217
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Preliminary Assessment Of The Seismic Behaviour Of Giotto’s Bell Tower In Florence

, ORCID Icon, & ORCID Icon
Pages 23-45 | Received 27 Mar 2022, Accepted 03 Nov 2022, Published online: 07 Dec 2022

References

  • Acito, M., M. Bocciarelli, C. Chesi, and G. Milani. 2014. Collapse of the clock tower in finale Emilia after the May 2012 Emilia Romagna earthquake sequence: Numerical insight. Engineering Structures 72:70–91. doi:10.1016/j.engstruct.2014.04.026.
  • Ang, A. H. S. 1974. Probability concepts in earthquake engineering. In Applied mechanics in earthquake engineering, ed. W. D. Iwan, ASME, AMD 8, 225–59.
  • Angelillo, M., ed. 2014. Mechanics of masonry structures. Udine: CISM. doi:10.1007/978-3-7091-1774-3.
  • Bartoli, G., M. Betti, and S. Giordano. 2013. In situ static and dynamic investigations on the “Torre Grossa” masonry tower. Engineering Structures 52:718–33. doi:10.1016/j.engstruct.2013.01.030.
  • Betti, M., L. Galano, and A. Vignoli. 2016. Finite element modelling for seismic assessment of historic masonry buildings. In Earthquakes and their impact on society, ed. S. D’Amico, 377–415. Springer Natural Hazards. doi:10.1007/978-3-319-21753-6_14
  • Bommer, J. J., and A. B. Acevedo. 2004. The use of real earthquake accelerograms as input to dynamic analysis. Journal of Earthquake Engineering 8 (sup001):43–91. doi:10.1080/13632460409350521.
  • Briganti, R., S. Ciufegni, M. Coli, S. Polimeni, and G. Pranzini. 2003. Underground Florence: Plio-quaternary evolution of the Florence area. Bollettino della Societa Geologica Italiana 122 (3):435–45.
  • Cadignani, R., R. Lancellotta, and D. Sabia. 2019. The restoration of Ghirlandina Tower in Modena and the assessment of soil-structure interaction by means of dynamic identification techniques. 154. London (UK): CRC Press. doi:10.1201/9780429197789.
  • Caliò, I., F. Cannizzaro, E. D’Amore, M. Marletta, and B. Pantò. 2008. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete masonry buildings. Proceedings of the AIP Conference Vol. 1020, 832–39. Reggio Calabria (Italy). doi: 10.1063/1.2963920
  • Casolo, S. 1998. A three dimensional model for vulnerability analyses of slender masonry medieval towers. Journal of Earthquake Engineering 2 (4):487–512. doi:10.1080/13632469809350332.
  • Casolo, S., V. Diana, and G. Uva. 2017. Influence of soil deformability on the seismic response of a masonry tower. Bulletin of Earthquake Engineering 15 (5):1991–2014. doi:10.1007/s10518-016-0061-y.
  • Casolo, S., G. Milani, G. Uva, and C. Alessandri. 2013. Comparative seismic vulnerability analysis on ten masonry towers in the coastal Po Valley in Italy. Engineering Structures 49:465–90. doi:10.1016/j.engstruct.2012.11.033.
  • Clementi, F., G. Milani, A. Ferrante, M. Valente, and S. Lenci. 2020. Crumbling of Amatrice clock tower during 2016 central Italy seismic sequence: Advanced numerical insights. Frattura ed Integrita Strutturale 14 (51):313–35. doi:10.3221/IGF-ESIS.51.24.
  • Coli, M., L. Guerri, and P. Rubellini. 2019. Geotechnical characterization of the Florence (Italy) soils. Japanese Geotechnical Society Special Publication 2 (77):2648–53. https://doi.org/10.3208/jgssp.TC301-02.
  • Coli, M., M. Ripepe, and P. Rubellini. 2008. Sismicità dell’area fiorentina, Firenze (Italy): SELCA. (in italian)
  • Coli, M., and P. Rubellini. 2007. Note di geologia fiorentina. 37. Firenze (Italy): SELCA. (in Italian).
  • Coli, M., and P. Rubellini. 2013. Geological anamnesis of the Florence area, Italy. Zeitschrift der Deutschen Gesellschaft Für Geowissenschaften 164 (4):581–89. doi:10.1127/1860-1804/2013/0042.
  • Coli, M., M. Tanganelli, M. Baldi, and S. Viti. 2021. The Giotto’s Bell Tower at Firenze (Italy): Foundation assessment. Journal of Cultural Heritage Management and Sustainable Development. doi:10.1108/JCHMSD-04-2021-0070.
  • Cornell, C. A. 1968. Engineering seismic risk analysis. Bulletin of Seismological Society of America 58 (5):1583–606. doi:10.1785/BSSA0580051583.
  • Cosentini, R. M., S. Foti, R. Lancellotta, and D. Sabia. 2015. Dynamic behavior of shallow founded historic towers: Validation of simplified approaches for seismic analyses. International Journal of Geotechnical Engineering 9 (1):13–29. doi:10.1179/1939787914Y.0000000066.
  • Crespellani, T., and C. Madiai. 1991. Seismic response analysis. Proceedings of the tenth European conference on soil mechanics & foundation engineering (X ECSMFE). Florence (Italy), Vol. IV, 1519–28.
  • Crespellani, T., G. Vannucchi, and A. Vignoli. 1991. Uncertainties analysis and final remarks. Proceedings of the tenth European conference on soil mechanics & foundation engineering (X ECSMFE). Florence (Italy), Vol. IV, 1529–34.
  • Crespellani, T., G. Vannucchi, and X. Zeng. 1991. Seismic hazard analysis. Proceedings of the tenth European conference on soil mechanics & foundation engineering (X ECSMFE). Florence (Italy), Vol. IV, 1459–70.
  • D’Ambrisi, A., V. Mariani, and M. Mezzi. 2012. Seismic assessment of a historical masonry tower with nonlinear static and dynamic analyses tuned on ambient vibration tests. Engineering Structures 36:210–19. doi:10.1016/j.engstruct.2011.12.009.
  • De Silva, F., F. Ceroni, S. Sica, and F. Silvestri. 2018. Non-linear analysis of the Carmine bell tower under seismic actions accounting for soil-foundation-structure interaction. Bulletin of Earthquake Engineering 16 (7):2775–808. doi:10.1007/s10518-017-0298-0.
  • DPCM2011. 2011. Direttiva del Presidente del Consiglio dei Ministri per la valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle NTC 2008. G. U. n. 47 del 26.02.2011. (in Italian).
  • Facchini, L., V. Gusella, and M. Betti. 2020. Non-linear dynamic analysis for collapse probability assessment of historic masonry towers. Lecture Notes in Mechanical Engineering 1376–86. doi:10.1007/978-3-030-41057-5_111.
  • Fahjan, Y. M., F. İ. Kara, and A. Mert. 2017. Selection and scaling time history records for performance-based design. In V. Plevris, G. Kremmyda, and Y. Fahjan, eds. Performance-based seismic design of concrete structures and infrastructures. Pennsylvania, USA: IGI Global, 1–35. doi:10.4018/978-1-5225-2089-4.ch001.
  • Ferrante, A., F. Clementi, and G. Milani. 2020. Advanced numerical analyses by the non-smooth contact dynamics method of an ancient masonry bell tower. Mathematical Methods in the Applied Sciences 43 (13):7706–25. doi:10.1002/mma.6113.
  • Galano, L., and M. Betti. 2019. Elementi di Statica delle costruzioni storiche in muratura, 480. Bologna, Italy: Società Editrice Esculapio.
  • Gazetas, G. 1983. Analysis of machine foundation vibration: State of the art. International Journal of Soil Dynamics and Earthquake Engineering 2 (1):2–42. doi:10.1016/0261-7277(83)90025-6.
  • Gazetas, G. 1991. Formulas and charts for impedances of surface and embedded foundations. Journal of Geotechnical Engineering 117 (9):1363–81. doi:10.1061/(ASCE)0733-9410(1991)117:9(1363).
  • Gentile, C., and A. Saisi. 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials 21 (6):1311–21. doi:10.1016/j.conbuildmat.2006.01.007.
  • Ghinelli, A., and G. Vannucchi. 1991. Condizioni stratigrafiche e fondazioni della zona absidale di Santa Maria del Fiore in Firenze. Bollettino Ingegneri XXXVIII (1–2):28–29. (in Italian).
  • Gurrieri, F., Ed. 2017. Il Campanile di Giotto. Atti del ciclo di conferenze: Firenze, Centro Arte Cultura, maggio-giugno 2015, 87. Florence, Italy: Mandragora.
  • Hancock, J., J. J. Bommer, and P. J. Stafford. 2008. Numbers of scaled and matched accelerograms required for inelastic dynamic analyses. Earthquake Engineering & Structural Dynamics 37 (14):1585–607. doi:10.1002/eqe.827.
  • Ivorra, S., and F. J. Pallares. 2006. Dynamic investigations on a masonry bell tower. Engineering Structures 28 (5):660–67. doi:10.1016/j.engstruct.2005.09.019.
  • Lacanna, G., M. Betti, M. Ripete, and G. Bartoli. 2020. Dynamic identification as a tool to constrain numerical models for structural analysis of historical buildings. Frontiers in Built Environment - Earthquake Engineering 6:40. doi:10.3389/fbuil.2020.00040.
  • Lacanna, G., R. Lancellotta, and M. Ripepe. 2019a. Integrating modal analysis and seismic interferometry for structural dynamic response: The case study of Giotto’s bell tower in Florence. In Proceedings of the 7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering.eds. M. Papadrakakis, and M. Fragiadakis, Crete, Greece.
  • Lacanna, G., M. Ripepe, M. Coli, R. Genco, and E. Marchetti. 2019b. Full structural dynamic response from ambient vibration of Giotto’s bell tower in Firenze (Italy), using modal analysis and seismic interferometry. NDT and E International 102:9–15. doi:10.1016/j.ndteint.2018.11.002.
  • Lancellotta, R., and D. Sabia. 2015. Identification technique for soil-structure analysis of the Ghirlandina tower. International Journal of Architectural Heritage 9 (4):391–407. doi:10.1080/15583058.2013.793438.
  • Lourenço, P. B., J. G. Rots, and J. Blaauwendraad. 1995. Two approaches for the analysis of masonry structures: Micro and macro modelling. Heron 40 (4):313–40.
  • Lucchini, A., F. Mollaioli, and G. Monti. 2011. Metodi di selezione e scalatura di accelerogrammi naturali per l’analisi dinamica non lineare delle strutture. XIV Convegno ANIDIS “L’Ingegneria Sismica in Italia”, 18-22 September 2011, Bari (Italy), 1–10. Gorgonzola, Italy: Digilabs.
  • Luzi, L., F. Pacor, and R. Puglia. 2017. Italian Accelerometric Archive v 2.3. Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento della Protezione Civile Nazionale. doi:10.13127/ITACA.2.3.
  • Milani, G., S. Casolo, A. Naliato, and A. Tralli. 2012. Seismic assessment of a medieval masonry tower in Northern Italy by limit, non-linear static and full dynamic analyses. International Journal Architectural Heritage 6 (5):489–524. doi:10.1080/15583058.2011.588987.
  • Milani, G., and M. Valente. 2016. Non-linear dynamic and static analyses on eight historical masonry towers in the North-East of Italy. Engineering Structures 114:241–70. doi:10.1016/j.engstruct.2016.02.004.
  • MIT. 2009.Circolare n. 617 del 2 febbraio 2009 del Ministero delle Infrastrutture e dei Trasporti. Istruzioni per l’Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale del 14 gennaio 2008. (in Italian).
  • MIT. 2019. Circolare n. 7 del 21 gennaio 2019 del Ministero delle Infrastrutture e dei Trasporti. Istruzioni per l’applicazione dell’Aggiornamento delle Norme tecniche per le costruzioni di cui al Decreto Ministeriale del 17 gennaio 2018. (in Italian)
  • Mottershead, J. E., and M. I. Friswell. 1993. Model updating in structural dynamics: A survey. Journal of Sound and Vibration 167 (2):347–75. doi:10.1006/jsvi.1993.1340.
  • NTC. 2008. D.M. del Ministero delle Infrastrutture e dei Trasporti 14 gennaio 2008. Nuove Norme Tecniche per le Costruzioni. G.U. n. 29, 4 febbraio 2008, S.O. n. 30. (in Italian).
  • NTC. 2018. D.M. del Ministero delle Infrastrutture e dei trasporti del 17 gennaio 2018. Aggiornamento delle Norme Tecniche per le Costruzioni. G.U. n. 42, 20 febbraio 2018, S.O. n. 8. (in Italian).
  • Orlando, M., M. Betti, and P. Spinelli. 2020. Assessment of structural behaviour and seismic retrofitting for an Italian monumental masonry building. Journal of Building Engineering 29:101115. doi:10.1016/j.jobe.2019.101115.
  • Peña, F., P. B. Lourenço, N. Mendez, and D. Oliveira. 2010. Numerical models for the seismic assessment of an old masonry tower. Engineering Structures 32 (5):1466–78. doi:10.1016/j.engstruct.2010.01.027.
  • Pieraccini, M., D. Dei, M. Betti, G. Bartoli, G. Tucci, and N. Guardini. 2014. Dynamic identification of historic masonry towers through an expeditious and no-contact approach: Application to the “Torre del Mangia” in Siena (Italy). Journal of Cultural Heritage 15 (3):275–82. doi:10.1016/j.culher.2013.07.006.
  • Pieraccini, M., M. Fratini, D. Dei, and C. Atzeni. 2009. Structural testing of historical heritage site towers by microwave remote sensing. Journal of Cultural Heritage 10 (2):174–82. doi:10.1016/j.culher.2008.09.006.
  • Pieraccini, M., M. Fratini, F. Parrini, G. Pinelli, and C. Atzeni. 2005. Dynamic survey of architectural heritage by high-speed microwave interferometry. IEEE Geoscience and Remote Sensing Letters 2 (1):28–30. https://ieeexplore.ieee.org/document/1381342.
  • Ramos, L. F., L. Marques, P. B. Lourenço, G. De Roeck, A. Campos-Costa, and J. Roque. 2010. Monitoring historical masonry structures with operational modal analysis: Two case studies. Mechanical Systems and Signal Processing 24 (5):1291–305. doi:10.1016/j.ymssp.2010.01.011.
  • Sabia, D., T. Aoki, R. M. Cosentini, and R. Lancellotta. 2015. Model updating to forecast the dynamic behavior of the ghirlandina tower in Modena, Italy. Journal of Earthquake Engineering 19 (1):1–24. doi:10.1080/13632469.2014.962668.
  • Stone, W. C., F. Y. Yokel, M. Celebi, T. Hanks, and E. V. Leyendecker. 1987. Engineering Aspects of the September 19, 1985 Mexico Earthquake. Washington (USA): U.S. Government Printing Office.
  • Tanganelli, M., F. Trovatelli, and T. Rotunno. 2022. Evaluation of the Seismic Vulnerability of Giotto’s Bell Tower: Comparison of Different Methodologies. International Journal of Architectural Heritage, 1–25. doi:10.1080/15583058.2022.2142171
  • Torelli, G., D. D’Ayala, M. Betti, and G. Bartoli. 2020. Analytical and numerical seismic assessment of heritage masonry towers. Bulletin of Earthquake Engineering 18 (3):969–1008. doi:10.1007/s10518-019-00732-y.
  • Vignoli, A. 1991. Definition of the ground motion in firm soil. Proceedings of the tenth European conference on soil mechanics & foundation engineering (X ECSMFE). Florence (Italy), Vol. IV, 1471–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.