Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 3
267
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Meta-Model Assisted Continuous Vibration-Based Damage Identification of a Historical Rammed Earth Tower in the Alhambra Complex

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 427-453 | Received 30 Aug 2022, Accepted 30 Nov 2022, Published online: 23 Dec 2022

References

  • Abaqus, F. E. A. 2009. ABAQUS analysis user’s manual, In Dassault Systemes. Vélizy-Villacoublay, France.
  • Aguilar, R., G. Zonno, G. Lozano, R. Boroschek, and P. B. Lourenço. 2019. Vibration-based damage detection in historical adobe structures: Laboratory and field applications. International Journal of Architectural Heritage 13 (7):1005–28. doi:10.1080/15583058.2019.1632974.
  • Al Aqtash, U., P. Bandini, and S. L. Cooper. 2017. Numerical approach to model the effect of moisture in adobe masonry walls subjected to in-plane loading. International Journal of Architectural Heritage 11 (6):805–15. doi:10.1080/15583058.2017.1298010.
  • Alkayem, N. F., M. Cao, Y. Zhang, M. Bayat, and Z. Su. 2018. Structural damage detection using finite element model updating with evolutionary algorithms: A survey. Neural Computing and Applications 30 (2):389–411. doi:10.1007/s00521-017-3284-1.
  • Angjeliu, G., D. Coronelli, and G. Cardani. 2020. Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality. Computers & Structures 238:106282. doi:10.1016/j.compstruc.2020.106282.
  • Arto, I., R. Gallego, H. Cifuentes, E. Puertas, and M. Gutiérrez-Carrillo. 2021. Fracture behavior of rammed earth in historic buildings. Construction and Building Materials 289:123167. doi:10.1016/j.conbuildmat.2021.123167.
  • Ávila, F., E. Puertas, and R. Gallego. 2022a. Characterization of the mechanical and physical properties of stabilized rammed earth: A review. Construction and Building Materials 325:126693. doi:10.1016/j.conbuildmat.2022.126693.
  • Ávila, F., E. Puertas, and R. Gallego. 2022b. Mechanical characterization of lime-stabilized rammed earth: Lime content and strength development. Construction and Building Materials 350:128871. doi:10.1016/j.conbuildmat.2022.128871.
  • Azzara, R. M., G. De Roeck, M. Girardi, C. Padovani, D. Pellegrini, and E. Reynders. 2018. The influence of environmental parameters on the dynamic behaviour of the San Frediano bell tower in Lucca. Engineering Structures 156:175–87. doi:10.1016/j.engstruct.2017.10.045.
  • Bernardo, G., A. Guida, and G. Pacente. 2022. The sustainability of raw earth: An ancient technology to be rediscovered. Journal of Architectural Conservation 1–13.
  • Boller, C., F. K. Chang, and Y. Fujino. 2009. Encyclopedia of structural health monitoring, Vol. 1. New York, USA: Wiley Online Library. 9780470058220.
  • Bui, T. L., T. T. Bui, Q. B. Bui, X. H. Nguyen, and A. Limam. 2020. Out-of-plane behavior of rammed earth walls under seismic loading: Finite element simulation. Structures 24:191–208. doi:10.1016/j.istruc.2020.01.009.
  • Cabboi, A., C. Gentile, and A. Saisi. 2017. From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower. Construction and Building Materials 156:252–65. doi:10.1016/j.conbuildmat.2017.08.160.
  • Carden, E. P., and P. Fanning. 2004. Vibration based condition monitoring: A review. Structural Health Monitoring 3 (4):355–77. doi:10.1177/1475921704047500.
  • Ceravolo, R., G. Coletta, G. Miraglia, and F. Palma. 2021. Statistical correlation between environmental time series and data from long-term monitoring of buildings. Mechanical Systems and Signal Processing 152:107460. doi:10.1016/j.ymssp.2020.107460.
  • Chakraborty, S., S. Adhikari, and R. Ganguli. 2021. The role of surrogate models in the development of digital twins of dynamic systems. Applied Mathematical Modelling 90:662–81. doi:10.1016/j.apm.2020.09.037.
  • Chiachío, M., M. Megía, J. Chiachío, J. Fernandez, and M. L. Jalón. 2022. Structural digital twin framework: Formulation and technology integration. Automation in Construction 140:104333. doi:10.1016/j.autcon.2022.104333.
  • de Oliveira Dias Prudente Dos Santos, J. P., C. Crémona, A. P. C. da Silveira, and L. C. de Oliveira Martins. 2016. Real-time damage detection based on pattern recognition. Structural Concrete 17 (3):338–54. doi:10.1002/suco.201500092.
  • Farrar, C. R., and K. Worden. 2012. Structural health monitoring: A machine learning perspective. Chichester, West Sussex, United Kingdom: John Wiley & Sons. 1118443217.
  • García-Macías, E., L. Ierimonti, I. Venanzi, and F. Ubertini. 2021. An innovative methodology for online surrogate-based model updating of historic buildings using monitoring data. International Journal of Architectural Heritage 15 (1):92–112. doi:10.1080/15583058.2019.1668495.
  • García-Macías, E., and F. Ubertini. 2020. MOVA/MOSS: Two integrated software solutions for comprehensive Structural Health Monitoring of structures. Mechanical Systems and Signal Processing 143:106830. doi:10.1016/j.ymssp.2020.106830.
  • García-Macías, E., and F. Ubertini. 2022a. Integrated SHM systems: Damage detection through unsupervised learning and data fusion. In Cury, A., Ribeiro, D., Filippo, U., Todd, M. D., Eds., Structural Health Monitoring Based on Data Science Techniques, 247–268. Cham, Switzerland: Springer.
  • García-Macías, E., and F. Ubertini. 2022b. Least angle regression for early-stage identification of earthquake-induced damage in a monumental masonry palace: Palazzo dei Consoli. Engineering Structures 259:114119. doi:10.1016/j.engstruct.2022.114119.
  • García-Macías, E., and F. Ubertini. 2022c. Real-time Bayesian damage identification enabled by sparse PCE-Kriging meta-modelling for continuous SHM of large-scale civil engineering structures. Journal of Building Engineering 59:105004. doi:10.1016/j.jobe.2022.105004.
  • García-Macías, E., I. Venanzi, and F. Ubertini. 2020. Metamodel-based pattern recognition approach for real-time identification of earthquake-induced damage in historic masonry structures. Automation in Construction 120:103389. doi:10.1016/j.autcon.2020.103389.
  • GB. 2010. Code for design of concrete structures. In Standardization Administration of China, 50010–2010. Beijing, China: Ministry of Housing and Urban-Rural Development of the People’s Republic of China.
  • Gentile, C., A. Ruccolo, and F. Canali. 2019. Long-term monitoring for the condition-based structural maintenance of the Milan Cathedral. Construction and Building Materials 228:117101. doi:10.1016/j.conbuildmat.2019.117101.
  • González Limón, T., and A. Casas Gómez (1997). Estudio de los materiales y de las fábricas de la Torre de Comares de la Alhambra. Technical report, Biblioteca del Patronato de la Alhambra y Generalife.
  • Hanif, M. U., Z. Ibrahim, M. Jameel, K. Ghaedi, and M. Aslam. 2016. A new approach to estimate damage in concrete beams using non-linearity. Construction and Building Materials 124:1081–89. doi:10.1016/j.conbuildmat.2016.08.139.
  • Hou, R., and Y. Xia. 2021. Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019. Journal of Sound and Vibration 491:115741.
  • Jaquin, P. A., C. E. Augarde, and C. M. Gerrard (2007). Historic rammed earth structures in Spain: Construction techniques and a preliminary classification. In Proceedings of International Symposium on Earthen Structures 2007. Interline Publishing. Conference details: 22-24 August 2007, Bangalore, India.
  • Jiménez-Delgado, M. C., and I. C. Guerrero. 2006. Earth building in Spain. Construction and Building Materials 20 (9):679–90. doi:10.1016/j.conbuildmat.2005.02.006.
  • Juang, J. N. 1994. Applied system identification. Upper Saddle River, New Jersey, USA: Prentice-Hall, Inc. 013079211X.
  • Kleijnen, J. P. C. 2009. Kriging metamodeling in simulation: A review. European Journal of Operational Research 192 (3):707–16. doi:10.1016/j.ejor.2007.10.013.
  • Kleijnen, J. P. C. 2017. Regression and Kriging metamodels with their experimental designs in simulation: A review. European Journal of Operational Research 256 (1):1–16. doi:10.1016/j.ejor.2016.06.041.
  • Kung, S. Y. (1978). A new identification and model reduction algorithm via singular value decomposition. In Proc. 12th Asilomar Conf. on Circuits, Systems and Computers, Pacific Grove, CA, November.
  • Lai, Z., C. Mylonas, S. Nagarajaiah, and E. Chatzi. 2021. Structural identification with physics-informed neural ordinary differential equations. Journal of Sound and Vibration 508:116196. doi:10.1016/j.jsv.2021.116196.
  • Lophaven, S. N., H. B. Nielsen, and J. Søndergaard (2002). DACE-A Matlab Kriging toolbox, version 2.0. Technical report, Technical University of Denmark.
  • Martínez, J., F. Ávila, E. Puertas, A. Burgos-Núñez, and R. Gallego-Sevilla. 2022. Historical and architectural study for the numerical modeling of heritage buildings: The Tower of Comares of the Alhambra (Granada, Spain). Informes de la Construcción 74 (565):e429. doi:10.3989/ic.86683.
  • Martinez-Luengo, M., A. Kolios, and L. Wang. 2016. Structural health monitoring of offshore wind turbines: A review through the statistical pattern recognition paradigm. Renewable and Sustainable Energy Reviews 64:91–105. doi:10.1016/j.rser.2016.05.085.
  • Miccoli, L., C. Gerrard, C. Perrone, A. Gardei, and C. Ziegert. 2017. A collaborative engineering and archaeology project to investigate decay in historic rammed earth structures: The case of the medieval preceptory in Ambel. International Journal of Architectural Heritage 11 (5):636–55.
  • Minke, G. 2013. Building with earth. Berlin, Germany: Birkhäuser. doi:10.1515/9783034612623
  • Mishra, M. 2021. Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies. Journal of Cultural Heritage 47:227–45. doi:10.1016/j.culher.2020.09.005.
  • Mishra, M., P. B. Lourenço, and G. V. Ramana. 2022. Structural health monitoring of civil engineering structures by using the internet of things: A review. Journal of Building Engineering 48:103954. doi:10.1016/j.jobe.2021.103954.
  • Nguyen, T. D., T. T. Bui, A. Limam, T. L. Bui, and Q. B. Bui. 2021. Evaluation of seismic performance of rammed earth building and improvement solutions. Journal of Building Engineering 43:103113. doi:10.1016/j.jobe.2021.103113.
  • Pallarés, F. J., M. Betti, G. Bartoli, and L. Pallarés. 2021. Structural health monitoring (SHM) and Nondestructive testing (NDT) of slender masonry structures: A practical review. Construction and Building Materials 297:123768. doi:10.1016/j.conbuildmat.2021.123768.
  • Peeters, B. (2000). System identification and damage detection in civil engineering. PhD thesis, Katholieke Universiteit, Leuven, Belgium.
  • Peeters, B., and G. De Roeck. 2001. One‐year monitoring of the Z24‐Bridge: Environmental effects versus damage events. Earthquake Engineering & Structural Dynamics 30 (2):149–71. doi:10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z.
  • Reynders, E., and G. De Roeck. 2008. Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis. Mechanical Systems and Signal Processing 22 (3):617–37. doi:10.1016/j.ymssp.2007.09.004.
  • Rytter, A. (1993). Vibrational based inspection of civil engineering structures. PhD thesis, Aalborg University.
  • Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn. 1989. Design and analysis of computer experiments. Statistical Science 4 (4):409–23.
  • Schroeder, H. 2016 The development of earth building. In Sustainable building with earth. 1–46. Weimar, Germany: Springer, Cham.
  • Scozzese, F., L. Ragni, E. Tubaldi, and F. Gara. 2019. Modal properties variation and collapse assessment of masonry arch bridges under scour action. Engineering Structures 199:109665. doi:10.1016/j.engstruct.2019.109665.
  • Silva, R. A., N. Mendes, D. V. Oliveira, A. Romanazzi, O. Domínguez-Martínez, and T. Miranda. 2018. Evaluating the seismic behaviour of rammed earth buildings from Portugal: From simple tools to advanced approaches. Engineering Structures 157:144–56. doi:10.1016/j.engstruct.2017.12.021.
  • Sobol, I. M. 1967. The distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics 7 (4):784–802. doi:10.1016/0041-5553(67)90144-9.
  • Stein, M. L. 1999. Interpolation of spatial data: Some theory for kriging. New York, USA: Springer Science & Business Media. 0387986294.
  • Tao, F., H. Zhang, A. Liu, and A. Y. C. Nee. 2018. Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics 15 (4):2405–15. doi:10.1109/TII.2018.2873186.
  • Ubertini, F., N. Cavalagli, A. Kita, and G. Comanducci. 2018. Assessment of a monumental masonry bell-tower after 2016 Central Italy seismic sequence by long-term SHM. Bulletin of Earthquake Engineering 16 (2):775–801. doi:10.1007/s10518-017-0222-7.
  • Van Overschee, P., and B. De Moor. 2012. Subspace identification for linear systems: Theory—Implementation—Applications. New York, USA: Springer Science & Business Media.
  • Venanzi, I., A. Kita, N. Cavalagli, L. Ierimonti, and F. Ubertini. 2020. Earthquake-induced damage localization in an historic masonry tower through long-term dynamic monitoring and FE model calibration. Bulletin of Earthquake Engineering 18 (5):2247–74. doi:10.1007/s10518-019-00780-4.
  • Viu, J. M., J. R. Fernández, and J. S. Caralt. 2008. The impact of heritage tourism on an urban economy: The case of Granada and the Alhambra. Tourism Economics 14 (2):361–76. doi:10.5367/000000008784460481.
  • Vuoto, A., J. Ortega, P. B. Lourenço, F. J. Suárez, and A. C. Núñez. 2022. Safety assessment of the Torre de la Vela in la Alhambra, Granada, Spain: The role of on site works. Engineering Structures 264:114443. doi:10.1016/j.engstruct.2022.114443.
  • Zhou, X., C. W. Kim, F. L. Zhang, and K. C. Chang. 2022. Vibration-based Bayesian model updating of an actual steel truss bridge subjected to incremental damage. Engineering Structures 260:114226. doi:10.1016/j.engstruct.2022.114226.
  • Zhou, T., and B. Liu. 2019. Experimental study on the shaking table tests of a modern inner-reinforced rammed earth structure. Construction and Building Materials 203:567–78. doi:10.1016/j.conbuildmat.2019.01.070.
  • Zini, G., M. Betti, and G. Bartoli. 2022. A quality-based automated procedure for operational modal analysis. Mechanical Systems and Signal Processing 164:108173. doi:10.1016/j.ymssp.2021.108173.
  • Zonno, G., R. Aguilar, R. Boroschek, and P. B. Lourenço. 2019. Experimental analysis of the thermohygrometric effects on the dynamic behavior of adobe systems. Construction and Building Materials 208:158–74. doi:10.1016/j.conbuildmat.2019.02.140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.