404
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling of the Dynamic Response of a Full-Scale Masonry Groin Vault: Unstrengthened and Strengthened with Textile-Reinforced Mortar (TRM)

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 16 Oct 2023, Accepted 07 Feb 2024, Published online: 15 Mar 2024

References

  • Alejo Guerra, L. E., N. Mendes, P. B. Lourenço, and G. Martínez. 2021. Protecting the historic buildings of Mexico: The barrel vault of San Agustin Church in Morelia. Journal of Performance of Constructed Facilities 35:2. doi:10.1061/(ASCE)CF.1943-5509.0001556
  • Allahvirdizadeh, R., D. V. Oliveira, and R. A. Silva. 2019. Numerical modeling of the seismic out-of-plane response of a plain and TRM-Strengthened rammed earth subassembly. Engineering Structures 193 (May):43–56. doi:10.1016/j.engstruct.2019.05.022.
  • Bertolesi, E., B. Torres, J. M. Adam, P. A. Calderón, and J. J. Moragues. 2020. Effectiveness of textile reinforced mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults. Engineering Structures 220 (April):110978. doi:10.1016/j.engstruct.2020.110978.
  • Bianchini, N., C. Calderini, N. Mendes, P. Xavier Candeias, and P. B. Lourenço. 2023. Postdiction competition - Sera.Ta - seismic response of masonry cross vaults: Shaking table tests and numerical validations. Zenodo 2023. doi:10.5281/zenodo.7624791.
  • Bianchini, N., N. Mendes, C. Calderini, P. Candeias, and P. B. Lourenço. 2023. Shaking table testing of an unstrengthened and strengthened with textile reinforced mortar (TRM) full-scale masonry cross vault. International Journal of Architectural Heritage 1–26. doi:10.1080/15583058.2023.2295900.
  • Bianchini, N., N. Mendes, P. Xavier Candeias, C. Calderini, M. Rossi, and P. B. Lourenço. 2022. Seismic response of a small-scale masonry groin vault: Experimental investigation by performing quasi-static and shake table tests. Bulletin of Earthquake Engineering 1–23. doi:10.1007/s10518-021-01280-0.
  • Bianchini, N., M. Nuno, P. B. Lourenço, C. Calderini, and R. Michela 2019. “Seismic assessment of masonry cross vaults through numerical nonlinear static and dynamic analysis.” In COMPDYN 2019 7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, ed. M. Papadrakakis, and M. Fragiadakis, 600–12. Crete, Greece. doi:10.7712/120119.6942.18709.
  • Breymann, G. A. 1885. Costruzioni in Pietra e Strutture Murali. In Costruzione Dei Coperti in Pietra Naturale Ed in Mattoni. (in Italian). Stoccarda: Biblioteca Internazionale dell’Ingegnere.
  • Creazza, G., M. Renato, S. Anna, and V. Renato. 2000. Analyses of masonry vaulted structures by using 3D damage Model. In ECCOMAS 2000 European Congress on computational methods in applied sciences and engineering, ed. E. Oñate, K. Morgan, J. Periaux, and E. Stein, Vol. 128, 646. Barcelona. doi:10.1061/(ASCE)0733-9445(2002)128:5(646).
  • DIANA 10.5. 2022. Finite element modelling software. Delft, Netherlands.
  • Doran, B., N. Yuzer, S. Aktan, D. Oktay, and S. Ulukaya. 2020. Numerical modeling of traditional masonry walls strengthened with grout injection. International Journal of Architectural Heritage 14 (10):1517–32. doi:10.1080/15583058.2019.1618970.
  • Faccioli, E., and P. Roberto. 2005. Elementi Di Sismologia Applicata All’ingegneria. Bologna: Pitagora. (In Italian).
  • Fang, D. L., R. K. Napolitano, T. L. Michiels, and M. Sigrid. 2018. Assessing the stability of unreinforced masonry arches and vaults: A comparison of analytical and numerical strategies. International Journal of Architectural Heritage 13 (5):648–62. doi:10.1080/15583058.2018.1463413.
  • Faria, R. 1994. Evaluation of the seismic behaviour of concrete dams via continuum damage Model. Portugal: University of Porto.
  • Fernandes, F. M., P. B. Lourenço, and F. Castro. 2010. Ancient clay bricks : Manufacture and properties. In Materials, technologies and practice in historic heritage structures, ed. M. B. Dan, 1st, Springer. doi:10.1007/978-90-481-2684-2
  • Fitchen, J. 1961. The construction of gothic cathedrals. Phoenix ed. Chicago: The University of Chicago Press.
  • Foti, D., C. Mazzotti, and M. Savoia. 2015. Structural behaviour of historical stone arches and vaults: Experimental tests and numerical analyses. Key Engineering Materials 2:43–48. doi:10.4028/www.scientific.net/KEM.628.43.
  • Gaetani, A. 2016. Seismic Performance of Masonry Cross Vaults : Learning from Historical Developments and Experimental Testing. PhD Thesis, University of Minho.
  • Giresini, L., C. Butenweg, M. Andreini, A. De Falco, and M. Sassu. 2014. “Numerical calibration of macro-element for vaulted systems in historic churches.” In 9th International Conference on Structural Analysis of Historical Constructions, ed. F. Peña, and M. Chávez, 14–17. Mexico City, Mexico.
  • Gobbin, F., G. de Felice, and J. V. Lemos. 2020. A discrete element Model for masonry vaults strengthened with externally bonded reinforcement. International Journal of Architectural Heritage 15 (12):1959–72. doi:10.1080/15583058.2020.1743792.
  • Gomes, J. P., and J. V. Lemos. 2020. Characterization of the dynamic behavior of a concrete arch dam by means of forced vibration tests and numerical models. Earthquake Engineering and Structural Dynamics 49:679–94. doi:10.1002/eqe.3259.
  • Grillanda, N., A. Chiozzi, G. Milani, and A. Tralli. 2020. Efficient meta-heuristic mesh adaptation strategies for NURBS upper–bound limit analysis of curved three-dimensional masonry structures. Computers and Structures 236:106271. doi:10.1016/j.compstruc.2020.106271.
  • Heyman, J. 1995. The stone skeleton: Structural engineering of masonry architecture. 2nd Edited by. Cambridge: Cambridge University Press. doi:10.1016/0020-7683(66)90018-7.
  • Itasca Consulting Group, Inc. 2019a. 3DEC 7.0—three-Dimensional distinct element code. Minneapolis, MN.
  • Itasca Consulting Group, Inc. 2019b. 3DEC online manual. 3DEC Manual.
  • Lemos, J. V. 2007. Discrete element modeling of masonry structures. International Journal of Architectural Heritage 1:190–213. doi:10.1080/15583050601176868.
  • Lemos, J. V., G. Francesca, F. Tamás, and S. Vasilis. 2022. Discrete element modelling of masonry arch bridges, arches and vaults. In From corbel arches to double curvature vaults: Analysis, conservation and restoration of architectural heritage masonry structures, ed. G. Milani, and V. Sarhosis, 233–56. Cham: Springer International Publishing. doi:10.1007/978-3-031-12873-8_5.
  • Lengyel, G. 2017. Discrete element analysis of gothic masonry vaults for self-weight and horizontal support displacement. Engineering Structures 148:195–209. doi:10.1016/j.engstruct.2017.06.014.
  • Lengyel, G., and K. Bagi. 2015. Numerical analysis of the mechanical role of the ribs in groin vaults. Computers and Structures 158:42–60. doi:10.1016/j.compstruc.2015.05.032.
  • Lengyel, G., and R. Károly Németh. 2018. The mechanical behavior of ribs in masonry groin vaults subjected to seismic load. International Journal of Architectural Heritage 13 (6):886–900. doi:10.1080/15583058.2018.1491652.
  • Lourenço, P. B. 1996. Computational Strategies for Masonry Structures. PhD thesis, Delft University of Technology. doi:10.1080/90-407-1221-2.
  • Lourenço, P. B., and A. Gaetani. 2022. Finite element analysis for building assessment: Advanced use and practical recommendations. New York: Taylor & Francis Group.
  • Lourenço, P. B., and J. M. Pereira. 2018. Recommendations for advanced modeling of historic earthen sites: Seismic retrofitting project research report. Los Angeles, CA: Getty Conservation Institute.
  • Mcinerney, J., and M. J. Dejong. 2015. Discrete Element Modeling of Groin Vault Displacement Capacity. International Journal of Architectural Heritage 9 (8):1037–49. doi:10.1080/15583058.2014.923953.
  • McNeel Robert, A. 2008. Rhinoceros NURBS modeling for Windows.
  • Mehrotra, A. 2018. A computational tool for seismic collapse assessment of masonry structures. no December.
  • Mehrotra, A., A. Arede, and M. J. Dejong. 2015. Discrete element modeling of a post-tensioned masonry arch. Civil-Comp Proceedings 1–16. doi:10.4203/ccp.108.49.
  • Mele Van, T., J. McInerney, M. J. Dejong, and P. Block. 2012. Physical and computational discrete modelling of masonry vault collapse. In Structural Analysis of Historical Constructions, ed. J. Jasieńko, 2552–60. Wrocław: Jerzy Jasieńko (Ed.).
  • Mendes, N. 2012. Seismic Assessment of Ancient Masonry Buildings : Shaking Table Tests and Numerical Analysis. PhD thesis, University of Minho.
  • Mendes, N., and P. B. Lourenço. 2014. Sensitivity analysis of the seismic performance of existing masonry buildings. Engineering Structures 80:137–46. doi:10.1016/j.engstruct.2014.09.005.
  • Milani, G. 2022. Simple lower bound limit analysis Model for masonry double curvature structures. Computers and Structures 269:106831. doi:10.1016/j.compstruc.2022.106831.
  • Milani, G., E. Milani, and A. Tralli. 2009. Upper bound limit analysis model for FRP-Reinforced masonry curved structures. Part I: Unreinforced masonry failure surfaces. Computers and Structures 87 (23–24):1534–58. doi:10.1016/j.compstruc.2009.07.010.
  • Milani, G., M. Valente, M. Fagone, T. Rotunno, and C. Alessandri. 2019. Advanced non-linear numerical modeling of masonry groin vaults of major historical importance: St John Hospital Case Study in Jerusalem. Engineering Structures 194 (May):458–76. doi:10.1016/j.engstruct.2019.05.021.
  • Ministero delle Infrastrutture e Trasporti. 2019. Circolare esplicativa delle norme tecniche per le costruzioni. issued 2019.
  • Parisse, F., S. Cattari, R. Marques, B. L. Paulo, G. Magenes, K. Beyer, M. K. Bruno Calderoni, D. Malomo, C. Filippo Manzini, M. A. Erberik, et al. 2021. Benchmarking the Seismic Assessment of Unreinforced Masonry Buildings from a Blind Prediction Test. Structures 31:982–1005. doi:10.1016/j.istruc.2021.01.096.
  • Pasquale Di, S. 1996. L’arte Del Costruire. Tra Conoscenza e Scienza. Venezia: Marsilio.
  • Pastor, M., M. Binda, and T. Harčarik. 2012. Modal assurance criterion. Procedia Engineering 48:543–48. doi:10.1016/j.proeng.2012.09.551.
  • Pulatsu, B. 2023. Coupled elasto-softening contact models in DEM to predict the in-plane response of masonry walls. Computational Particle Mechanics 10 (6):1759–70. doi:10.1007/s40571-023-00586-x.
  • Pulatsu, B., E. Erdogmus, P. B. Lourenço, J. V. Lemos, and J. Hazzard. 2020. Discontinuum analysis of the fracture mechanism in masonry prisms and wallettes via discrete element method. Meccanica 55:505–23. doi:10.1007/s11012-020-01133-1.
  • Pulatsu, B., E. Erdogmus, P. B. Lourenço, J. V. Lemos, and K. Tuncay. 2020. Simulation of the In-Plane Structural Behavior of Unreinforced Masonry Walls and buildings using DEM. Structures 27:2274–87. doi:10.1016/j.istruc.2020.08.026.
  • Pulatsu, B., S. Gonen, P. B. Lourenço, J. V. Lemos, and J. Hazzard. 2023. Computational investigations on the combined shear–torsion–bending behavior of dry-joint masonry using DEM. Computational Particle Mechanics 10:249–60. doi:10.1007/s40571-022-00493-7.
  • Ramaglia, G., G. Piero Lignola, A. Balsamo, A. Prota, and G. Manfredi. 2017. Seismic strengthening of masonry vaults with abutments using textile-reinforced mortar. Journal of Composites for Construction 21 (2):04016079. doi:10.1061/(asce)cc.1943-5614.0000733.
  • Rickstal Van, F. 2000. Grout injection of masonry, scientific approach and modeling.
  • Roca, P., M. Cervera, G. Gariup, and L. Pelà. 2010. Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering 17 (3):299–325. doi:10.1007/s11831-010-9046-1.
  • Rolla, E. 1869. “Cenni Sulle Volte (in Italian).” Master thesis, Università di Torino.
  • Selby, R. G., and F. J. Vecchio. 1997. A constitutive Model for analysis of reinforced concrete solids. Canadian Journal of Civil Engineering 24 (3):460–70. doi:10.1139/l96-135.
  • Senthivel, R., and B. L. Paulo. 2009. Finite element modelling of deformation characteristics of historical stone masonry shear walls. Engineering Structures 31 (9):1930–43. doi:10.1016/j.engstruct.2009.02.046.
  • Smoljanović, H., Ž. Nikolić, and N. Živaljić. 2015. A finite-discrete element Model for dry stone masonry structures strengthened with steel clamps and bolts. Engineering Structures 90:117–29. doi:10.1016/j.engstruct.2015.02.004.
  • Szołomicki, J. P., P. Berkowski, and J. Barański. 2014. Computer Modelling of Masonry Cross vaults strengthened with fi ber reinforced polymer strips. Archives of Civil and Mechanical Engineering 15 (3): 1–16. doi:10.1016/j.acme.2014.05.006.
  • Tralli, A., C. Alessandri, and G. Milani. 2014. Computational methods for masonry vaults: A review of recent results. The Open Civil Engineering Journal 8 (1):272–87. doi:10.2174/1874149501408010272.
  • Ungewitter, G. G., and K. Mohrmann. 1890. Lehrbuch Der Gotischen Konstruktionen. 3rd ed. Leipzig: Weigel.