluis.it/it/
  • Cosenza, E., C. Del Vecchio, M. Di Ludovico, M. Dolce, C. Moroni, A. Prota, and E. Renzi. 2018. The Italian guidelines for seismic risk classification of constructions: Technical principles and validation. Bulletin of Earthquake Engineering 16 (12):5905–35. doi:10.1007/s10518-018-0431-8.
  • Costanzo, A., S. Falcone, A. D’Alessandro, G. Vitale, S. Giovinazzi, M. Morici, A. Dall’Asta, and M. F. Buongiorno. 2021. A technological system for post-earthquake damage scenarios based on the monitoring by means of an urban seismic network. Sensors 21 (23):7887. doi:10.3390/s21237887.
  • De Matteis, G., V. Corlito, M. Guadagnuolo, and A. Tafuro. 2020. Seismic vulnerability assessment and retrofitting strategies of Italian masonry churches of the alife-caiazzo diocese in caserta. International Journal of Architectural Heritage 14 (8):1180–95. doi:10.1080/15583058.2019.1594450.
  • Di Ludovico, M., A. Prota, C. Moroni, G. Manfredi, and M. Dolce. 2017a. Reconstruction process of damaged residential buildings outside historical centres after the L’Aquila earthquake: Part I—” light damage” reconstruction. Bulletin of Earthquake Engineering 15 (2):667–92. doi:10.1007/s10518-016-9877-8.
  • Di Ludovico, M., A. Prota, C. Moroni, G. Manfredi, and M. Dolce. 2017b. Reconstruction process of damaged residential buildings outside historical centres after the L’Aquila earthquake: Part II—“heavy damage” reconstruction. Bulletin of Earthquake Engineering 15 (2):693–729. doi:10.1007/s10518-016-9979-3.
  • Dolce, M., C. Moroni, C. Samela, Marino, M., Masi, A., and Vona, M. 2001. Una Procedura di Normalizzazione del Danno per la Valutazione degli Effetti di Amplificazione Locale. X Convegno ANIDISL’Ingegneria Sismica in Italia 9-13 Settembre, 2001, (in Italian).
  • Dolce, M., A. Prota, B. Borzi, F. da Porto, S. Lagomarsino, G. Magenes, C. Moroni, A. Penna, M. Polese, E. Speranza, et al. 2021. Seismic risk assessment of residential buildings in Italy. Bulletin of Earthquake Engineering 19 (8):2999–3032. doi:10.1007/s10518-020-01009-5.
  • Esteva, D., and D. L. Harris. 1970. Comparison of pressure and staff wave gage records. Coastal Engineering Proceedings, 1, 7, doi:10.9753/icce.v12.7.
  • European Centre for Training and Research in Earthquake Engineering. n.d. Database di Danno Osservato (Da.D.O). Washington, D.C., United States. Accessed December 3, 2021. (In Italian). http://egeos.eucentre.it/danno_osservato/web/danno_osservato#
  • Faenza, L., and A. Michelini. 2010. Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap. Geophysical Journal International 180 (3):1138–52. doi:10.1111/j.1365-246X.2009.04467.x.
  • Ferreira, T. M., and R. Ramírez Eudave. 2022. Assessing and managing risk in historic Urban Areas: Current trends and future research directions. Frontiers in Earth Science 10:847959. doi:10.3389/feart.2022.847959.
  • Ferreira, T. M., and H. Rodrigues. 2022. Seismic vulnerability assessment of civil engineering structures at multiple scales from single buildings to large-scale assessment. 9780128240717.
  • Flemings, P. B., J. P. Grotzinger, and J. E. Morris. (1996). Strata: A stratigraphic modeling package. Accessed December 5, 2021. http://www.jsg.utexas.edu/flemings/intranet/software/strata/strata-download-the-code-manual-and-tutorial/
  • Formisano, A., G. Florio, R. Landolfo, and F. M. Mazzolani. 2015. Numerical calibration of an easy method for seismic behaviour assessment on large scale of masonry building aggregates. Advances in Engineering Software 80:116–38. doi:10.1016/j.advengsoft.2014.09.013.
  • Formisano, A. 2017. Theoretical and numerical seismic analysis of masonry building aggregates: Case studies in san pio delle camere (L’Aquila, Italy). Journal of Earthquake Engineering 21 (2):227–45. doi:10.1080/13632469.2016.1172376.
  • Formisano, A., N. Chieffo, F. Clementi, and M. Mosoarca. 2021. Influence of local site effects on the typological fragility curves for class-oriented masonry buildings in aggregate condition. The Open Civil Engineering Journal 15 (1):149–64. doi:10.2174/1874149502115010149.
  • Formisano, A., N. Chieffo, and G. Vaiano. 2021. Seismic vulnerability assessment and strengthening interventions of structural units of a typical clustered masonry building in the Campania region of Italy. GeoHazards 2 (2):101–19. doi:10.3390/geohazards2020006.
  • Giovinazzi, S. 2009. Geotechnical hazard representation for seismic risk analysis. Bulletin of the New Zealand Society for Earthquake Engineering 42 (3):221–34. doi:10.5459/bnzsee.42.3.221-234.
  • Giuliani, F., A. De Falco, and V. Cutini. 2020. The role of urban configuration during disasters. A scenario-based methodology for the post-earthquake emergency management of Italian historic centers. Safety Science 127:104700. doi:10.1016/j.ssci.2020.104700.
  • Giuliani, F., A. De Falco, V. Cutini, and M. Di Sivo. 2021. A simplified methodology for risk analysis of historic centers: The world heritage site of San Gimignano, Italy. International Journal of Disaster Resilience in the Built Environment 12 (3):336–54. doi:10.1108/IJDRBE-04-2020-0029.
  • Giuliani, F., A. De Falco, and V. Cutini. 2021. Unpacking seismic risk in Italian historic centres: A critical overview for disaster risk reduction. International Journal of Disaster Risk Reduction 102260.
  • Gomez-Capera, A. A., M. D’Amico, G. Lanzano, M. Locati, and M. Santulin. 2020. Relationships between ground motion parameters and macroseismic intensity for Italy. Bulletin of Earthquake Engineering 18 (11):5143–64. doi:10.1007/s10518-020-00905-0.
  • Grillanda, N., M. Valente, G. Milani, A. Chiozzi, and A. Tralli. 2020. Advanced numerical strategies for seismic assessment of historical masonry aggregates. Engineering Structures 212:110441. doi:10.1016/j.engstruct.2020.110441.
  • Grünthal, G. 1998. European macroseismic scale 1998 (EMS-98). In Cahiers du Centre Européen de Géodynamique et de Séismologie, Vol. 15, pp. 101. Luxembourg: Conseil de l’Europe.
  • Kassem, M. M., F. Mohamed Nazri, and E. Noroozinejad Farsangi. 2020. The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal 11 (4):849–64. doi:10.1016/j.asej.2020.04.001.
  • Lagomarsino, S., and S. Giovinazzi. 2006. Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bulletin of Earthquake Engineering 4 (4):415–43. doi:10.1007/s10518-006-9024-z.
  • Lagomarsino, S. 2006. On the vulnerability assessment of monumental buildings. Bulletin of Earthquake Engineering 4 (4):445–63. doi:10.1007/s10518-006-9025-y.
  • Lagomarsino, S., S. Cattari, and D. Ottonelli. 2021. The heuristic vulnerability model: Fragility curves for masonry buildings. Bulletin of Earthquake Engineering 19 (8):3129–63. doi:10.1007/s10518-021-01063-7.
  • Landolfo, R., A. Formisano, G. Di Lorenzo, and A. Di Filippo. 2021. Classification of European building stock in technological and typological classes. Journal of Building Engineering 103482.
  • Leggieri, V., S. Ruggieri, G. Zagari, and G. Uva. 2021. Appraising seismic vulnerability of masonry aggregates through an automated mechanical-typological approach. Automation in Construction 132:103972. doi:10.1016/j.autcon.2021.103972.
  • Locati, M. 2016. DBMI15, the 2015 version of the Italian macroseismic database. Accessed December 5, 2021. (In Italian). https://emidius.mi.ingv.it
  • Masi, A., S. Lagomarsino, M. Dolce, V. Manfredi, and D. Ottonelli. 2021. Towards the updated Italian seismic risk assessment: Exposure and vulnerability modelling. Bulletin of Earthquake Engineering 1–34.
  • Menichini, G., V. Nistri, S. Boschi, E. Del monte, M. Orlando, and A. Vignoli. 2022. Calibration of vulnerability and fragility curves from moderate intensity Italian earthquake damage data. International Journal of Disaster Risk Reduction 67:102676. doi:10.1016/j.ijdrr.2021.102676.
  • Morasca, P., F. Zolezzi, D. Spallarossa, and L. Luzi. 2008. Ground motion models for the Molise region (Southern Italy). Soil Dynamics and Earthquake Engineering 28 (3):198–211. doi:10.1016/j.soildyn.2007.06.001.
  • Mosoarca, M., I. Onescu, E. Onescu, B. Azap, N. Chieffo, and M. Szitar-Sirbu. 2019. Seismic vulnerability assessment for the historical areas of the Timisoara city, Romania. Engineering Failure Analysis 101:86–112. doi:10.1016/j.engfailanal.2019.03.013.
  • Mosoarca, M., I. Onescu, E. Onescu, and A. Anastasiadis. 2020. Seismic vulnerability assessment methodology for historic masonry buildings in the near-field areas. Engineering Failure Analysis 115:104662. doi:10.1016/j.engfailanal.2020.104662.
  • Murphy, J. R., and L. J. O’Brien. 1977. The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters’. Bulletin of the Seismological Society of America 67 (3):877–915. doi:10.1785/BSSA0670030877.
  • Musson, R. M. W., G. Grünthal, and M. Stucchi. 2010. The comparison of macroseismic intensity scales. Journal of Seismology 14 (2):413–28. doi:10.1007/s10950-009-9172-0.
  • National Institute of Geophysics and Volcanology (INGV). (n.d.). Database Macrosismico Italiano (DBMI15). Accessed 2 December 2021. (In Italian). https://emidius.mi.ingv.it/DBMI11/
  • Nicodemo, G., M. Pittore, A. Masi, and V. Manfredi. 2020. Modelling exposure and vulnerability from post-earthquake survey data with risk-oriented taxonomies: AeDES form, GEM taxonomy and EMS-98 typologies. International Journal of Disaster Risk Reduction 50:101894. doi:10.1016/j.ijdrr.2020.101894.
  • Polese, M., M. Di Ludovico, M. Gaetani D’ Aragona, A. Prota, and G. Manfredi. 2020. Regional vulnerability and risk assessment accounting for local building typologies. International Journal of Disaster Risk Reduction 43:101400. doi:10.1016/j.ijdrr.2019.101400.
  • Rosti, A., C. Del Gaudio, M. Rota, P. Ricci, M. Di Ludovico, A. Penna, and G. M. Verderame. 2021. Empirical fragility curves for Italian residential RC buildings. Bulletin of Earthquake Engineering 19 (8):3165–83. doi:10.1007/s10518-020-00971-4.
  • Rota, M., A. Penna, and C. L. Strobbia. 2008. Processing Italian damage data to derive typological fragility curves. Soil Dynamics and Earthquake Engineering 28 (10):933–47. doi:10.1016/j.soildyn.2007.10.010.
  • Sextos, A., R. De Risi, A. Pagliaroli, S. Foti, F. Passeri, E. Ausilio, R. Cairo, M. C. Capatti, F. Chiabrando, A. Chiaradonna, et al. 2018. Local site effects and incremental damage of buildings during the 2016 central Italy Earthquake sequence. Earthquake Spectra 34 (4):1639–69. doi:10.1193/100317EQS194M.
  • Uva, G., C. A. Sanjust, S. Casolo, and M. Mezzina. 2016. ANTAEUS project for the regional vulnerability assessment of the current building stock in historical centers. International Journal of Architectural Heritage 10 (1):20–43. doi:10.1080/15583058.2014.935983.
  • Valensise, G., D. Pantosti, and R. Basili. 2004. Seismology and tectonic setting of the 2002 Molise, Italy, Earthquake. Earthquake Spectra 20 (1_suppl):23–37. doi:10.1193/1.1756136.
  • Zuccaro, G., M. Della Bella, and F. Papa. 1999. Caratterizzazione tipologico strutturali a scala nazionale. Proceedings of the 9th National Conference ANIDIS, L’ingegneria Sismica, Italy, 20–23 (In Italian).
  • Zuccaro, G., D. De Gregorio, M. F. Leone, S. Sessa, S. Nardone, and F. L. Perelli. 2021. CAESAR II tool: Complementary analyses for emergency planning based on seismic risks impact evaluations. Sustainability 13 (17):9838. doi:10.3390/su13179838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.