480
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Efficient Constitutive Model for Continuous Micro-Modeling of Masonry Structures

ORCID Icon, , ORCID Icon &
Pages 134-146 | Received 31 Mar 2022, Accepted 06 Sep 2022, Published online: 18 Sep 2022

References

  • STKO Scientific ToolKit for OpenSees.https://asdeasoft.net/stko/.
  • Accornero, F., and G. Lacidogna. 2020. Safety assessment of masonry arch bridges considering the fracturing benefit. Applied Sciences 10 (10):3490. doi:10.3390/app10103490.
  • Accornero, F., G. Lacidogna, and A. Carpinteri. 2016. Evolutionary fracture analysis of masonry arches: Effects of shallowness ratio and size scale. Comptes Rendus Mécanique 344:623–30. doi:10.1016/j.crme.2016.05.002.
  • Accornero, F., G. Lacidogna, and A. Carpinteri. 2018. Medieval arch bridges in the lanzo valleys, Italy: case studies on incremental structural analysis and fracturing benefit. Journal of Bridge Engineering (ASCE) 23 (7):05018005. doi:10.1061/(ASCE)BE.1943-5592.0001252.
  • ASDShellQ4. User Manual, https://opensees.github.io/OpenSeesDocumentation/user/manual/model/elements/ASDShellQ4.html
  • Barenblatt, G. I. 2014. Flow, deformation and fracture: Lectures on fluid mechanics and the mechanics of deformable solids for mathematicians and physicists, 49. Cambridge University Press.
  • Bathe, K. J., and E. N. Dvorkin. 1985. A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. International Journal for Numerical Methods in Engineering 21 (2):367–83. doi:10.1002/nme.1620210213.
  • Bažant, Z. P. 2004. Scaling theory for quasibrittle structural failure. Proceedings of the National Academy of Sciences, U.S.A., 101:13400–07.
  • Binda, L., C. Tiraboschi, G. Mirabella Roberti, G. Baronio, and G. Cardani. 1995. Experimental and numerical investigation on a brick masonry building prototype – Measuring masonry material properties: Detailed results from an extensive research, Report 5.0. Dipartimento di Ingegneria Strutturale, Politecnico di Milano.
  • Carpinteri, A. 1994. Scaling laws and renormalization groups for strength and toughness of disordered materials. Int. J. Solids Struct 31 (3):291–302. doi:10.1016/0020-7683(94)90107-4.
  • Carpinteri, A., and B. Chiaia. 1997. Multifractal scaling laws in the breaking behaviour of disordered materials. Solitons & Fractals. 135–50. Chaos
  • Carpinteri, A., and S. Puzzi. 2009. he fractal-statistical approach to the size-scale effects on material strength and toughness. Probabilistic Engineering Mechanics 24 (1):75–83. doi:10.1016/j.probengmech.2008.01.003.
  • Cervera, M., J. Oliver, and R. Faria. 1995. Seismic evaluation of concrete dams via continuum damage models. Earthquake Engineering & Structural Dynamics 24:1225–45. doi:10.1002/eqe.4290240905.
  • Chen, X.-M., S. Cen, Y.-Q. Long, Z.-H. Yao. 2004. Membrane elements insensitive to distortion using the quadrilateral area coordinate method. Computers & Structures. 82(1):35–54. doi:10.1016/j.compstruc.2003.08.004.
  • De Bellis, M. L., and D. Addessi. 2009. A Cosserat based multi-scale technique for masonry structures. PHD Thesis.
  • De Bellis, M. L., and D. Addessi. 2011. A Cosserat based multi-scale model for masonry structures. International Journal for Multiscale Computational Engineering 9 (5):543–63. doi:10.1615/IntJMultCompEng.2011002758.
  • Drougkas, A., L. Pelà, and P. Roca. 2014. Numerical modelling of masonry shear walls failure mechanisms. Proceedings of 9th International Masonry Conference, Guimarães, Portugal.
  • Dvorkin E. N. and Bathe K. 1984. A continuum mechanics based four‐node shell element for general non‐linear analysis. Engineering Computations 1(1):77–88. doi:10.1108/eb023562.
  • Hughes, T. J. R., and F. Brezzi. 1989. On drilling degrees of freedom. Computer Methods in Applied Mechanics and Engineering 72 (1):105–21. doi:10.1016/0045-7825(89)90124-2.
  • Lourenço, P. B. 1996. Computational strategies for masonry structures. Ph.D. thesis, TU Delft, Delft University of Technology
  • Lourenço, P. B., and J. Rots. 1997. Multisurface interface model for analysis of masonry structures. Journal of Engineering Mechanics 123:75–83. 7 1997] has been updated. OK. doi:10.1061/(ASCE)0733-9399(1997)123:7(660).
  • Lubliner, J., J. Oliver, S. Oller, and E. Oñate. 1989. A plastic-damage model for concrete. International Journal of Solids and Structures 25 (3):299–326. doi:10.1016/0020-7683(89)90050-4.
  • Magenes, G., G. M. Calvi, and G. R. Kingsley. 1995. Seismic testing of a full-scale, two-story masonry building: Test procedure and measured experimental response. Experimental and numerical investigation on a brick masonry building prototype - numerical prediction of the experiment, Report 3.0. Gruppo Nazionale La Difesa Dai Terremoti, University of Pavia, Pavia, Italy.
  • Massart, T. J. 2003. Multi-scale modeling of damage in masonry structures. Ph.D. thesis.
  • Massart, T. J., R. Peerlings, and M. Geers. 2007. An enhanced multi-scale approach for masonry wall computations with localization of damage. International Journal for Numerical Methods in Engineering 69:1022–59. doi:10.1002/nme.1799.
  • McKenna, F. 2011. OpenSees: A framework for earthquake engineering simulation. Computing in Science & Engineering 13:58–66. doi:10.1109/MCSE.2011.66.
  • Mercatoris, B., P. Bouillard, and T. Massart. 2009. Multi-scale detection of failure in planar masonry thin shells using computational homogenisation. Engineering Fracture Mechanics 76 (4):479–99. doi:10.1016/j.engfracmech.2008.10.003.
  • Mercatoris, B., and T. Massart. 2011. A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. International Journal for Numerical Methods in Engineering 85 (9):1177–206. doi:10.1002/nme.3018.
  • Oliveira, D. V., and P. B. Lourenço. 2004. Implementation and validation of a constitutive model for the cyclic behaviour of interface elements. Computers & structures 82:1451–61.
  • Oliver, J., A. E. Huespe, and J. C. Cante. 2008. An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems. Computer Methods in Applied Mechanics and Engineering 197 (21–24):1865–89. doi:10.1016/j.cma.2007.11.027.
  • Panian, R., and M. Yazdani. 2020. Estimation of the service load capacity of plain concrete arch bridges using a novel approach: Stress intensity factor. Structures 27:1521–34. doi:10.1016/j.istruc.2020.07.055.
  • Pelà, L., M. Cervera, S. Oller, and M. Chiumenti. 2014. A localized mapped damage model for orthotropic materials. Engineering Fracture Mechanics 124:196–216.
  • Pelà, L., M. Cervera, and P. Roca. 2011. Continuum damage model for orthotropic materials: Application to masonry. Computer Methods in Applied Mechanics and Engineering 200 (9–12):917–30. doi:10.1016/j.cma.2010.11.010.
  • Pelà, L., M. Cervera, and P. Roca. 2013. An orthotropic damage model for the analysis of masonry structures. Construction and Building Materials 957–67. doi:10.1016/j.conbuildmat.2012.07.014.
  • Petracca, M., L. Pelà, R. Rossi, S. Oller, G. Camata, and E. Spacone. 2016. Regularization of first order computational homogenization for multiscale analysis of masonry structures. Computational Mechanics 57:257–76. doi:10.1007/s00466-015-1230-6.
  • Petracca, M., L. Pelà, R. Rossi, S. Oller, G. Camata, and E. Spacone. 2017a. Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls. Computer Methods in Applied Mechanics and Engineering 315:273–301. doi:10.1016/j.cma.2016.10.046.
  • Petracca, M., L. Pelà, R. Rossi, S. Zaghi, G. Camata, and E. Spacone. 2017b. Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Construction and Building Materials 149:296–314. doi:10.1016/j.conbuildmat.2017.05.130.
  • Quinteros, R. D., S. Oller, and L. G. Nallim. 2012. Nonlinear homogenization techniques to solve masonry structures problems. Composite Structures 94 (2):724–30. doi:10.1016/j.compstruct.2011.09.006.
  • Saloustros, S., M. Cervera, and L. Pelà. 2018. Tracking multi-directional intersecting cracks in numerical modelling of masonry shear walls under cyclic loading. Meccanica 53 (7):1757–76. doi:10.1007/s11012-017-0712-3.
  • Wu, J. Y., J. Li, and R. Faria. 2006. An energy release rate-based plastic-damage model for concrete. International Journal of Solids and Structures 43:583–612. doi:10.1016/j.ijsolstr.2005.05.038.
  • Yazdani, M., and H. Habibi. 2021. Residual capacity evaluation of masonry arch bridges by extended finite element method. Structural Engineering International 1–12. doi:10.1080/10168664.2021.1944454.
  • Zucchini, A., and P. B. Lourenço. 2002. A micro-mechanical model for the homogenisation of masonry. International Journal of Solids and Structures 39 (12):3233–55. doi:10.1016/S0020-7683(02)00230-5.
  • Zucchini, A., and P. B. Lourenço. 2009. A micro-mechanical homogenisation model for masonry: Application to shear walls. International Journal of Solids and Structures 46 (3–4):871–86. doi:10.1016/j.ijsolstr.2008.09.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.