Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 7
132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Site Specific Hazard Assessment and Multi-Level Seismic Performance Evaluation of Historical Mosque

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1143-1163 | Received 12 Nov 2022, Accepted 15 May 2023, Published online: 25 May 2023

References

  • Abrahamson, N. A. 1992. Non-stationary spectral matching. Seismological Research Letters 63 (1):30.
  • Abrahamson, N., and W. Silva. 2008. Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra 24 (1):67–97. doi:10.1193/1.2924360.
  • Abrahamson, N., W. Silva, and R. Kamai. 2014. Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra 30 (3):1025–55. doi:10.1193/070913EQS198M.
  • Al Atik, L., and N. Abrahamson. 2010. An improved method for nonstationary spectral matching. Earthquake Spectra 26 (3):601–17. doi:10.1193/1.3459159.
  • Ambraseys, N. N., and J. S. Tchalenko. 1972. Seismotectonic aspects of the Gediz, Turkey, earthquake of March 1970. Geophysical Journal International 30 (3):229–52. doi:10.1111/j.1365-246X.1972.tb05811.x.
  • Barka, A. 1996. Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939 to 1967. Bulletin of the Seismological Society of America 86 (5):1238–54. doi:10.1785/BSSA0860051238.
  • Bartoli, G., M. Betti, and C. Borri. 2015. Numerical modeling of the structural behavior of Brunelleschi’s Dome of Santa Maria del Fiore. International Journal of Architectural Heritage 9 (4):408–29. doi:10.1080/15583058.2013.797038.
  • Boore, D. M., and G. M. Atkinson. 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra 24 (1):99–138. doi:10.1193/1.2830434.
  • Boore, D. M., J. P. Stewart, E. Seyhan, and G. M. Atkinson. 2014. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra 30 (3):1057–85. doi:10.1193/070113EQS184M.
  • Bozkurt, E., and R. Oberhänsli. 2001. Menderes Massif (Western Turkey): Structural, metamorphic and magmatic evolution–a synthesis. International Journal of Earth Sciences 89 (4):679–708. doi:10.1007/s005310000173.
  • Bozorgnia, Y., N. A. Abrahamson, L. A. Atik, T. D. Ancheta, G. M. Atkinson, J. W. Baker, and R. Youngs. 2014. NGA-West2 research project. Earthquake Spectra 30 (3):973–87. doi:10.1193/072113EQS209M.
  • Çaktı, E., Ö. Saygılı, J. V. Lemos, and C. S. Oliveira. 2020. Nonlinear dynamic response of stone masonry minarets under harmonic excitation. Bulletin of Earthquake Engineering 18 (10):4813–38. doi:10.1007/s10518-020-00888-y.
  • Campbell, K. W. 2014. Campbell-Bozorgnia NGA-West2 horizontal ground motion model for active tectonic domains. In Proceedings, 10th US National Conference in Earthquake Engineering Anchorage, AL.
  • Campbell, K. W., and Y. Bozorgnia. 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra 24 (1):139–71. doi:10.1193/1.2857546.
  • Cardinali, V., M. Castellini, M. T. Cristofaro, G. Lacanna, M. Coli, M. De Stefano, and M. Tanganelli. 2021. Integrated techniques for the structural assessment of cultural heritage masonry buildings: Application to Palazzo Cocchi-Serristori in Florence. Journal of Cultural Heritage Management and Sustainable Development 13 (1):123–45. doi:10.1108/JCHMSD-02-2021-0024.
  • Chiou, B. J., and R. R. Youngs. 2008. An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra 24 (1):173–215. doi:10.1193/1.2894832.
  • Chiou, B. S. J., and R. R. Youngs. 2014. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra 30 (3):1117–53. doi:10.1193/072813EQS219M.
  • Cismaşiu, C., P. B. Silva, J. V. Lemos, and I. Cismaşiu. 2023. Seismic vulnerability assessment of a stone arch using discrete elements. International Journal of Architectural Heritage 17 (5):1–15. doi:10.1080/15583058.2021.1963506.
  • Emre, O., T. Y. Duman, A. Doğfan, S. Özalp, F. Tokay, and I. Kuşçu. 2003. Surface faulting associated with the Sultandagı earthquake (Mw 6.5) of 3 February 2002, Southwestern Turkey. Seismological Research Letters 74 (4):382–92. doi:10.1785/gssrl.74.4.382.
  • Emre, Ö., S. Özalp, A. Doğan, V. Özaksoy, C. Yıldırım, and F. Göktaş (2005). İzmir yakın çevresinin diri fayları ve deprem potansiyelleri (Rapor no: 10754). MTA Jeoloji Etütleri Dairesi, Ankara.
  • Fahjan, Y. M. 2008. Selection and scaling of real earthquake accelerograms to fit the Turkish design spectra. Teknik Dergi 19 (3):4423–44.
  • Gardner, J. K., and L. Knopoff. 1974. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America 64 (5):1363–67. doi:10.1785/BSSA0640051363.
  • Gessner, K., L. A. Gallardo, V. Markwitz, U. Ring, and S. N. Thomson. 2013. What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Research 24 (1):243–74. doi:10.1016/j.gr.2013.01.005.
  • Gonen, S., B. Pulatsu, E. Erdogmus, E. Karaesmen, and E. Karaesmen. 2021. Quasi-static nonlinear seismic assessment of a fourth century AD Roman aqueduct in Istanbul, Turkey. Heritage 4 (1):401–21. doi:10.3390/heritage4010025.
  • Gutenberg, B., and C. F. Richter. 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34 (4):185–88. doi:10.1785/BSSA0340040185.
  • Itasca Consulting Group, Inc. 2016. 3DEC 5.2 command reference. Minneapolis, Minnesota, USA: Itasca Consulting Group, Inc.
  • Ketin, I., and S. Abdüsselamoglu. 1969. Macro-seismic observations on March 23, 1969 Demirci and March 28, 1969 Alasehir-Sarigöl earthquakes. Mining Magistrate Istanbul University 4 (5):21–26.
  • Mcclusky, S., S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, G. Veis, M. Hamburger, K. Hurst, H. Kahle, et al. 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern mediterranean and caucasus. Journal of Geophysical Research: Solid Earth 105 (B3):5695–719. doi:10.1029/1999JB900351.
  • Milani, G., M. Valente, M. Fagone, T. Rotunno, and C. Alessandri. 2019. Advanced non-linear numerical modeling of masonry groin vaults of major historical importance: St John Hospital case study in Jerusalem. Engineering Structures 194:458–76. doi:10.1016/j.engstruct.2019.05.021.
  • NIST. 2011. Selecting and scaling earthquake ground motions for performing response history analysis, NIST/GCR 11-917-15, prepared by the NEHRP consultants joint venture for the. Gaithersburg, Maryland: National Institute of Standards and Technology.
  • Power, M., B. Chiou, N. Abrahamson, Y. Bozorgnia, T. Shantz, and C. Roblee. 2008. An overview of the NGA project. Earthquake Spectra 24 (1):3–21. doi:10.1193/1.2894833.
  • Psycharis, I. N., M. Fragiadakis, and I. Stefanou. 2013. Seismic reliability assessment of classical columns subjected to near‐fault ground motions. Earthquake Engineering & Structural Dynamics 42 (14):2061–79. doi:10.1002/eqe.2312.
  • Pulatsu, B., E. Erdogmus, and P. B. Lourenço. 2019. Comparison of in-plane and out-of-plane failure modes of masonry arch bridges using discontinuum analysis. Engineering Structures 178:24–36. doi:10.1016/j.engstruct.2018.10.016.
  • Roca, P., M. Cervera, G. Gariup, and L. Pela. 2010. Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering 17 (3):299–325. doi:10.1007/s11831-010-9046-1.
  • Sarhosis, V., D. Baraldi, J. V. Lemos, and J. G. Milani. 2019. Dynamic behaviour of ancient freestanding multi-drum and monolithic columns subjected to horizontal and vertical excitations. Soil Dynamics and Earthquake Engineering 120:39–57. doi:10.1016/j.soildyn.2019.01.024.
  • Saygili, O. 2019. Estimation of structural dynamic characteristics of the Egyptian Obelisk of Theodosius. Earthquakes and Structures 16 (3):311–20. doi:10.12989/eas.2019.16.3.311.
  • Saygılı, Ö., and J. V. Lemos. 2020. Investigation of the structural dynamic behavior of the frontinus gate. Applied Sciences 10 (17):5821. doi:10.3390/app10175821.
  • Saygılı, Ö., and J. V. Lemos. 2021. Seismic vulnerability assessment of masonry arch bridges. In Structures, Vol. 33, 3311–23. Elsevier. doi:10.1016/j.istruc.2021.06.057.
  • Saygılı, Ö., and G. Polat. 2021. Analysis of seismic parameters for the earthquake vulnerability assessment of Nusretiye (Tophane) clock tower. Latin American Journal of Solids and Structures 18 (4). doi:10.1590/1679-78256361.
  • Stepp, J. C. 1972. Estimating the completeness of earthquake catalogs. Bulletin of the Seismological Society of America 62 (5):1467–72.
  • Taymaz, T., R. Westaway, and R. Reilinger. 2004. Active faulting and crustal deformation in the Eastern Mediterranean region. Tectonophysics 391 (1–4):1–9. doi:10.1016/j.tecto.2004.07.005.
  • Teomete, E., and E. Aktaş. 2010. Structural analyses and assessment of historical Kamanlı Mosque in Izmir, Turkey. Journal of Performance of Constructed Facilities 24 (4):353–64. doi:10.1061/(ASCE)CF.1943-5509.0000111.
  • Vlachakis, G., E. Vlachaki, and P. B. Lourenço. 2020. Learning from failure: Damage and failure of masonry structures, after the 2017 Lesvos earthquake (Greece). Engineering Failure Analysis 117:104803. doi:10.1016/j.engfailanal.2020.104803.
  • Wells, D. L., and K. J. Coppersmith. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America 84 (4):974–1002. doi:10.1785/BSSA0840040974.
  • Wiemer, S. 2001. A software package to analyze seismicity: ZMAP. Seismological Research Letters 72 (3):373–82. doi:10.1785/gssrl.72.3.373.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.