4,876
Views
296
CrossRef citations to date
0
Altmetric
REVIEWS

Recent Progress in Fabrication, Structure, and Properties of Carbon Fibers

&
Pages 234-258 | Received 28 Apr 2012, Accepted 19 Jun 2012, Published online: 04 Sep 2012

References

  • Kozey , V. V. , Jiang , H. , Mehta , V. R. and Kumar , S. 1995 . “Compressive behavior of materials .2. High-performance fibers,” . Journal of Material Research. , 10 : 1044 – 1061 .
  • Minus , M. L. and Kumar , S. 2005 . “The processing, properties, and structure of carbon fibers,” . JOM. , 57 : 52 – 58 .
  • Chand , S. 2000 . “Carbon fibers for composites,” . Journal of Materials Science. , 35 : 1303 – 1313 .
  • Fitzer , E. 1989 . “PAN-based carbon fibers–present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters,” . Carbon. , 27 : 621 – 645 .
  • Morgan , P. 2005 . Carbon Fibers and their Composites , Boca Raton , FL : CRC Press .
  • Zhang , R. L. , Huang , Y. D. , Li , N. , Liu , L. and Su , D. 2012 . “Effect of the concentration of the sizing agent on the carbon fibers surface and interface properties of its composites,” . Journal of Applied Polymer Science. , 125 : 425 – 432 .
  • Gao , S.-L. , Mäder , E. and Zhandarov , S. F. 2004 . “Carbon fibers and composites with epoxy resins: Topography, fractography and interphases,” . Carbon. , 42 : 515 – 529 .
  • Lucintel . 2011 . “Growth Opportunities in Carbon Fiber Market 2010–2015,” 440 Available at: http://www.lucintel.com/displayreport.aspx?RepId=RPT1144
  • Black , S. 2012 . “Carbon fiber market: Gathering momentum,” . 20 : 42 – 45 . High-Performance Composites
  • Léon , C. A. L. Y. 2010 . “Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same,” US Patent 7749479
  • Godshall , D. , Rangarajan , P. , Baird , D. G. , Wilkes , G. L. , Bhanu , V. A. and McGrath , J. E. 2003 . “Incorporation of methyl acrylate in acrylonitrile based copolymers: effects on melting behavior,” . Polymer. , 44 : 4221 – 4228 .
  • Rangarajan , P. , Bhanu , V. A. , Godshall , D. , Wilkes , G. L. , McGrath , J. E. and Baird , D. G. 2002 . “Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers,” . Polymer. , 43 : 2699 – 2709 .
  • Deng , W. , Lobovsky , A. , Iacono , S. T. , Wu , T. , Tomar , N. , Budy , S. M. , Long , T. , Hoffman , W. P. and Smith , D. W. Jr . 2011 . “Poly (acrylonitrile – co -1-vinylimidazole): A new melt processable carbon fiber precursor,” . Polymer. , 52 : 622 – 628 .
  • Naskar , A. K. , Walker , R. A. , Proulx , S. , Edie , D. D. and Ogale , A. A. 2005 . “UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer,” . Carbon. , 43 : 1065 – 1072 .
  • Bhanu , V. A. , Rangarajan , P. , Wiles , K. , Bortner , M. , Sankarpandian , M. , Godshall , D. , Glass , T. E. , Banthia , A. K. , Yang , J. , Wilkes , G. , Baird , D. and McGrath , J. E. 2002 . “Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors,” . Polymer. , 43 : 4841 – 4850 .
  • Paiva , M. C. , Kotasthane , P. , Edie , D. D. and Ogale , A. A. 2003 . “UV stabilization route for melt-processible PAN-based carbon fibers,” . Carbon. , 41 : 1399 – 1409 .
  • Li , W. , Long , D. , Miyawaki , J. , Qiao , W. , Ling , L. , Mochida , I. and Yoon , S.-H. 2012 . “Structural features of polyacrylonitrile-based carbon fibers,” . Journal of Materials Science. , 47 : 919 – 928 .
  • Kumar , S. , Anderson , D. P. and Crasto , A. S. 1993 . “Carbon fibre compressive strength and its dependence on structure and morphology,” . Journal of Materials Science. , 28 : 423 – 439 .
  • Fitzer , E. , Frohs , W. and Heine , M. 1986 . “Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres,” . Carbon. , 24 : 387 – 395 .
  • Huang , X. 2009 . “Fabrication and Properties of Carbon Fibers,” . Materials. , 2 : 2369 – 2403 .
  • Sawai , D. , Kanamoto , T. , Yamazaki , H. and Hisatani , K. 2004 . “Dynamic Mechanical Relaxations in Poly(acrylonitrile) with Different Stereoregularities,” . Macromolecules. , 37 : 2839 – 2846 .
  • Sawai , D. , Yamane , A. , Kameda , T. , Kanamoto , T. , Ito , M. , Yamazaki , H. and Hisatani , K. 1999 . “Uniaxial Drawing of Isotactic Poly(acrylonitrile):□ Development of Oriented Structure and Tensile Properties,” . Macromolecules. , 32 : 5622 – 5630 .
  • Sawai , D. , Kanamoto , T. and Porter , R. S. 1998 . “Differential Scanning Calorimetry Evidence for the Existence of a First-Order Thermal Transition in Ultraoriented at-Poly(acrylonitrile),” . Macromolecules. , 31 : 2010 – 2012 .
  • Yamane , A. , Sawai , D. , Kameda , T. , Kanamoto , T. , Ito , M. and Porter , R. S. 1997 . “Development of High Ductility and Tensile Properties upon Two-Stage Draw of Ultrahigh Molecular Weight Poly(acrylonitrile),” . Macromolecules. , 30 : 4170 – 4178 .
  • Chae , H. G. , Minus , M. L. and Kumar , S. 2006 . “Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile,” . Polymer. , 47 : 3494 – 3504 .
  • Liu , S. , Tan , L. , Pan , D. and Chen , Y. 2011 . “Gel spinning of polyacrylonitrile fibers with medium molecular weight,” . Polymer International. , 60 : 453 – 457 .
  • Tan , L. , Liu , S. , Song , K. , Chen , H. and Pan , D. 2010 . “Gel-spun polyacrylonitrile fiber from pregelled spinning solution,” . Polymer Engineering and Science. , 50 : 1290 – 1294 .
  • Tan , L. , Wan , A. and Pan , D. 2011 . “Pregelled gel spinning of polyacrylonitrile precursor fiber,” . Materials Letters. , 65 : 887 – 890 .
  • Chae , H. G. , Sreekumar , T. V. , Uchida , T. and Kumar , S. 2005 . “A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber,” . Polymer. , 46 : 10925 – 10935 .
  • Ouyang , Q. , Cheng , L. , Wang , H. and Li , K. 2008 . “DSC study of stabilization reactions in poly(acrylonitrile-co-itaconic acid) with peak-resolving method,” . Journal of Thermal Analysis and Calorimetry. , 94 : 85 – 88 .
  • Liu , Y. , Chae , H. G. and Kumar , S. 2011 . “Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part II: Stabilization reaction kinetics and effect of gas environment,” . Carbon. , 49 : 4477 – 4486 .
  • Dalton , S. , Heatley , F. and Budd , P. M. 1999 . “Thermal stabilization of polyacrylonitrile fibres,” . Polymer. , 40 : 5531 – 5543 .
  • Deurbergue , A. and Oberlin , A. 1991 . “Stabilization and carbonization of PAN-based carbon fibers as related to mechanical properties,” . Carbon. , 29 : 621 – 628 .
  • Rahaman , M. S. A. , Ismail , A. F. and Mustafa , A. 2007 . “A review of heat treatment on polyacrylonitrile fiber,” . Polymer Degradation and Stability. , 92 : 1421 – 1432 .
  • Catta Preta , I. , Sakata , S. , Garcia , G. , Zimmermann , J. , Galembeck , F. and Giovedi , C. 2007 . “Thermal behavior of polyacrylonitrile polymers synthesized under different conditions and comonomer compositions,” . Journal of Thermal Analysis and Calorimetry. , 87 : 657 – 659 .
  • Shokuhfar , A. , Sedghi , A. and Farsani , R. E. 2006 . “Effect of thermal characteristics of commercial and special polyacrylonitrile fibres on the fabrication of carbon fibres,” . Materials Science and Technology. , 22 : 1235 – 1239 .
  • Bajaj , P. , Sreekumar , T. V. and Sen , K. 2001 . “Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers,” . Polymer. , 42 : 1707 – 1718 .
  • Hou , Y. , Sun , T. , Wang , H. and Wu , D. 2009 . “Thermal-shrinkage investigation of the chemical reaction during the stabilization of polyacrylonitrile fibers,” . Journal of Applied Polymer Science. , 114 : 3668 – 3672 .
  • Yu , M. , Wang , C. , Bai , Y. , Wang , Y. and Zhu , B. 2006 . “Evolution of tension during the thermal stabilization of polyacrylonitrile fibers under different parameters,” . Journal of Applied Polymer Science. , 102 : 5500 – 5506 .
  • Wu , G. P. , Lu , C. X. , Ling , L. C. , Hao , A. M. and He , F. 2005 . “Influence of tension on the oxidative stabilization process of polyacrylonitrile fibers,” . Journal of Applied Polymer Science. , 96 : 1029 – 1034 .
  • Fazlitdinova , A. , Tyumentsev , V. , Podkopayev , S. and Shveikin , G. 2010 . “Changes of polyacrylonitrile fiber fine structure during thermal stabilization,” . Journal of Materials Science. , 45 : 3998 – 4005 .
  • Yu , M. , Wang , C. , Zhao , Y. , Zhang , M. and Wang , W. 2010 . “Thermal properties of acrylonitrile/itaconic acid polymers in oxidative and nonoxidative atmospheres,” . Journal of Applied Polymer Science. , 116 : 1207 – 1212 .
  • Hou , C. , Liu , J. , Ji , C. and Wang , C. 2006 . “Determination of the degradation apparent activation energy of acrylonitrile/acrylic acid copolymers,” . Journal of Applied Polymer Science. , 100 : 4668 – 4671 .
  • Zhang , W. X. , Liu , J. and Liang , J. Y. 2004 . “New evaluation on the preoxidation extent of different PAN precursors,” . J Mater Sci Technol. , 20 : 369 – 372 .
  • Devasia , R. , Reghunadhan , C. P. , Sivadasan , N. P. , Katherine , B. K. and Ninan , K. N. 2003 . “Cyclization reaction in poly(acrylonitrile/itaconic acid) copolymer: An isothermal differential scanning calorimetry kinetic study,” . Journal of Applied Polymer Science. , 88 : 915 – 920 .
  • Ouyang , Q. , Cheng , L. , Wang , H. and Li , K. 2008 . “Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile,” . Polymer Degradation and Stability. , 93 : 1415 – 1421 .
  • Belyaev , S. S. , Arkhangelsky , I. V. and Makarenko , I. V. 2010 . “Non-isothermal kinetic analysis of oxidative stabilization processes in PAN fibers,” . Thermochimica Acta. , 507–508 : 9 – 14 .
  • Dunham , M. G. and Edie , D. D. 1992 . “Model of stabilization for PAN-based carbon fiber precursor bundles,” . Carbon. , 30 : 435 – 450 .
  • Watt , W. and Johnson , W. 1975 . “Mechanism of oxidization of polyacrylonitrile fibers,” . Nature. , 257 : 210 – 212 .
  • Johannis Simitzis , S. S. 2008 . “Correlation of chemical shrinkage of polyacrylonitrile fibres with kinetics of cyclization,” . Polymer International. , 57 : 99 – 105 .
  • Hou , Y. , Sun , T. , Wang , H. and Wu , D. 2008 . “A new method for the kinetic study of cyclization reaction during stabilization of polyacrylonitrile fibers,” . Journal of Materials Science. , 43 : 4910 – 4914 .
  • Liu , Y. , Chae , H. G. and Kumar , S. 2011 . “Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part III: Effect of stabilization conditions on carbon fiber properties,” . Carbon. , 49 : 4487 – 4496 .
  • Yuan , H. , Wang , Y. , Yu , H. , Wei , Z. , Ge , B. and Mei , Y. 2011 . “Effect of UV irradiation on PAN precursor fibers and stabilization process,” . Journal of Wuhan University of Technology–Materials Science Edition. , 26 : 449 – 454 .
  • Yuan , H. , Wang , Y. , Liu , P. , Yu , H. , Ge , B. and Mei , Y. 2011 . “Effect of electron beam irradiation on polyacrylonitrile precursor fibers and stabilization process,” . Journal of Applied Polymer Science. , 122 : 90 – 96 .
  • Tan , L. and Wan , A. 2011 . “Structural changes of polyacrylonitrile precursor fiber induced by γ-ray irradiation,” . Materials Letters , 65 : 3109 – 3111 .
  • Lv , M.-y. , Ge , H.-y. and Chen , J. 2009 . “Study on the chemical structure and skin-core structure of polyacrylonitrile-based fibers during stabilization,” . Journal of Polymer Research. , 16 : 513 – 517 .
  • Ge , H. , Liu , H. , Chen , J. and Wang , C. 2009 . “The microstructure of polyacrylonitrile-stabilized fibers,” . Journal of Applied Polymer Science. , 113 : 2413 – 2417 .
  • Katsumi , Y. , Masaru , T. and Yoji , M. 1999 . “ Production of carbon fiber precursor fiber and carbon fiber ” . Japanese Patent 11124744
  • Ouyang , Q. , Wang , H. , Cheng , L. and Sun , Y. 2007 . “Effect of boric acid on the stabilization of poly(acrylonitrile-co-itaconic acid),” . Journal of Polymer Research. , 14 : 497 – 503 .
  • Wu , G.-P. , Lu , C.-X. , Wang , Y.-Y. and Ling , L.-C. 2011 . “Effect of boric acid on oxidative stabilization of polyacrylonitrile fibers,” . Fibers and Polymers. , 12 : 979 – 982 .
  • Jing , M. , Wang , C.-g. , Wang , Q. , Bai , Y.-j. and Zhu , B. 2007 . “Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350–600°C,” . Polymer Degradation and Stability. , 92 : 1737 – 1742 .
  • Ji , M. X. , Wang , C. G. , Bai , Y. J. , Yu , M. J. and Wang , Y. X. 2007 . “Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization,” . Polymer Bulletin. , 59 : 527 – 536 .
  • Devasia , R. , Nair , C. P. R. , Sadhana , R. , Babu , N. S. and Ninan , K. N. 2006 . “Fourier transform infrared and wide-angle X-ray diffraction studies of the thermal cyclization reactions of high-molar-mass poly(acrylonitrile-co-itaconic acid),” . Journal of Applied Polymer Science. , 100 : 3055 – 3062 .
  • Wen , Y. , Li , H. , Peng , G. , Yang , Y. and Liu , L. 2010 . “HRTEM nanostructural evolution of onion-like spheres in polyacrylonitrile fibres during stabilization and carbonization,” . Mater Sci. , 28 : 479 – 490 .
  • Yu , M. , Wang , C. , Bai , Y. , Zhu , B. , Ji , M. and Xu , Y. 2008 . “Microstructural evolution in polyacrylonitrile fibers during oxidative stabilization,” . Journal of Polymer Science Part B: Polymer Physics. , 46 : 759 – 765 .
  • Ogawa , H. and Saito , K. 1995 . “Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index,” . Carbon. , 33 : 783 – 788 .
  • Zhu , Y. , Wilding , M. A. and Mukhopadhyay , S. K. 1996 . “Estimation, using infrared spectroscopy, of the cyclization of poly(acrylonitrile) during the stabilization stage of carbon fibre production,” . Journal of Materials Science. , 31 : 3831 – 3837 .
  • Yun , J. H. , Kim , B. H. , Yang , K. S. , Bang , Y. H. , Kim , S. R. and Woo , H. G. 2009 . “Process optimization for preparing high performance PAN-based carbon fibers,” . Bull Korean Chem Soc. , 30 : 2253 – 2258 .
  • Jing , M. , Wang , C.-G. , Zhu , B. , Wang , Y.-X. , Gao , X.-P. and Chen , W.-N. 2008 . “Effects of preoxidation and carbonization technologies on tensile strength of PAN-based carbon fiber,” . Journal of Applied Polymer Science. , 108 : 1259 – 1264 .
  • Farsani , R. E. , Raissi , S. , Shokuhfar , A. and Sedghi , A. 2007 . “Optimisation of carbon fibres made from commercial polyacrylonitrile fibres using the screening design method,” . Mater Sci. , 25 : 113 – 120 .
  • Wu , G. , Lu , C. , Zhang , R. , Wu , X. , Ren , F. , Li , K. , He , F. and Ling , L. 2004 . “Effect of moisture on stabilization of polyacrylonitrile fibers,” . Journal of Materials Science. , 39 : 2959 – 2960 .
  • Jin , D. , Huang , Y. , Liu , X. and Yu , Y. 2004 . “The influences of silicone finishes on thermooxidative stabilization of PAN precursor fibers,” . Journal of Materials Science. , 39 : 3365 – 3368 .
  • Sun , T. , Hou , Y. and Wang , H. 2009 . “Effect of atmospheres on stabilization of polyacrylonitrile fibers,” . Journal of Macromolecular Science, Part A. , 46 : 807 – 815 .
  • Qin , X. , Lu , Y. , Xiao , H. , Hao , Y. and Pan , D. 2011 . “Improving preferred orientation and mechanical properties of PAN-based carbon fibers by pretreating precursor fibers in nitrogen,” . Carbon. , 49 : 4598 – 4600 .
  • Sreekumar , T. V. , Liu , T. , Min , B. G. , Guo , H. , Kumar , S. , Hauge , R. H. and Smalley , R. E. 2004 . “Polyacrylonitrile single-walled carbon nanotube composite fibers,” . Advanced Materials. , 16 : 58 – 61 .
  • Moniruzzaman , M. and Winey , K. I. 2006 . “Polymer nanocomposites containing carbon nanotubes,” . Macromolecules. , 39 : 5194 – 5205 .
  • Coleman , J. N. , Khan , U. , Blau , W. J. and Gun’ko , Y. K. 2006 . “Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites,” . Carbon. , 44 : 1624 – 1652 .
  • Chae , H. G. , Minus , M. L. , Rasheed , A. and Kumar , S. 2007 . “Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers,” . Polymer. , 48 : 3781 – 3789 .
  • Liu , Y. , Chae , H. G. and Kumar , S. 2011 . “Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I: Effect of carbon nanotubes on stabilization,” . Carbon. , 49 : 4466 – 4476 .
  • Yaodong , Liu . unpublished work
  • Díez , N. , Álvarez , P. , Santamaría , R. , Blanco , C. , Menéndez , R. and Granda , M. 2012 . “Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation,” . Fuel Processing Technology. , 93 : 99 – 104 .
  • Mora , E. , Blanco , C. , Prada , V. , Santamaría , R. , Granda , M. and Menéndez , R. 2002 . “A study of pitch-based precursors for general purpose carbon fibres,” . Carbon. , 40 : 2719 – 2725 .
  • Yang , K. S. , Lee , D. J. , Ryu , S. K. , Korai , Y. , Kim , Y. J. and Mochida , I. 1999 . “Isotropic carbon and graphite fibers from chemically modified coal-tar pitch,” . Korean Journal of Chemical Engineering. , 16 : 518 – 524 .
  • Dauche , F. M. , Barnes , A. B. , Gallego , N. C. , Edie , D. D. and Thies , M. C. 1998 . “Ribbon-shaped carbon fibers from supercritically extracted mesophase pitches,” . Carbon. , 36 : 1238 – 1240 .
  • Park , S. H. , Kim , C. , Choi , Y. O. and Yang , K. S. 2003 . “Preparations of pitch-based CF/ACF webs by electrospinning,” . Carbon. , 41 : 2655 – 2657 .
  • Park , S. H. , Kim , C. and Yang , K. S. 2004 . “Preparation of carbonized fiber web from electrospinning of isotropic pitch,” . Synthetic Metals. , 143 : 175 – 179 .
  • Watanabe , F. , Korai , Y. , Mochida , I. and Nishimura , Y. 2000 . “Structure of melt-blown mesophase pitch-based carbon fiber,” . Carbon. , 38 : 741 – 747 .
  • Fukunaga , A. and Ueda , S. 2000 . “Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices,” . Composites Science and Technology. , 60 : 249 – 254 .
  • Fukunaga , A. , Ueda , S. and Nagumo , M. 1999 . “Air-oxidation and anodization of pitch-based carbon fibers,” . Carbon. , 37 : 1081 – 1085 .
  • Boudou , J. P. , Paredes , J. I. , Cuesta , A. , Martínez-Alonso , A. and Tascón , J. M. D. 2003 . “Oxygen plasma modification of pitch-based isotropic carbon fibres,” . Carbon. , 41 : 41 – 56 .
  • Fukunaga , A. , Komami , T. , Ueda , S. and Nagumo , M. 1999 . “Plasma treatment of pitch-based ultra high modulus carbon fibers,” . Carbon. , 37 : 1087 – 1091 .
  • Paris , O. , Loidl , D. and Peterlik , H. 2002 . “Texture of PAN- and pitch-based carbon fibers,” . Carbon. , 40 : 551 – 555 .
  • Paiva , M. C. , Bernardo , C. A. and Nardin , M. 2000 . “Mechanical, surface and interfacial characterisation of pitch and PAN-based carbon fibres,” . Carbon. , 38 : 1323 – 1337 .
  • Hong , S. H. , Korai , Y. and Mochida , I. 2000 . “Mesoscopic texture at the skin area of mesophase pitch-based carbon fiber,” . Carbon. , 38 : 805 – 815 .
  • Watanabe , F. , Ishida , S. , Korai , Y. , Mochida , I. , Kato , I. , Sakai , Y. and Kamatsu , M. 1999 . “Pitch-based carbon fiber of high compressive strength prepared from synthetic isotropic pitch containing mesophase spheres,” . Carbon. , 37 : 961 – 967 .
  • Andrews , R. , Jacques , D. , Rao , A. M. , Rantell , T. , Derbyshire , F. , Chen , Y. , Chen , J. and Haddon , R. C. 1999 . Nanotube composite carbon fibers , AIP .
  • Cho , T. , Lee , Y. S. , Rao , R. , Rao , A. M. , Edie , D. D. and Ogale , A. A. 2003 . “Structure of carbon fiber obtained from nanotube-reinforced mesophase pitch,” . Carbon. , 41 : 1419 – 1424 .
  • Kim , J. W. , Im , J. S. , Cho , T. , Basova , Y. V. , Edie , D. D. and Lee , Y. S. 2007 . “Characteristics of pitch-based carbon fibers containing multi-wall carbon nanotubes,” . J Ind Eng Chem. , 13 : 757 – 763 .
  • Basu-Dutt , S. , Minus , M. L. , Jain , R. , Nepal , D. and Kumar , S. 2011 . “Chemistry of Carbon Nanotubes for Everyone,” . Journal of Chemical Education. , 89 : 221 – 229 .
  • Vigolo , B. , Pénicaud , A. , Coulon , C. , Sauder , C. , Pailler , R. , Journet , C. , Bernier , P. and Poulin , P. 2000 . “Macroscopic fibers and ribbons of oriented carbon nanotubes,” . Science. , 290 : 1331 – 1334 .
  • Poulin , P. , Vigolo , B. and Launois , P. 2002 . “Films and fibers of oriented single wall nanotubes,” . Carbon. , 40 : 1741 – 1749 .
  • Dalton , A. B. , Collins , S. , Munoz , E. , Razal , J. M. , Ebron , V. H. , Ferraris , J. P. , Coleman , J. N. , Kim , B. G. and Baughman , R. H. 2003 . “Super-tough carbon-nanotube fibres,” . Nature. , 423 : 703 – 703 .
  • Barisci , J. N. , Tahhan , M. , Wallace , G. G. , Badaire , S. , Vaugien , T. , Maugey , M. and Poulin , P. 2004 . “Properties of carbon nanotube fibers spun from DNA-stabilized dispersions,” . Advanced Functional Materials. , 14 : 133 – 138 .
  • Miaudet , P. , Badaire , S. , Maugey , M. , Derre , A. , Pichot , V. , Launois , P. , Poulin , P. and Zakri , C. 2005 . “Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment,” . Nano Letters. , 5 : 2212 – 2215 .
  • Néri , W. , Maugey , M. , Miaudet , P. , Derré , A. , Zakri , C. and Poulin , P. 2006 . “Surfactant-free spinning of composite carbon nanotube fibers,” . Macromolecular Rapid Communications. , 27 : 1035 – 1038 .
  • Razal , J. M. , Coleman , J. N. , Muñoz , E. , Lund , B. , Gogotsi , Y. , Ye , H. , Collins , S. , Dalton , A. B. and Baughman , R. H. 2007 . “Arbitrarily shaped fiber assemblies from spun carbon nanotube gel fibers,” . Advanced Functional Materials. , 17 : 2918 – 2924 .
  • Kozlov , M. E. , Capps , R. C. , Sampson , W. M. , Ebron , V. H. , Ferraris , J. P. and Baughman , R. H. 2005 . “Spinning solid and hollow polymer-free carbon nanotube fibers,” . Advanced Materials. , 17 : 614 – 617 .
  • Ericson , L. M. , Fan , H. , Peng , H. , Davis , V. A. , Zhou , W. , Sulpizio , J. , Wang , Y. , Booker , R. , Vavro , J. , Guthy , C. , Parra-Vasquez , A. N. G. , Kim , M. J. , Ramesh , S. , Saini , R. K. , Kittrell , C. , Lavin , G. , Schmidt , H. , Adams , W. W. , Billups , W. E. , Pasquali , M. , Hwang , W.-F. , Hauge , R. H. , Fischer , J. E. and Smalley , R. E. 2004 . “Macroscopic, neat, single-walled carbon nanotube fibers,” . Science. , 305 : 1447 – 1450 .
  • Zhou , W. , Vavro , J. , Guthy , C. , Winey , K. I. , Fischer , J. E. , Ericson , L. M. , Ramesh , S. , Saini , R. , Davis , V. A. , Kittrell , C. , Pasquali , M. , Hauge , R. H. and Smalley , R. E. 2004 . “Single wall carbon nanotube fibers extruded from super-acid suspensions: Preferred orientation, electrical, and thermal transport,” . Journal of Applied Physics. , 95 : 649 – 655 .
  • Jiang , K. , Li , Q. and Fan , S. 2002 . “Nanotechnology: Spinning continuous carbon nanotube yarns,” . Nature. , 419 : 801 – 801 .
  • Zhang , M. , Atkinson , K. R. and Baughman , R. H. 2004 . “Multifunctional carbon nanotube yarns by downsizing an ancient technology,” . Science. , 306 : 1358 – 1361 .
  • Zhang , X. , Li , Q. , Holesinger , T. G. , Arendt , P. N. , Huang , J. , Kirven , P. D. , Clapp , T. G. , DePaula , R. F. , Liao , X. , Zhao , Y. , Zheng , L. , Peterson , D. E. and Zhu , Y. 2007 . “Ultrastrong, stiff, and lightweight carbon-nanotube fibers,” . Advanced Materials. , 19 : 4198 – 4201 .
  • Zhang , X. , Li , Q. , Tu , Y. , Li , Y. , Coulter , J. Y. , Zheng , L. , Zhao , Y. , Jia , Q. , Peterson , D. E. and Zhu , Y. 2007 . “Strong carbon-nanotube fibers spun from long carbon-nanotube arrays,” . Small. , 3 : 244 – 248 .
  • Yang , Z. , Sun , X. , Chen , X. , Yong , Z. , Xu , G. , He , R. , An , Z. , Li , Q. and Peng , H. 2011 . “Dependence of structures and properties of carbon nanotube fibers on heating treatment,” . Journal of Materials Chemistry. , 21 : 13772 – 13775 .
  • Li , Y.-L. , Kinloch , I. A. and Windle , A. H. 2004 . “Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis,” . Science. , 304 : 276 – 278 .
  • Motta , M. , Li , Kinloch , I. and Windle , A. 2005 . “Mechanical properties of continuously spun fibers of carbon nanotubes,” . Nano Letters. , 5 : 1529 – 1533 .
  • Koziol , K. , Vilatela , J. , Moisala , A. , Motta , M. , Cunniff , P. , Sennett , M. and Windle , A. 2007 . “High-Performance Carbon Nanotube Fiber,” . Science. , 318 : 1892 – 1895 .
  • Motta , M. , Moisala , A. , Kinloch , I. A. and Windle , A. H. 2007 . “High performance fibres from ‘dog bone’ carbon nanotubes,” . Advanced Materials. , 19 : 3721 – 3726 .
  • Zhong , X.-H. , Li , Y.-L. , Liu , Y.-K. , Qiao , X.-H. , Feng , Y. , Liang , J. , Jin , J. , Zhu , L. , Hou , F. and Li , J.-Y. 2010 . “Continuous multilayered carbon nanotube yarns,” . Advanced Materials. , 22 : 692 – 696 .
  • NanoComp . cited 2012 Apr 15, 2012]; Available from: http://www.nanocomptech.com/html/nanocomp-what-we-do.html
  • Zheng , L. , Zhang , X. , Li , Q. , Chikkannanavar , S. B. , Li , Y. , Zhao , Y. , Liao , X. , Jia , Q. , Doorn , S. K. , Peterson , D. E. and Zhu , Y. 2007 . “Carbon-nanotube cotton for large-scale fibers,” . Advanced Materials. , 19 : 2567 – 2570 .
  • Behabtu , N. , Green , M. J. and Pasquali , M. 2008 . “Carbon nanotube-based neat fibers,” . Nano Today. , 3 : 24 – 34 .
  • Vilatela , J. J. and Windle , A. H. 2010 . “Yarn-like carbon nanotube fibers,” . Advanced Materials. , 22 : 4959 – 4963 .
  • Qian , D. , Liu , W. K. and Ruoff , R. S. 2003 . “Load transfer mechanism in carbon nanotube ropes,” . Composites Science and Technology. , 63 : 1561 – 1569 .
  • Yakobson , B. I. , Samsonidze , G. and Samsonidze , G. G. 2000 . “Atomistic theory of mechanical relaxation in fullerene nanotubes,” . Carbon. , 38 : 1675 – 1680 .
  • Vilatela , J. J. , Elliott , J. A. and Windle , A. H. 2011 . “A Model for the Strength of Yarn-like Carbon Nanotube Fibers,” . ACS Nano. , 5 : 1921 – 1927 .
  • Sears , K. , Skourtis , C. , Atkinson , K. , Finn , N. and Humphries , W. 2010 . “Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength,” . Carbon. , 48 : 4450 – 4456 .
  • Zhao , J. , Zhang , X. , Di , J. , Xu , G. , Yang , X. , Liu , X. , Yong , Z. , Chen , M. and Li , Q. 2010 . “Double-peak mechanical properties of carbon-nanotube fibers,” . Small. , 6 : 2612 – 2617 .
  • Boncel , S. , Sundaram , R. M. , Windle , A. H. and Koziol , K. K. K. 2011 . “Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment,” . ACS Nano. , 5 : 9339 – 9344 .
  • Miao , M. , Hawkins , S. C. , Cai , J. Y. , Gengenbach , T. R. , Knott , R. and Huynh , C. P. 2011 . “Effect of gamma-irradiation on the mechanical properties of carbon nanotube yarns,” . Carbon. , 49 : 4940 – 4947 .
  • Jang , E. Y. , Kang , T. J. , Im , H. , Baek , S. J. , Kim , S. , Jeong , D. H. , Park , Y. W. and Kim , Y. H. 2009 . “Macroscopic single-walled-carbon-nanotube fiber self-assembled by dip-coating method,” . Advanced Materials. , 21 : 4357 – 4361 .
  • Razdan , S. , Patra , P. K. , Kar , S. , Ci , L. , Vajtai , R. , Kukovecz , A. k. , Kónya , Z. n. , Kiricsi , I. and Ajayan , P. M. 2009 . “Ionically self-assembled polyelectrolyte-based carbon nanotube fibers,” . Chemistry of Materials. , 21 : 3062 – 3071 .
  • Ji , L. , Medford , A. J. and Zhang , X. 2009 . “Fabrication of carbon fibers with nanoporous morphologies from electrospun polyacrylonitrile/poly(L-lactide) blends,” . Journal of Polymer Science Part B: Polymer Physics. , 47 : 493 – 503 .
  • Ryu , S. , Lee , Y. , Hwang , J.-W. , Hong , S. , Kim , C. , Park , T. G. , Lee , H. and Hong , S. H. 2011 . “High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer,” . Advanced Materials. , 23 : 1971 – 1975 .
  • Wu , A. S. , Chou , T.-W. , Gillespie , J. W. , Lashmore , D. and Rioux , J. 2012 . “Electromechanical response and failure behaviour of aerogel-spun carbon nanotube fibres under tensile loading,” . Journal of Materials Chemistry. , 22 : 6792 – 6798 .
  • Mora , R. J. , Vilatela , J. J. and Windle , A. H. 2009 . “Properties of composites of carbon nanotube fibres,” . Composites Science and Technology. , 69 : 1558 – 1563 .
  • Gao , Y. , Li , J. , Liu , L. , Ma , W. , Zhou , W. , Xie , S. and Zhang , Z. 2010 . “Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy,” . Advanced Functional Materials. , 20 : 3797 – 3803 .
  • Severini , F. , Formaro , L. , Pegoraro , M. and Posca , L. 2002 . “Chemical modification of carbon fiber surfaces,” . Carbon. , 40 : 735 – 741 .
  • Meng , L. H. , Chen , Z. W. , Song , X. L. , Liang , Y. X. , Huang , Y. D. and Jiang , Z. X. 2009 . “Influence of high temperature and pressure ammonia solution treatment on interfacial behavior of carbon fiber/epoxy resin composites,” . Journal of Applied Polymer Science. , 113 : 3436 – 3441 .
  • Yue , Z. R. , Jiang , W. , Wang , L. , Gardner , S. D. and Pittman , C. U. Jr . 1999 . “Surface characterization of electrochemically oxidized carbon fibers,” . Carbon. , 37 : 1785 – 1796 .
  • Chen , X. , Farber , M. , Gao , Y. , Kulaots , I. , Suuberg , E. M. and Hurt , R. H. 2003 . “Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces,” . Carbon. , 41 : 1489 – 1500 .
  • Seo , M.-K. and Park , S.-J. 2009 . “Surface characteristics of carbon fibers modified by direct oxyfluorination,” . Journal of Colloid and Interface Science. , 330 : 237 – 242 .
  • Li , J. 2008 . “Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites,” . Applied Surface Science. , 255 : 2822 – 2824 .
  • Osbeck , S. , Bradley , R. H. , Liu , C. , Idriss , H. and Ward , S. 2011 . “Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres,” . Carbon. , 49 : 4322 – 4330 .
  • Ivanov , M. B. , Gavrilov , N. V. , Belyh , T. A. , Ligacheva , E. A. , Galijeva , L. V. , Ligachev , A. E. and Sohoreva , V. V. 2007 . “Irradiation effects in carbon fibers after N+-ion irradiation,” . Surface and Coatings Technology. , 201 : 8326 – 8328 .
  • Li , J.-Q. , Huang , Y.-D. , Fu , S.-Y. , Yang , L.-H. , Qu , H.-T. and Wu , G.-s. 2010 . “Study on the surface performance of carbon fibres irradiated by γ-ray under different irradiation dose,” . Applied Surface Science. , 256 : 2000 – 2004 .
  • Wen , H.-C. , Yang , K. , Ou , K.-L. , Wu , W.-F. , Chou , C.-P. , Luo , R.-C. and Chang , Y.-M. 2006 . “Effects of ammonia plasma treatment on the surface characteristics of carbon fibers,” . Surface and Coatings Technology. , 200 : 3166 – 3169 .
  • Zhang , X. , Huang , Y. and Wang , T. 2007 . “Plasma activation of carbon fibres for polyarylacetylene composites,” . Surface and Coatings Technology. , 201 : 4965 – 4968 .
  • Xie , J. , Xin , D. , Cao , H. , Wang , C. , Zhao , Y. , Yao , L. , Ji , F. and Qiu , Y. 2011 . “Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment,” . Surface and Coatings Technology. , 206 : 191 – 201 .
  • Xu , Z. , Wu , X. , Sun , Y. , Jiao , Y. , Li , J. , Chen , L. and Lu , L. 2008 . “Surface modification of carbon fiber by redox-induced graft polymerization of acrylic acid,” . Journal of Applied Polymer Science. , 108 : 1887 – 1892 .
  • Arshad , S. N. , Naraghi , M. and Chasiotis , I. 2011 . “Strong carbon nanofibers from electrospun polyacrylonitrile,” . Carbon. , 49 : 1710 – 1719 .
  • Yang , Y. , Centrone , A. , Chen , L. , Simeon , F. , Alan Hatton , T. and Rutledge , G. C. 2011 . “Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber,” . Carbon. , 49 : 3395 – 3403 .
  • Zhou , Z. , Liu , K. , Lai , C. , Zhang , L. , Li , J. , Hou , H. , Reneker , D. H. and Fong , H. 2010 . “Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid,” . Polymer. , 51 : 2360 – 2367 .
  • Rafique , J. , Yu , J. , Zha , X. and Rafique , K. 2010 . “Fabrication of ultra thin and aligned carbon nanofibres from electrospun polyacrylonitrile nanofibres,” . Bulletin of Materials Science. , 33 : 553 – 559 .
  • Prilutsky , S. , Zussman , E. and Cohen , Y. 2010 . “Carbonization of electrospun poly(acrylonitrile) nanofibers containing multiwalled carbon nanotubes observed by transmission electron microscope with in situ heating,” . Journal of Polymer Science Part B: Polymer Physics. , 48 : 2121 – 2128 .
  • Zhou , Z. , Lai , C. , Zhang , L. , Qian , Y. , Hou , H. , Reneker , D. H. and Fong , H. 2009 . “Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties,” . Polymer. , 50 : 2999 – 3006 .
  • Bui , N. N. , Kim , B. H. , Yang , K. S. , Dela Cruz , M. E. and Ferraris , J. P. 2009 . “Activated carbon fibers from electrospinning of polyacrylonitrile/pitch blends,” . Carbon. , 47 : 2538 – 2539 .
  • Vaisman , L. , Wachtel , E. , Wagner , H. D. and Marom , G. 2007 . “Polymer-nanoinclusion interactions in carbon nanotube based polyacrylonitrile extruded and electrospun fibers,” . Polymer. , 48 : 6843 – 6854 .
  • Sutasinpromprae , J. , Jitjaicham , S. , Nithitanakul , M. , Meechaisue , C. and Supaphol , P. 2006 . “Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers,” . Polymer International. , 55 : 825 – 833 .
  • Zussman , E. , Chen , X. , Ding , W. , Calabri , L. , Dikin , D. A. , Quintana , J. P. and Ruoff , R. S. 2005 . “Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers,” . Carbon. , 43 : 2175 – 2185 .
  • Ko , F. , Gogotsi , Y. , Ali , A. , Naguib , N. , Ye , H. , Yang , G. L. , Li , C. and Willis , P. 2003 . “Electrospinning of continuous carbon nanotube-filled nanofiber yarns,” . Advanced Materials. , 15 : 1161 – 1165 .
  • Tagawa , T. and Miyata , T. 1997 . “Size effect on tensile strength of carbon fibers,” . Materials Science and Engineering: A. , 238 : 336 – 342 .
  • Liwen , J. , Carl , S. , Saad , A. K. and Xiangwu , Z. 2008 . “Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers,” . Nanotechnology. , 19 : 085605
  • Im , J. S. , Jang , J. S. and Lee , Y. S. 2009 . “Synthesis and characterization of mesoporous electrospun carbon fibers derived from silica template,” . J Ind Eng Chem. , 15 : 914 – 918 .
  • Zhou , C. , Liu , T. , Wang , T. and Kumar , S. 2006 . “PAN/SAN/SWNT ternary composite: Pore size control and electrochemical supercapacitor behavior,” . Polymer. , 47 : 5831 – 5837 .
  • Peng , M. , Li , D. , Shen , L. , Chen , Y. , Zheng , Q. and Wang , H. 2006 . “Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends,” . Langmuir. , 22 : 9368 – 9374 .
  • Im , J. S. , Park , S.-J. and Lee , Y.-S. 2009 . “Superior prospect of chemically activated electrospun carbon fibers for hydrogen storage,” . Materials Research Bulletin. , 44 : 1871 – 1878 .
  • Song , X. , Wang , C. and Zhang , D. 2009 . “Surface structure and adsorption properties of ultrafine porous carbon fibers,” . Applied Surface Science. , 255 : 4159 – 4163 .
  • Jagannathan , S. , Chae , H. G. , Jain , R. and Kumar , S. 2008 . “Structure and electrochemical properties of activated polyacrylonitrile based carbon fibers containing carbon nanotubes,” . Journal of Power Sources. , 185 : 676 – 684 .
  • Chae , H. G. , Choi , Y. H. , Minus , M. L. and Kumar , S. 2009 . “Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber,” . Composites Science and Technology. , 69 : 406 – 413 .
  • Newcomb , B. A. , Gulgunje , P. V. , Gupta , K. , Liu , Y. D. , Nair , S. , Chae , H. G. and Kumar , S. “Low density carbon fibers based on Honey-comb structure,” To be published
  • Nayani , K. , Katepalli , H. , Sharma , C. S. , Sharma , A. , Patil , S. and Venkataraghavan , R. 2011 . “Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers,” . Industrial and Engineering Chemistry Research. , 51 : 1761 – 1766 .
  • Xie , W. , Cheng , H. F. , Chu , Z. Y. and Chen , Z. H. 2009 . “Effect of carbonization time on the structure and electromagnetic parameters of porous-hollow carbon fibres,” . Ceramics International. , 35 : 2705 – 2710 .
  • Sun , L. K. , Cheng , H. F. , Chu , Z. Y. and Zhou , Y. J. 2009 . “Fabrication of pan-based hollow carbon fibers by coaxial electrospinning and two post-treatments,” . Acta Polymerica Sinica. , : 61 – 65 .
  • Yang , M. C. and Yu , D. G. 1995 . “Influence of activation time on the properties of polyaclylonitrile-based activated carbon hollow-fiber,” . Journal of Applied Polymer Science. , 58 : 185 – 189 .
  • Nakamura , Y. , Shibamoto , T. , Ozawa , K. , Akiba , T. , Matsui , N. , Yoshiyama , N. , Nakagawa , S. and Takeuchi , J. 1981 . “Performance of cuprophane-carbon hollow fiber (cchf) artificial-kidney,” . Artificial Organs , 5 : 332 – 332 .
  • Sun , J. F. , Wu , G. X. and Wang , Q. R. 2005 . “The effects of carbonization temperature on the properties and structure of PAN-based activated carbon hollow fiber,” . Journal of Applied Polymer Science. , 97 : 2155 – 2160 .
  • Yang , M. C. and Yu , D. G. 1996 . “Influence of precursor structure on the properties of polyacrylonitrile-based activated carbon hollow fiber,” . Journal of Applied Polymer Science. , 59 : 1725 – 1731 .
  • Curtis , P. T. and Travis , S. W. G. 1999 . “Hollow carbon fibres for high performance polymer composites,” . Plast Rubber Compos. , 28 : 201 – 209 .
  • Barbosa-Coutinho , E. , Salim , V. M. M. and Borges , C. P. 2003 . “Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide,” . Carbon. , 41 : 1707 – 1714 .
  • Fawas , E. P. , Kapantaidakis , G. C. , Nolan , J. W. , Mitropoulos , A. C. and Kanellopoulos , N. K. 2007 . “Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid (R) 5218 precursor,” . Journal of Materials Processing Technology. , 186 : 102 – 110 .
  • Jiang , L. Y. , Chung , T. S. and Rajagopalan , R. 2007 . “Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers,” . Carbon. , 45 : 166 – 172 .
  • Favvas , E. P. , Kouvelos , E. P. , Romanos , G. E. , Pilatos , G. I. , Mitropoulos , A. C. and Kanellopoulos , N. K. 2008 . “Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor,” . Journal of Porous Materials. , 15 : 625 – 633 .
  • Kadla , J. F. , Kubo , S. , Venditti , R. A. and Gilbert , R. D. 2002 . “Novel hollow core fibers prepared from lignin polypropylene blends,” . Journal of Applied Polymer Science. , 85 : 1353 – 1355 .
  • Shi , Z. G. , Zhang , T. , Xu , L. Y. and Feng , Y. Q. 2008 . “A template method for the synthesis of hollow carbon fibers,” . Microporous and Mesoporous Materials. , 116 : 698 – 700 .
  • Zengin , H. and Smith , D. W. 2007 . “Bis-ortho-diynylarene polymerization as a route to solid and hollow carbon fibers,” . Journal of Materials Science. , 42 : 4344 – 4349 .
  • Ishida , T. and Higuchi , T. 2007 . “Carbon fiber and its manufacturing method,” Japen patent Japan Patent P2007-291557A
  • Li , C. , Tong , Y. , Xu , L. , Yang , X. , Yu , Y. and Zhao , Z. 2011 . “Polyacrylonitrile-based hollow carbon fiber precursor preparation method,” China Patent CN20101108220 20100210
  • Hunt , M. A. , Saito , T. , Brown , R. H. , Kumbhar , A. S. and Naskar , A. K. 2012 . “Patterned functional carbon fibers from polyethylene,” . Advanced Materials. , 24 : 2386 – 2389 .
  • Pickel , J. M. , Griffith , W. L. and Compere , A. L. 2006 . “Utilization of lignin in the production of low-cost carbon fiber,” . Abstracts of Papers of the American Chemical Society. , : 231
  • Baker , D. A. , Gallego , N. C. and Baker , F. S. 2012 . “On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber,” . Journal of Applied Polymer Science. , 124 : 227 – 234 .
  • Warren , C. D. , Paulauskas , F. L. , Baker , F. S. , Eberle , C. C. and Naskar , A. 2009 . “Development of Commodity Grade, Lower Cost Carbon Fiber-Commercial Applications,” . SAMPE Journal. , 45 : 24 – 36 .
  • Leon , C. , O’Brien , R. , McHugh , J. , Dasarathy , H. and Schimpf , W. 2001 . “Polyethylene and polypropylene as low cost carbon fiber (LCCF) precursors” . In 33rd International SAMPE Technical Conference , 1289 – 1296 . Seattle , , WA, USA : Proceedings . 5–8 Nov
  • Xiang , C. , Behabtu , N. , Liu , Y. , Chae , H. G. , Young , C. C. , Genorio , B. , Tsentalovich , D. E. , Kosynkin , D. V. , Lomeda , J. R. , Kumar , S. , Pasquali , M. and Tour , J. M. 2012 . “Graphene nanoribbons: An advanced material for making carbon fiber,” To be published in

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.