0
Views
0
CrossRef citations to date
0
Altmetric
Research article

Predicting Structural Temperature of Ancient City Walls: A Case Study Using Ambient Temperature and Deep Learning

ORCID Icon, ORCID Icon, , ORCID Icon &
Received 17 Jan 2024, Accepted 10 Jul 2024, Published online: 17 Jul 2024

References

  • Alsadik, B., and L. K. Jasim. 2019. Active use of panoramic mobile mapping systems for as built surveying and heritage documentation. International Journal of Architectural Heritage 13 (2):244–56. doi:10.1080/15583058.2018.1431733.
  • Chen, G., L. Li, G. M. Li, and X. J. Pei. 2017. Failure modes classification and failure mechanism research of ancient wall. Environmental Earth Sciences 76 (23):1–15. doi:10.1007/s12665-017-7150-3.
  • Chen, L. Y., Y. T. Chen, Y. H. Chen, and D. S. Lee. 2023. Applicability of energy consumption prediction models in a department store: A case study. Case Studies in Thermal Engineering 49:103380. doi:10.1016/j.csite.2023.103380.
  • Dai, Y., J. Pang, X. K. Rui, W. W. Li, Q. H. Wang, and S. K. Li. 2023. Thermal error prediction model of high-speed motorized spindle based on DELM network optimized by weighted mean of vectors algorithm. Case Studies in Thermal Engineering 47:103054. doi:10.1016/j.csite.2023.103054.
  • Deng, Y., H. W. Ju, Y. H. Li, Y. G. Hu, and A. Q. Li. 2022. Abnormal data recovery of structural health monitoring for ancient city wall using deep learning neural network. International Journal of Architectural Heritage. 18 (3):389–407. Advance online publication. doi:10.1080/15583058.2022.2153234.
  • Deng, Y., H. W. Ju, W. Q. Zhai, A. Q. Li, and Y. L. Ding. 2022. Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring. Structural Control & Health Monitoring 29 (12):e3113. doi:10.1002/stc.3113.
  • Deng, Y., H. W. Ju, G. Q. Zhong, and A. Q. Li. 2023. Data quality evaluation for bridge structural health monitoring based on deep learning and frequency-domain information. Structural Health Monitoring 22 (5):2925–47. doi:10.1177/14759217221138724.
  • Deng, Y., H. W. Ju, G. Q. Zhong, A. Q. Li, and Y. L. Ding. 2023. A general data quality evaluation framework for dynamic response monitoring of long-span bridges. Mechanical Systems and Signal Processing 200:110514. doi:10.1016/j.ymssp.2023.110514.
  • Deng, Y., A. Q. Li, Y. Liu, and S. R. Chen. 2018. Investigation of temperature actions on flat steel box girders of long-span bridges with temperature monitoring data. Advances in Structural Engineering 21 (14):2099–113. doi:10.1177/1369433218766946.
  • Deng, Y., Y. J. Zhao, H. W. Ju, T. H. Yi, and A. Q. Li. 2024. Abnormal data detection for structural health monitoring: State-of-the-art review. Developments in the Built Environment 17 (3):100337. doi:10.1016/j.dibe.2024.100337.
  • Ding, Y. L., G. D. Zhou, A. Q. Li, and X. Wang. 2012. Thermal field characteristic analysis of steel box girder based on long-term measurement data. International Journal of Steel Structures 12 (2):219–32. doi:10.1007/s13296-012-2006-x.
  • Elbadry, M. M., and A. Ghali. 1983. Temperature variations in concrete bridges. Journal of Structural Engineering 109 (10):2355–74. doi:10.1061/(ASCE)0733-9445(1983)109:10(2355).
  • Gentile, C., A. Ruccolo, and A. Saisi. 2019. Continuous dynamic monitoring to enhance the knowledge of a historic bell-tower. International Journal of Architectural Heritage 13 (7):992–1004. doi:10.1080/15583058.2019.1605552.
  • Guo, J., C. M. Chen, H. Wen, G. B. Cai, and Y. Liu. 2024. Prediction model of goaf coal temperature based on PSO-GRU deep neural network. Case Studies in Thermal Engineering 53 (2024):103813. doi:10.1016/j.csite.2023.103813.
  • Guo, T., J. Liu, Y. Zhang, and S. Pan. 2015. Displacement monitoring and analysis of expansion joints of long-span steel bridges with viscous dampers. Journal of Bridge Engineering 20 (9):4014099. doi:10.1061/(ASCE)BE.1943-5592.0000701.
  • Gutland, M., S. Bucking, and M. S. Quintero. 2021. Assessing durability of historic masonry walls with calibrated energy models and hygrothermal modeling. International Journal of Architectural Heritage 15 (3):390–406. doi:10.1080/15583058.2019.1618976.
  • Han, X., Q. L. Zhu, J. D. Guan, Z. W. Liu, B. C. Yao, and Z. H. Han. 2023. Optimization of end-wall fence in turbine based on response surface methodology and genetic algorithm. Case Studies in Thermal Engineering 49:103306. doi:10.1016/j.csite.2023.103306.
  • Huang, Y. F., J. Sun, and L. Xu. 2023. A multi-variable multi-step Seq2seq networks for the state of charge estimation of lithium-ion battery. Case Studies in Thermal Engineering 51:103566. doi:10.1016/j.csite.2023.103566.
  • Ide, L., M. Gutland, S. Bucking, and M. S. Quintero. 2022. Balancing trade-offs between deep energy retrofits and heritage conservation: A methodology and case study. International Journal of Architectural Heritage 16 (1):97–116. doi:10.1080/15583058.2020.1753261.
  • Ju, H. W., Y. Deng, W. Q. Zhai, and A. Q. Li. 2022. Recovery of abnormal data for bridge structural health monitoring based on deep learning and temporal correlation. Sensors and Materials 34 (12):4491. doi:10.18494/SAM4000.
  • Ju, H. W., Y. Deng, Y. J. Zhao, T. H. Yi, G. Q. Zhong, and A. Q. Li. 2024. Automatic modal frequency identification of bridge cables under influence of abnormal monitoring data. Journal of Performance of Constructed Facilities. doi:10.1061/JPCFEV/CFENG-4680.
  • Ju, H. W., H. Y. Shi, W. C. Shen, and Y. Deng. 2024. An accurate and low-cost vehicle-induced deflection prediction framework for long-span bridges using deep learning and monitoring data. Engineering Structures 310:118094. doi:10.1016/j.engstruct.2024.118094.
  • Ju, H. W., W. Q. Zhai, Y. Deng, M. Chen, and A. Q. Li. 2023. Temperature time-lag effect elimination method of structural deformation monitoring data for cable-stayed bridges. Case Studies in Thermal Engineering 42:102696. doi:10.1016/j.csite.2023.102696.
  • Kim, S. H., S. J. Park, J. Wu, and J. H. Won. 2015. Temperature variation in steel box girders of cable-stayed bridges during construction. Journal of Constructional Steel Research 112:80–92. doi:10.1016/j.jcsr.2015.04.016.
  • Kong, Z. Q., B. P. Tang, L. Deng, W. Y. Liu, and Y. Han. 2020. Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units. Renewable Energy 146:760–68. doi:10.1016/j.renene.2019.07.033.
  • Korzhenkov, A. M., A. Anarbaev, M. T. Usmanova, S. N. Rodina, T. Zakhidov, Z. Koraeva, S. Omonov, and T. Zakhidov. 2021. Traces of strong earthquakes at ahsikent, the ancient capital of the ferghana valley. Journal of Volcanology and Seismology 15 (2):107–25. doi:10.1134/S0742046321020044.
  • Krejčí, T., and J. Šejnoha. 2015. Evolution of temperature and moisture fields in Charles Bridge in Prague: Computational prediction and measurements. International Journal of Architectural Heritage 9 (8):973–85. doi:10.1080/15583058.2014.893461.
  • Kromanis, R., and P. Kripakaran. 2014. Predicting thermal response of bridges using regression models derived from measurement histories. Computers & Structures 136:64–77. doi:10.1016/j.compstruc.2014.01.026.
  • Laory, I., T. N. Trinh, I. F. C. Smith, and J. M. W. Brownjohn. 2014. Methodologies for predicting natural frequency variation of a suspension bridge. Engineering Structure 80:211–21. doi:10.1016/j.engstruct.2014.09.001.
  • Li, M. C., M. H. Li, Q. B. Ren, H. Li, and L. G. Song. 2022. DRLSTM: A dual-stage deep learning approach driven by raw monitoring data for dam displacement prediction. Advanced Engineering Informatics 51:101510. doi:10.1016/j.aei.2021.101510.
  • Li, Y., Y. Yang, J. Q. Wang, and F. S. Liang. 2024. Thermal error modeling of servo axis based on optimized LSSVM with gray wolf optimizer algorithm. Case Studies in Thermal Engineering 53:103858. doi:10.1016/j.csite.2023.103858.
  • Liu, Y., Y. Deng, and C. S. Cai. 2015. Deflection monitoring and assessment for a suspension bridge using a connected pipe system: A case study in China. Structural Control & Health Monitoring 22 (12):1408–25. doi:10.1002/stc.1751.
  • Lucas, J. M., M. Virlogeux, and C. Louis. 2005. Temperature in the box girder of the Normandy bridge. Structural Engineering International 15 (3):156–65. doi:10.2749/101686605777963044.
  • Ma, Q. K. 2024. Machine learning-based optimization for catalytic sulfur removal: Computational modeling and analysis of fuel purification for reduction of environmental impacts. Case Studies in Thermal Engineering 53:103835. doi:10.1016/j.csite.2023.103835.
  • Miao, C. Q., and C. H. Shi. 2013. Temperature gradient and its effect on flat steel box girder of long-span suspension bridge. Science China Technological Sciences 56 (8):1929–39. doi:10.1007/s11431-013-5280-8.
  • Sawant, S., A. Sethi, S. Banerjee, and S. Tallur. 2023. Unsupervised learning framework for temperature compensated damage identification and localization in ultrasonic guided wave SHM with transfer learning. Ultrasonics 130:106931. doi:10.1016/j.ultras.2023.106931.
  • Sheng, X. W., Z. J. Chen, W. Q. Zheng, and H. Y. Xu. 2023. Time-varying solar radiation-induced non-uniform temperature distribution of steel-concrete composite box girder-ballastless track system. Case Studies in Thermal Engineering 43:102750. doi:10.1016/j.csite.2023.102750.
  • Sun, Z., and Y. F. Zhang. 2016. Failure mechanism of expansion joints in a suspension bridge. Journal of Bridge Engineering 21 (10):05016005. doi:10.1061/(ASCE)BE.1943-5592.0000942.
  • Wang, F., A. Zhang, Y. Fan, Y. H. Zhou, J. L. Chen, and T. L. Tan. 2023. Temperature monitoring experiment and numerical simulation of the orifice structure in an arch dam considering solar radiation effects. Journal of Civil Structural Health Monitoring 13 (2–3):523–45. doi:10.1007/s13349-022-00659-0.
  • Wang, Z. W., W. M. Z. Wang, Y. F. Zhang, and Z. Liu. 2022. Temperature prediction of flat steel box girders of long-span bridges utilizing in situ environmental parameters and machine learning. Journal of Bridge Engineering 27 (3):04022004. doi:10.1061/(ASCE)BE.1943-5592.0001840.
  • Xia, Q., J. Zhang, Y. D. Tian, and Y. F. Zhang. 2017. Experimental study of thermal effects on a long-span suspension bridge. Journal of Bridge Engineering 22 (7):04017034. doi:10.1061/(ASCE)BE.1943-5592.0001083.
  • Yan, Y., D. Wu, and Q. Li. 2019. A three-dimensional method for the simulation of temperature fields induced by solar radiation. Advances in Structural Engineering 22 (3):567–80. doi:10.1177/1369433218795254.
  • Yang, K., Y. L. Ding, P. Sun, H. W. Zhao, and F. Geng. 2019. Modeling of temperature time-lag effect for concrete box-girder bridges. Applied Sciences 9 (16):3255. doi:10.3390/app9163255.
  • Yue, Z. X., Y. L. Ding, and H. W. Zhao. 2021. Deep learning-based minute-scale digital prediction model of temperature-induced deflection of a cable-stayed bridge: Case study. Journal of Bridge Engineering 26 (6):05021004. doi:10.1061/(ASCE)BE.1943-5592.0001716.
  • Zhao, D. Y., Y. Ren, Q. Huang, and X. Xu. 2019. Analysis of temperature-induced deflection of cable-stayed bridge based on BP neural network. IOP Conference Series: Earth and Environmental Science 242:062075. doi:10.1088/1755-1315/242/6/062075.
  • Zhou, G. D., and T. H. Yi. 2013. Thermal load in large-scale bridges: A state-of-the-art review. International Journal of Distributed Sensor Networks 9 (12):217983. doi:10.1155/2013/217983.
  • Zhou, L. R., Y. Xia, J. M. W. Brownjohn, and K. Y. Koo. 2016. Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation. Journal of Bridge Engineering 21 (1):04015027. doi:10.1061/(ASCE)BE.1943-5592.0000786.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.