165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Different Soil-Structure Interaction Modelling Strategies for Seismic Analysis of a Masonry Church

&
Received 07 Dec 2023, Accepted 02 Apr 2024, Published online: 14 Apr 2024

References

  • AFAD. 2020. Disaster and emergency management agency. TR: Turkıye Mınıstry of Interrıor.
  • Altunışık, A. C., and A. F. Genç. 2017. Earthquake response of heavily damaged historical masonry mosques after restoration. Natural Hazards and Earth System Sciences 17 (10):1811–21. doi:10.5194/nhess-17-1811-2017.
  • Anbazhagan, P., M. N. Sheikh, and A. Parihar. 2013. Influence of rock depth on seismic site classification for shallow bedrock regions. Natural Hazards Review 14 (2):108–21. doi:10.1061/(ASCE)NH.1527-6996.0000088.
  • Anderson, J. G., Y. Lee, Y. Zeng, and S. Day. 1996. Control of strong motion by the upper 30 meters. Bulletin of the Seismological Society of America 86 (6):1749–59. doi:10.1785/BSSA0860061749.
  • Asce.1996. Minimum design loads for buildings and other structures. Reston, Va: American Society of Civil Engineers.
  • ATC. 2012. Soil-structure interaction for building structures. US:Applied Technology Council
  • Baykasoğlu, A., H. Güllü, H. Çanakçı, and L. Özbakır. 2008. Prediction of compressive and tensile strength of limestone via genetic programming. Expert Systems with Applications 35 (1–2):111–23. doi:10.1016/j.eswa.2007.06.006.
  • Bayraktar, A., and E. Hökelekli. 2020. Influences of earthquake input models on nonlinear seismic performances of minaret-foundation-soil interaction systems. Soil Dynamics and Earthquake Engineering 139:106368. doi:10.1016/j.soildyn.2020.106368.
  • Bayraktar, A., and E. Hökelekli. 2021. Nonlinear soil deformability effects on the seismic damage mechanisms of brick and stone masonry arch bridges. International Journal of Damage Mechanics 30 (3):431–52. doi:10.1177/1056789520974423.
  • Bhattacharya, S., and S. Adhikari. 2011. Experimental validation of soil–structure interaction of offshore wind turbines. Soil Dynamics and Earthquake Engineering 31 (5–6):805–16. doi:10.1016/j.soildyn.2011.01.004.
  • Borcherdt, R. 1991. Methodology for predictive gis mapping of special study zones for strong ground shaking in the san francisco bay region, CA. In procs. Fourth Int Conf Seismic Zonation 3:545–52.
  • Bowles, J. E. 1988. Foundation analysis and design. Peoria, Illinois: McGraw-Hill, Inc.
  • Burman, A., P. Nayak, P. Agrawal, and D. Maity. 2012. Coupled gravity dam–foundation analysis using a simplified direct method of soil–structure interaction. Soil Dynamics and Earthquake Engineering 34 (1):62–68. doi:10.1016/j.soildyn.2011.10.008.
  • Cakir, T. 2013. Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil–structure interaction. Soil Dynamics and Earthquake Engineering 45:96–111. doi:10.1016/j.soildyn.2012.11.008.
  • Carpinteri, A., S. Invernizzi, and G. Lacidogna. 2005. In situ damage assessment and nonlinear modelling of a historical masonry tower. Engineering Structures 27 (3):387–95. doi:10.1016/j.engstruct.2004.11.001.
  • Casolo, S., V. Diana, and G. Uva. 2017. Influence of soil deformability on the seismic response of a masonry tower. Bulletin of Earthquake Engineering 15 (5):1991–2014. doi:10.1007/s10518-016-0061-y.
  • Cortez, C., R. Jünemann, C. Fernández, A. Urrutia, J. G. F. Crempien, and R. Cienfuegos. 2022. Performance of an RC building under seismic and tsunami actions in sequence via nonlinear dynamic analysis including soil-structure interaction. Engineering Structures 272:114942. doi:10.1016/j.engstruct.2022.114942.
  • DIANA FEA. 2022. User’s manual Release 10.5. JA Delft, The Netherlands: DIANA FEA bv.
  • Drougkas, A., E. Verstrynge, P. Szekér, G. Heirman, L.-E. Bejarano-Urrego, G. Giardina, and K. Van Balen. 2019. Numerical modeling of a church nave wall subjected to differential settlements: soil-structure interaction, time-dependence and sensitivity analysis. International Journal of Architectural Heritage 14 (8):1221–38. doi:10.1080/15583058.2019.1602682.
  • Ersoy, H. Y. 2001. Composite Material. TR: Istanbul: Literatür Publishing.
  • Eurocode 6. 2005. Design of masonry structures—part 1-1: general rules for reinforced and unreinforced masonry structures. US: Comité Européen de Normalisation.
  • Fatahi, B., S. Tabatabaiefar, and B. Samali. 2014. Soil-structure interaction vs site effect for seismic design of tall buildings on soft soil. Geomechanics and Engineering 6 (3):293–320. doi:10.12989/gae.2014.6.3.293.
  • Fathi, A., A. Sadeghi, M. R. Emami Azadi, and N. Hoveidae. 2020. Assessing the soil-structure interaction effects by direct method on the out-of-plane behavior of masonry structures (case study: Arge-tabriz). Bulletin of Earthquake Engineering 18 (14):6429–43. doi:10.1007/s10518-020-00933-w.
  • Finn, W. D. L. 1991. Geotechnical engineering aspects of microzonation. In Proceeding 4th International Conference, Stanford University, California, 1:199–259.
  • Gazetas, G. 1991. Formulas and Charts for Impedances of Surface and Embedded Foundations. Journal of Geotechnical Engineering 117 (9):1363–81. doi:10.1061/(ASCE)0733-9410(1991)117:9(1363).
  • Giulio, Z., M. Paolo, G. Andrea, G. Carmelo, and D. P. Marco. 2019. Seismic assessment of a 14th-century stone arch bridge: Role of soil–structure interaction. Journal of Bridge Engineering 24 (July 1):05019008. doi:10.1061/(ASCE)BE.1943-5592.0001441.
  • Gönen, S., and S. Soyöz. 2021. Seismic analysis of a masonry arch bridge using multiple methodologies. Engineering Structures 226:111354. doi:10.1016/j.engstruct.2020.111354.
  • Güllü, H., and H. S. Jaf. 2016. Full 3D Nonlinear Time History Analysis of Dynamic Soil–structure interaction for a historical masonry arch bridge. Environmental Earth Sciences 75 (21):1–17. doi:10.1007/s12665-016-6230-0.
  • Güllü, H., and M. Karabekmez. 2017. Effect of near-fault and far-fault earthquakes on a historical masonry mosque through 3D dynamic soil-structure interaction. Engineering Structures 152:465–92. doi:10.1016/j.engstruct.2017.09.031.
  • Güllü, H., and F. Özel. 2020. Microtremor measurements and 3D dynamic soil–structure interaction analysis for a historical masonry arch bridge under the effects of near- and far-fault earthquakes. Environmental Earth Sciences 79 (13). doi:10.1007/s12665-020-09086-0.
  • Güllü, H., and M. Pala. 2014. On the resonance effect by Dynamic Soil–structure interaction: A revelation study. Natural Hazards 72 (2):827–47. doi:10.1007/s11069-014-1039-1.
  • Hatzigeorgiou, G. D., and D. E. Beskos. 2010. Soil–structure interaction effects on seismic inelastic analysis of 3-D tunnels. Soil Dynamics and Earthquake Engineering 30 (9):851–61. doi:10.1016/j.soildyn.2010.03.010.
  • Hökelekli, E., and A. Al‐Helwani. 2020. Effect of soil properties on the seismic damage assessment of historical masonry minaret–soil interaction systems. The Structural Design of Tall & Special Buildings 29 (2):e1694. doi:10.1002/tal.1694.
  • Hokmabadi, A. S., B. Fatahi, and B. Samali. 2014. Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations. Computers and Geotechnics 55:172–86. doi:10.1016/j.compgeo.2013.08.011.
  • Homaei, F., H. Shakib, and M. Soltani. 2017. Probabilistic seismic performance evaluation of vertically irregular steel building considering soil–structure interaction. International Journal of Civil Engineering 15 (4):611–25. doi:10.1007/s40999-017-0165-z.
  • Homaei, F., and M. Yazdani. 2020. The probabilistic seismic assessment of aged concrete arch bridges: the role of soil-structure interaction. Structures 28:894–904. doi:10.1016/j.istruc.2020.09.038.
  • Jeoteknik, D. 2004. Taşharon church geological and geotechnical soil investigation report.
  • Karaton, M., and H. S. Aksoy. 2018. Seismic damage assessment of an 891 years old historic masonry mosque. Periodica Polytechnica Civil Engineering 62 (1):126–35. doi:10.3311/PPci.10270.
  • Karaton, M., H. S. Aksoy, E. Sayın, and Y. Calayır. 2017. Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis 79:408–21. doi:10.1016/j.engfailanal.2017.05.017.
  • Kramer, S. L. 1996. Geotechnical earthquake engineering. Prentice-Hall, New Jersey: Pearson Education India.
  • Krejčí, T., T. Koudelka, V. Bernardo, and M. Šejnoha. 2021. Effective elastic and fracture properties of regular and irregular masonry from nonlinear homogenization. Computers & Structures 254:106580. doi:10.1016/j.compstruc.2021.106580.
  • Kuhlemeyer, R. L., and J. Lysmer. 1973. Finite element method accuracy for wave propagation problems. Journal of the Soil Mechanics and Foundations Division 99 (5):421–27. doi:10.1061/JSFEAQ.0001885.
  • Lazizi, A. H., and H. Tahghighi. 2022. Influence of soil–structure interaction on seismic demands of historic masonry structure of kashan grand bazaar. Bulletin of Earthquake Engineering 21 (1):151–76. doi:10.1007/s10518-022-01549-y.
  • Li, M., X. Lu, X. Lu, and L. Ye. 2014. Influence of soil–structure interaction on seismic collapse resistance of super-tall buildings. Journal of Rock Mechanics and Geotechnical Engineering 6 (5):477–85. doi:10.1016/j.jrmge.2014.04.006.
  • Livaoglu, R., and A. Dogangun. 2007. Effect of foundation embedment on seismic behavior of elevated tanks considering fluid–structure-Soil interaction. Soil Dynamics and Earthquake Engineering 27 (9):855–63. doi:10.1016/j.soildyn.2007.01.008.
  • Lourenco, P. 1996. Computational strategy for masonry structures. Ph.D. Thesis, US: Delft Technical University of Technology.
  • Lourenc̦o, P. B., and J. M. Pereira. 2018. Seismic retrofitting project: recommendations for advanced modeling of historic earthen sites. Guımarães, Portugal: Getty Conservation Institute.
  • Martinelli, P., A. Galli, L. Barazzetti, M. Colombo, R. Felicetti, M. Previtali, F. Roncoroni, M. Scola, and M. di Prisco. 2018. Bearing capacity assessment of a 14th century arch bridge in Lecco (Italy). International Journal of Architectural Heritage 12 (2):237–56. doi:10.1080/15583058.2017.1399482.
  • McGuire, R. K. 1978. Seismic ground motion parameter relations. Journal of the Geotechnical Engineering Division 104 (4):481–90. doi:10.1061/AJGEB6.0000615.
  • Milani, G., and P. B. Lourenço. 2012. 3D non-linear behavior of masonry arch bridges. Computers & Structures 110–111:133–50. doi:10.1016/j.compstruc.2012.07.008.
  • Minasidis, G., G. D. Hatzigeorgiou, and D. E. Beskos. 2014. SSI in steel frames subjected to near-fault earthquakes. Soil Dynamics and Earthquake Engineering 66:56–68. doi:10.1016/j.soildyn.2014.06.030.
  • Nielsen, A. H. 2006. Absorbing boundary conditions for seismic analysis in ABAQUS. In ABAQUS Users’ Conference, Boston, MA, 359–76.
  • Oliveira, D. V., P. B. Lourenço, and C. Lemos. 2010. Geometric issues and ultimate load capacity of masonry arch bridges from the Northwest Iberian Peninsula. Engineering Structures 32 (12):3955–65. https://www.sciencedirect.com/science/article/pii/S0141029610003433.
  • Ouanani, M., and B. Tiliouine. 2015. Effects of foundation soil stiffness on the 3-d modal characteristics and seismic response of a highway bridge. KSCE Journal of Civil Engineering 19 (4):1009–23. doi:10.1007/s12205-013-0435-5.
  • Özmen, A., and E. Sayın. 2021. Seismic response of a historical masonry bridge under near and far-fault ground motions. Periodica Polytechnica Civil Engineering 65 (3):946–58. https://pp.bme.hu/ci/article/view/17832.
  • Özmen, A., and E. Sayın. 2023a. 3D soil structure interaction effects on the seismic behavior of single span historical masonry bridge. Geotechnical and Geological Engineering 41 (3):2023–41. doi:10.1007/s10706-023-02389-6.
  • Özmen, A., and E. Sayın. 2023b. Evaluation of material properties of cultural heritage building by destructive and non-destructive testing: malatya taşhoran church case study. Construction and Building Materials 392:131693. doi:10.1016/j.conbuildmat.2023.131693.
  • Park, J. H., J. F. Choo, and J.-R. Cho. 2013. Dynamic soil-structure interaction analysis for complex soil profiles using unaligned mesh generation and nonlinear modeling approach. KSCE Journal of Civil Engineering 17 (4):753–62. doi:10.1007/s12205-013-0135-1.
  • PEER. 2023. NGA west 2 | pacific earthquake engineering research center. https://Peer.Berkeley.Edu/Research/Nga-West-2.
  • Pitilakis, D., and D. Clouteau. 2010. Equivalent linear substructure approximation of soil–foundation–structure interaction: Model presentation and validation. Bulletin of Earthquake Engineering 8 (2):257–82. doi:10.1007/s10518-009-9128-3.
  • Power, M. S., C. Y. Chang, and I. M. Idriss. 1986a. Variation of earthquake ground motion with depth. In Proceedings of the Third US National Conference on Earthquake Engineering, Charleston, South Carolina, August.
  • Power, M. S., C. Y. Chang, and I. M. Idriss. 1986b. Variation of earthquake ground motion with depth. In 3rd US National Conference on Earthquake Engineering, Charleston, USA, 369–80.
  • Proske, D., and P. van Gelder. 2009. Safety of historical stone arch bridges. New York, US: Springer Science & Business Media.
  • Rathje, E. M., F. Faraj, S. Russell, and J. D. Bray. 2004. Empirical relationships for frequency content parameters of earthquake ground motions. Earthquake Spectra 20 (1):119–44. doi:10.1193/1.1643356.
  • Rayhani, M. H., and M. H. el Naggar. 2008. Numerical modeling of seismic response of rigid foundation on soft soil. International Journal of Geomechanics 8 (6):336–46. doi:10.1061/(ASCE)1532-3641(2008)8:6(336).
  • Reza Tabatabaiefar, S. H., B. Fatahi, and B. Samali. 2013. Seismic behavior of building frames considering dynamic soil-structure interaction. International Journal of Geomechanics 13 (4):409–20. doi:10.1061/(ASCE)GM.1943-5622.0000231.
  • Ril 805. 2007. Guideline for load and resistance assessment of existing European railway bridges: advices on the use of advanced methods. COWI A/S.
  • Rovithis, E. N., and K. D. Pitilakis. 2016. Seismic assessment and retrofitting measures of a historic stone masonry bridge. Earthquake and Structures 10 (3):645–67. doi:10.12989/eas.2016.10.3.645.
  • Sawangsuriya, A., M. Fall, and D. Fratta. 2008. Wave-based techniques for evaluating elastic modulus and Poisson’s ratio of laboratory compacted lateritic soils. Geotechnical and Geological Engineering 26 (5):567–78. doi:10.1007/s10706-008-9190-7.
  • Sayin, E. 2016. Nonlinear seismic response of a masonry arch bridge. Earthquakes and Structures 10 (2):483–94. doi:10.12989/eas.2016.10.2.483.
  • Seismomatch. 2021. Earthquake Software for Response Spectrum Matching. Seismosoft Ltd. https://seismosoft.com.
  • Shabani, A., M. Feyzabadi, and M. Kioumarsi. 2022. Model updating of a masonry tower based on operational modal analysis: The role of soil-structure interaction. Case Studies in Construction Materials 16:e00957. doi:10.1016/j.cscm.2022.e00957.
  • Shahbazi, S., M. Khatibinia, I. Mansouri, and J. W. Hu. 2020. Seismic evaluation of special steel moment frames subjected to near-field earthquakes with forward directivity by considering soil-structure interaction effects. Scientia Iranica 27 (5):2264–82.
  • Su, J., and Y. Wang. 2013. Equivalent dynamic infinite element for soil–structure interaction. Finite Elements in Analysis and Design 63:1–7. doi:10.1016/j.finel.2012.08.006.
  • Tabatabaiefar, H. R., and A. Massumi. 2010. A simplified method to determine seismic responses of reinforced concrete moment resisting building frames under influence of soil–structure interaction. Soil Dynamics and Earthquake Engineering 30 (11):1259–67. doi:10.1016/j.soildyn.2010.05.008.
  • TBEC. 2018. Turkish building earthquake code 2018.
  • Torabi, H., and M. T. Rayhani. 2014. Three dimensional finite element modeling of seismic soil–structure interaction in soft soil. Computers and Geotechnics 60:9–19. doi:10.1016/j.compgeo.2014.03.014.
  • Tso, W. K., T. J. Zhu, and A. C. Heidebrecht. 1992. Engineering implication of ground motion A/V ratio. Soil Dynamics and Earthquake Engineering 11 (3):133–44. doi:10.1016/0267-7261(92)90027-B.
  • Van Nguyen D. D. Kimand D.D. Nguyen2020. In Structures,Vol. 26,901–14.
  • Vecchio, F. J., and M. P. Collins. 1986. The modified compression-field theory for reinforced concrete elements subjected to shear. Aci J 83 (2):219–31.
  • Wang, G.,E. D. R. Castillo,L. Wotherspoon,and J. M. Ingham.2021. In Structures, Vol. 32, 38–53.
  • Wolf, J. P., and C. Song. 2002. Some Cornerstones of Dynamic Soil–structure interaction. Engineering Structures 24 (1):13–28. doi:10.1016/S0141-0296(01)00082-7.
  • Yoo, C. 2013. Interaction between tunneling and Bridge Foundation–A 3D numerical investigation. Computers and Geotechnics 49:70–78. doi:10.1016/j.compgeo.2012.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.