Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 2
926
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Seasonality in Moisture Dynamics in the Walls of the rock-cut Churches in Lalibela, Ethiopia: Implications for Weathering

, &
Pages 302-315 | Received 04 Apr 2022, Accepted 27 Oct 2022, Published online: 27 Nov 2022

References

  • Asrat, A. 2002. The rock-hewn churches of Tigrai, Northern Ethiopia: A geological perspective. Geoarchaeology - An International Journal 17 (7):649–63. doi:10.1002/gea.10035.
  • Asrat, A., and Y. Ayallew. 2011. Geological and geotechnical properties of the medieval rock hewn churches of Lalibela, Northern Ethiopia. Journal of African Earth Sciences 59 (1):61–73.
  • Blaeuer, C., C. Science, C. Sarl, C. Science, and C. Sarl. 2009. Attempt to use a microwave moisture mapping system (MOIST 200B) to control and monitor the water uptake of stones in the frame of cultural heritage conservation. (May 2014).
  • BSI. 2017. BS EN 16682:2017 conservation of cultural heritage — methods of measurement of moisture content, or water content, in materials constituting immovable cultural heritage.
  • Chen, W., R. Liao, N. Wang, and J. Zhang. 2019. Effects of experimental frostthaw cycles on sandstones with different weathering degrees: A case from the bingling temple grottoes, China. Bulletin Of Engineering Geology And The Environment 78 (7):5311–26. doi: 10.1007/s10064-018-01454-2.
  • Derat, M.-L., C. Bosc-tiess´e, A. Garric, R. Mensan, F.-X. Fauvelle, Y. Gleize, A.-L. Goujon, Y. Gleize, A.-L. Goujon, and A.-L. Goujon. 2021. The rock-cut churches of Lalibela and the cave church of Washa Mika ’ el: Troglodytism and the Christianisation of the Ethiopian Highlands. Anales de Pediatria 95 (July 2020):467–86. doi:10.1016/j.anpede.2020.11.009.
  • Gartner, G. E. A. 2010. Determination of moisture content of the outer wall using hf-sensor technology. 302.
  • Gobezie Worku, M. (2018). The Church of Yimrhane Kristos: An Archaeological Investigation (Doctoral dissertation). Lund University. Lund.
  • Gonzalez, I. J., and G. W. Scherer. 2004. Effect of swelling inhibitors on the swelling and stress relaxation of clay bearing stones. Environmental Geology 46 (3–4):364–77. doi:10.1007/s00254-004-1038-8.
  • Hall, K. 2004. Evidence for freeze–thaw events and their implications for rock weathering in northern Canada. Earth Surface Processes and Landforms 29 (1):43–57. doi:10.1002/esp.1012.
  • Hall, C., A. Hamilton, W. D. Hoff, H. A. Viles, and J. A. Eklund. 2011. Moisture dynamics in walls: Response to micro-environment and climate change. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467 (2125):194–211. doi:10.1098/rspa.2010.0131.
  • Hall, C., and W. Hoff. 2003. Water transport in brick, stone and concrete. Cement, Concrete and Aggregates 25 (1):11926. http://www.astm.org/doiLink.cgi?CCA10518J.
  • hf sensor GmbH. 2014. Operation manual - moist 350 B ( tech. rep.). http://www.hf-sensor.de
  • Huang, J. Z. 2007. Water-rock interaction and its effect on the weathering of Yungang Grottoes. In Preservation of Natural Stone and Rock Weathering. 1st ed., ed. P. Sola, J. Estaire, and C. Olalla, 33–38 14 July 2007. Preservation of Natural Stone and Rock Weathering, Madrid, Spain. https://www.routledge.com/Preservation-of-Natural-Stone-and-Rock-Weathering-Proceedings-of-the-ISRM/Sola-Estaire-Olalla/p/book/9780415450188
  • ICOMOS. 2008. Illustrated glossary on stone deterioration patterns. France: Champigny/Marne. http://www.icomos.org/publications/monumentsandsites/15/pdf/MonumentsandSites15ISCSGlossaryStone.pdf.
  • Kurik, L., T. Kalamees, U. Kallavus, and V. Sinivee. 2017. Influencing factors of moisture measurement when using microwave reflection method. Energy Procedia (June):11–14. doi:10.1016/j.egypro.2017.09.675.
  • Lataste, J.-F., and A. Göller. 2018. Microwave reflection. doi:10.1007/978-3-319-74231-1_16.
  • McAllister, D., P. Warke, S. McCabe, and M. Gomez-Heras. 2016. Evaporative moisture loss from heterogeneous stone: material-environment interactions during drying. Geomorphology 273:308–22 doi:10.1016/j.geomorph.2016.08.008. .
  • McCabe, S., P. Brimblecombe, B. J. Smith, D. McAllister, S. Srinivasan, and P. A. Basheer. 2013. The use and meanings of ’time of wetness’ in understanding building stone decay. Quarterly Journal of Engineering Geology and Hydrogeology 46 (4):469–76. doi:10.1144/qjegh2012-048.
  • Orr, S. A., L. Fusade, M. Young, D. Stelfox, A. Leslie, J. Curran, and H. Viles. 2020. Moisture monitoring of stone masonry: A comparison of microwave and radar on a granite wall and a sandstone tower. Journal of Cultural Heritage 41:61–73. doi:10.1016/j.culher.2019.07.011.
  • Pinchin, S. E. 2008. Techniques for monitoring moisture in walls. Studies in Conservation 53 (sup2):33–45. doi:10.1179/sic.2008.53.supplement-2.33.
  • Renzulli, A., F. Antonelli, C. Margottini, P. Santi, and F. Fratini. 2011. What kind of volcanite the rock-hewn churches of the Lalibela UNESCO’s world heritage site are made of? Journal of Cultural Heritage 12 (2):227–35 doi:10.1016/j.culher.2010.11.003. .
  • Sass, O., and H. A. Viles. 2006. How wet are these walls? Testing a novel technique for measuring moisture in ruined walls. Journal of Cultural Heritage 7 (4):257–63. doi:10.1016/j.culher.2006.08.001.
  • Sass, O., and H. A. Viles. 2010. Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK. Journal of Applied Geophysics 70 (1):72–83 doi:10.1016/j.jappgeo.2009.11.006. .
  • Sass, O., and H. Viles. 2022. Heritage hydrology: A conceptual framework for understanding water fluxes and storage in built and rock-hewn heritage. Heritage Science 10 (1):1–18. doi:10.1186/s40494-022-00693-7.
  • Scherer, G. W. 1990. Theory of drying. Journal of the American Ceramic Society 73 (1):3–14. doi:10.1111/j.1151-2916.1990.tb05082.x.
  • Siedel, H., S. Pfefferkorn, E. Von Plehwe-Leisen, and H. Leisen. 2010. Sandstone weathering in tropical climate: Results of low-destructive investigations at the temple of Angkor Wat, Cambodia. Engineering Geology 115 (3–4):182–92. doi:10.1016/j.enggeo.2009.07.003.
  • Smith, B. J., S. Srinivasan, M. Gomez-Heras, P. A. M. Basheer, and H. A. Viles. 2011. Near-surface temperature cycling of stone and its implications for scales of surface deterioration. Geomorphology 130 (1–2):76–82 doi:10.1016/j.geomorph.2010.10.005. .
  • Taye, B., L. Fusade, and H. Viles. 2020. Efficacy of traditional conservation methods for the protection of rock-hewn heritage sites: Lessons from Lalibela, Ethiopia. S. Siegesmund, and B. Middendorf, eds. Monument Future - Decay and Conservation of Stone proceedings of the 14th International Congress on the Deterioration and Conservaion of Stone (STONE 2020). Gottingen, Gemany, 7-12 September 2020. Halle, Mitteldeutscher Verlag.
  • Woldeyes, Y. G. 2019. Lalibela: Spiritual genealogy beyond epistemic violence in Ethiopia. Genealogy 3 (4):66. doi:10.3390/genealogy3040066.
  • Yimer, S. M., N. Kumar, A. Bouanani, B. Tischbein, and C. Borgemeister. 2020. Homogenization of daily time series climatological data in the Eastern Nile basin, Ethiopia. Theoretical and Applied Climatology 143 (1–2):737–60. doi:10.1007/s00704-020-03407-w.