1,178
Views
64
CrossRef citations to date
0
Altmetric
REVIEWS

Quantifying the Shape-Memory Effect of Polymers by Cyclic Thermomechanical Tests

, , &
Pages 6-40 | Received 25 Sep 2012, Accepted 21 Nov 2012, Published online: 04 Feb 2013

References

  • Behl , M. and Lendlein , A. 2007 . Shape-memory polymers . Mater. Today , 10 : 20 – 28 .
  • Behl , M. , Zotzmann , J. and Lendlein , A. 2010 . Shape-memory polymers and shape-changing polymers . Adv. Polym. Sci. , 226 : 1 – 40 .
  • Gunes , I. S. and Jana , S. C. 2008 . Shape memory polymers and their nanocomposites: A review of science and technology of new multifunctional materials . J. Nanosci. Nanotechnol. , 8 : 1616 – 1637 .
  • Hayashi , S . 1993 . “ Properties and Applications of Polyurethane-Series Shape Memory Polymer ” . In International Progress in Urethanes; , Vol. 6 , 90 – 115 . Basel , , Switzerland : Technomic Publishing .
  • Hornbogen , E. 2006 . Comparison of shape memory metals and polymers . Adv. Eng. Mater. , 8 : 101 – 106 .
  • Hu , J. and Chen , S. 2010 . A review of actively moving polymers in textile applications . J. Mater. Chem. , 20 : 3346 – 3355 .
  • Huang , W. M. , Yang , B. , An , L. , Li , C. and Chan , Y. S. 2005 . Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism . Appl. Phys. Lett. , 86 : 114105
  • Kim , B. K. 2008 . Shape memory polymers and their future developments . Express Polym. Lett. , 2 : 614
  • Lendlein , A. , Jiang , H. Y. , Jünger , O. and Langer , R. 2005 . Light-induced shape-memory polymers . Nature , 434 : 879 – 882 .
  • Lendlein , A. and Kelch , S. 2002 . Shape-memory polymers . Angew. Chem. Int. Ed. , 41 : 2034 – 2057 .
  • Leng , J. S. , Lan , X. , Liu , Y. J. and Du , S. Y. 2011 . Shape-memory polymers and their composites: Stimulus methods and applications . Prog. Mater. Sci. , 56 : 1077 – 1135 .
  • Madbouly , S. A. and Lendlein , A. 2010 . Shape-memory polymer composites . Adv. Polym. Sci. , 226 : 41 – 95 .
  • Mather , P. T. , Luo , X. F. and Rousseau , I. A. 2009 . Shape memory polymer research . Annu. Rev. Mater. Res. , 39 : 445 – 471 .
  • Mohr , R. , Kratz , K. , Weigel , T. , Lucka-Gabor , M. , Moneke , M. and Lendlein , A. 2006 . Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers . Proc. Natl. Acad. Sci. U.S.A. , 103 : 3540 – 3545 .
  • Ratna , D. and Karger-Kocsis , J. 2008 . Recent advances in shape memory polymers and composites: a review . J. Mater. Sci. , 43 : 254 – 269 .
  • Rousseau , I. A. 2008 . Challenges of shape memory polymers: A review of the progress toward overcoming SMP's limitations . Polym. Eng. Sci. , 48 : 2075 – 2089 .
  • Xie , T. 2011 . Recent advances in polymer shape memory . Polymer , 52 : 4985 – 5000 .
  • Behl , M. , Razzaq , M. Y. and Lendlein , A. 2010 . Multifunctional shape-memory polymers . Adv. Mater. , 22 : 3388 – 3410 .
  • Chung , T. , Rorno-Uribe , A. and Mather , P. T. 2008 . Two-way reversible shape memory in a semicrystalline network . Macromolecules , 41 : 184 – 192 .
  • Hu , J. , Meng , H. , Li , G. and Ibekwe , S. I. 2012 . A review of stimuli-responsive polymers for smart textile applications . Smart Mater. Struct. , 21 : 053001
  • Lendlein , A. , Behl , M. , Hiebl , B. and Wischke , C. 2010 . Shape-memory polymers as a technology platform for biomedical applications . Expert Rev. Med. Devices , 7 : 357 – 379 .
  • Maitland , D. J. , Small , W. , Ortega , J. M. , Buckley , P. R. , Rodriguez , J. , Hartman , J. and Wilson , T. S. 2007 . Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms . J. Biomed. Opt. , 12 : 030504
  • Sun , L. and Huang , W. M. 2010 . Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers . Soft Matter , 6 : 4403 – 4406 .
  • Du , H. , Yu , Y. , Jiang , G. , Zhang , J. and Bao , J. 2011 . Microwave-induced shape-memory effect of chemically crosslinked moist poly(vinyl alcohol) networks . Macromol. Chem. Phys. , 212 : 1460 – 1468 .
  • Hazelton , C. S. , Arzberger , S. C. , Lake , M. S. and Munshi , N. A. 2007 . RF actuation of a thermoset shape memory polymer with embedded magnetoelectroelastic particles . J. Adv. Mater. , 39 : 35 – 39 .
  • Kumar , U. N. , Kratz , K. , Wagermaier , W. , Behl , M. and Lendlein , A. 2010 . Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field . J. Mater. Chem. , 20 : 3404 – 3415 .
  • Leng , J. , Zhang , D. , Liu , Y. , Yu , K. and Lan , X. 2010 . Study on the activation of styrene-based shape memory polymer by medium-infrared laser light . Appl. Phys. Lett. , 96 : 111905 – 111903 .
  • Behl , M. and Lendlein , A. 2010 . Triple-shape polymers . J. Mater. Chem. , 20 : 3335 – 3345 .
  • Bellin , I. , Kelch , S. , Langer , R. and Lendlein , A. 2006 . Polymeric triple-shape materials . Proc. Natl. Acad. Sci. U.S.A. , 103 : 18043 – 18047 .
  • Volk , B. L. , Lagoudas , D. C. , Chen , Y.-C. and Whitley , K. S. 2010 . Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization . Smart Mater. Struct. , 19 : 075005
  • Kolesov , I. S. and Radusch , H. J. 2008 . Multiple shape-memory behavior and thermal-mechanical properties of peroxide cross-linked blends of linear and short-chain branched polyethylenes . Express Polym. Lett. , 2 : 461 – 473 .
  • Li , J. , Liu , T. , Xia , S. , Pan , Y. , Zheng , Z. , Ding , X. and Peng , Y. 2011 . A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments . J. Mater. Chem. , 21 : 12213 – 12217 .
  • Luo , X. F. and Mather , P. T. 2010 . Triple-Shape Polymeric Composites (TSPCs) . Adv. Funct. Mater. , 20 : 2649 – 2656 .
  • Pretsch , T. 2010 . Triple-shape properties of a thermoresponsive poly(ester urethane) . Smart Mater. Struct. , 19 : 015006
  • Shao , Y. , Lavigueur , C. and Zhu , X. X. 2012 . Multishape memory effect of norbornene-based copolymers with cholic acid pendant groups . Macromolecules , 45 : 1924 – 1930 .
  • Xie , T. 2010 . Tunable polymer multi-shape memory effect . Nature , 464 : 267 – 270 .
  • Kratz , K. , Voigt , U. and Lendlein , A . 2012 . Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies . Adv. Funct. Mater. , 22 : 3057 – 3065 .
  • Kratz , K. , Madbouly , S. A. , Wagermaier , W. and Lendlein , A. 2011 . Temperature-memory polymer networks with crystallizable controlling units . Adv. Mater. , 23 : 4058 – 4062 .
  • Miaudet , P. , Derre , A. , Maugey , M. , Zakri , C. , Piccione , P. M. , Inoubli , R. and Poulin , P. 2007 . Shape and temperature memory of nanocomposites with broadened glass transition . Science , 318 : 1294 – 1296 .
  • Xie , T. , Page , K. A. and Eastman , S. A. 2011 . Strain-based temperature memory effect for nafion and its molecular origins . Adv. Funct. Mater. , 21 : 2057 – 2066 .
  • Hong , S. J. , Yu , W. R. and Youk , J. H. 2010 . Two-way shape memory behavior of shape memory polyurethanes with a bias load . Smart Mater. Struct. , 19 : 035022
  • Qin , H. H. and Mather , P. T. 2009 . Combined one-way and two-way shape memory in a glass-forming nematic network . Macromolecules , 42 : 273 – 280 .
  • Zotzmann , J. , Behl , M. , Hofmann , D. and Lendlein , A. 2010 . Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(epsilon-caprolactone)-segments . Adv. Mater. , 22 : 3424 – 3429 .
  • Westbrook , K. K. , Mather , P. T. , Parakh , V. , Dunn , M. L. , Ge , Q. , Lee , B. M. and Qi , H. J. 2011 . Two-way reversible shape memory effects in a free-standing polymer composite . Smart Mater. Struct. , 20 : 065010
  • Li , J. , Rodgers , W. R. and Xie , T. 2011 . Semi-crystalline two-way shape memory elastomer . Polymer , 52 : 5320 – 5325 .
  • Pandini , S. , Passera , S. , Messori , M. , Paderni , K. , Toselli , M. , Gianoncelli , A. , Bontempi , E. and Riccò , T. 2012 . Two-way reversible shape memory behavior of crosslinked poly(ϵ-caprolactone) . Polymer , 53 : 1915 – 1924 .
  • Inomata , K. , Nakagawa , K. , Fukuda , C. , Nakada , Y. , Sugimoto , H. and Nakanishi , E. 2010 . Shape memory behavior of poly(methyl methacrylate)-graft-poly(ethylene glycol) copolymers . Polymer , 51 : 793 – 798 .
  • Li , F. , Chen , Y. , Zhu , W. , Zhang , X. and Xu , M. 1998 . Shape memory effect of polyethylene/nylon 6 graft copolymers . Polymer , 39 : 6929 – 6934 .
  • Yang , D. , Huang , W. , Yu , J. , Jiang , J. , Zhang , L. and Xie , M. 2010 . A novel shape memory polynorbornene functionalized with poly(epsilon-caprolactone) side chain and cyano group through ring-opening metathesis polymerization . Polymer , 51 : 5100 – 5106 .
  • Behl , M. , Ridder , U. , Feng , Y. , Kelch , S. and Lendlein , A. 2009 . Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components . Soft Matter , 5 : 676 – 684 .
  • Behl , M. , Ridder , U. , Wagermaier , W. , Kelch , S. and Lendlein , A. 2009 . Mechanical properties of polymer blends having shape-memory capability . Mater. Res. Soc. Symp. Proc. , 1190 : 25 – 30 .
  • Cuevas , J. M. , Rubio , R. , German , L. , Laza , J. M. , Vilas , J. L. , Rodriguez , M. and Leon , L. M. 2012 . Triple-shape memory effect of covalently crosslinked polyalkenamer based semicrystalline polymer blends . Soft Matter , 8 : 4928 – 4935 .
  • Zhang , H. , Wang , H. , Zhong , W. and Du , Q. 2009 . A novel type of shape memory polymer blend and the shape memory mechanism . Polymer , 50 : 1596 – 1601 .
  • Ratna , D. and Karger-Kocsis , J. 2011 . Shape memory polymer system of semi-interpenetrating network structure composed of crosslinked poly (methyl methacrylate) and poly (ethylene oxide) . Polymer , 52 : 1063 – 1070 .
  • Zhang , S. F. , Feng , Y. K. , Zhang , L. , Sun , J. F. , Xu , X. K. and Xu , Y. S. 2007 . Novel interpenetrating networks with shape-memory properties . J. Polym. Sci., Part. A: Polym. Chem. , 45 : 768 – 775 .
  • Li , J. , Liu , T. , Xia , S. , Pan , Y. , Zheng , Z. , Ding , X. and Peng , Y. 2011 . A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments . J. Mater. Chem. , 21 : 12213 – 12217 .
  • Cui , J. , Kratz , K. , Heuchel , M. , Hiebl , B. and Lendlein , A. 2011 . Mechanically active scaffolds from radio-opaque shape-memory polymer-based composites . Polym. Adv. Technol. , 22 : 180 – 189 .
  • He , Z. , Satarkar , N. , Xie , T. , Cheng , Y.-T. and Hilt , J. Z. 2011 . Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations . Adv. Mater. , 23 : 3192 – 3196 .
  • Hsu , L. , Weder , C. and Rowan , S. J. 2011 . Stimuli-responsive, mechanically-adaptive polymer nanocomposites . J. Mater. Chem. , 21 : 2812 – 2822 .
  • Jang , M. K. , Hartwig , A. and Kim , B. K. 2009 . Shape memory polyurethanes cross-linked by surface modified silica particles . J. Mater. Chem. , 19 : 1166 – 1172 .
  • Le , H. H. , Schoβ , M. , Ilisch , S. , Gohs , U. , Heinrich , G. , Pham , T. and Radusch , H. J. 2011 . CB filled EOC/EPDM blends as a shape-memory material: Manufacturing, morphology and properties . Polymer , 52 : 5858 – 5866 .
  • Capaccio , G. and Ward , I. M. 1982 . Shrinkage, shrinkage force and the structure of ultra high modulus polyethylenes . Colloid. Polym. Sci. , 260 : 46 – 55 .
  • Chowdhury , S. R. and Das , C. K. 2000 . Studies on blends of ethylene vinyl acetate and polyacrylic rubber with reference to their shrinkability . J. Appl. Polym. Sci. , 77 : 2088 – 2095 .
  • Chowdhury , S. R. , Mishra , J. K. and Das , C. K. 2000 . Structure, shrinkability and thermal property correlations of ethylene vinyl acetate (EVA)/carboxylated nitrile rubber (XNBR) polymer blends . Polym. Degrad. Stab. , 70 : 199 – 204 .
  • Gall , K. , Yakacki , C. M. , Liu , Y. P. , Shandas , R. , Willett , N. and Anseth , K. S. 2005 . Thermomechanics of the shape memory effect in polymers for biomedical applications . J. Biomed. Mater. Res. 73A , : 339 – 348 .
  • Lin , J. R. and Chen , L. W. 1998 . Study on shape-memory behavior of polyether-based polyurethanes. I. Influence of the hard-segment content . J. Appl. Polym. Sci. , 69 : 1563 – 1574 .
  • Hu , J. , Chung , S. and Li , Y. 2007 . Characterization about the shape memory behavior of woven fabrics . Trans. Inst. Meas. Control , 29 : 301 – 319 .
  • Wagermaier , W. , Kratz , K. , Heuchel , M. and Lendlein , A. 2010 . Characterization methods for shape-memory polymers . Adv. Polym. Sci. , 226 : 97 – 148 .
  • Jiang , H. Y. , Kelch , S. and Lendlein , A. 2006 . Polymers move in response to light . Adv. Mater. , 18 : 1471 – 1475 .
  • Razzaq , M. Y. , Behl , M. and Lendlein , A. 2012 . Magnetic memory effect of nanocomposites . Adv. Funct. Mater. , 22 : 184 – 191 .
  • Altebaeumer , T. , Gotsmann , B. , Pozidis , H. , Knoll , A. and Duerig , U. 2008 . Nanoscale shape-memory function in highly cross-linked polymers . Nano Lett. , 8 : 4398 – 4403 .
  • Burke , K. A. and Mather , P. T. 2010 . Soft shape memory in main-chain liquid crystalline elastomers . J. Mater. Chem. , 20 : 3449 – 3457 .
  • Fulcher , J. T. , Lu , Y. C. , Tandon , G. P. and Foster , D. C. 2010 . Thermomechanical characterization of shape memory polymers using high temperature nanoindentation . Polym. Test. , 29 : 544 – 552 .
  • Poilane , C. , Delobelle , P. , Lexcellent , C. , Hayashi , S. and Tobushi , H. 2000 . Analysis of the mechanical behavior of shape memory polymer membranes by nanoindentation, bulging and point membrane deflection tests . Thin Solid Films , 379 : 156 – 165 .
  • Reddy , S. , Arzt , E. and del Campo , A. 2007 . Bioinspired surfaces with switchable adhesion . Adv. Mater. , 19 : 3833 – 3837 .
  • Wornyo , E. , Gall , K. , Yang , F. and King , W. 2007 . Nanoindentation of shape memory polymer networks . Polymer , 48 : 3213 – 3225 .
  • Yakacki , C. M. , Satarkar , N. S. , Gall , K. , Likos , R. and Hilt , J. Z. 2009 . Shape-memory polymer networks with Fe3O4 nanoparticles for remote activation . J. Appl. Polym. Sci. , 112 : 3166 – 3176 .
  • Kolesov , I. S. , Kratz , K. , Lendlein , A. and Radusch , H.-J. 2009 . Kinetics and dynamics of thermally-induced shape-memory behavior of crosslinked short-chain branched polyethylenes . Polymer , 50 : 5490 – 5498 .
  • Yakacki , C. M. , Shandas , R. , Lanning , C. , Rech , B. , Eckstein , A. and Gall , K. 2007 . Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications . Biomaterials , 28 : 2255 – 2263 .
  • Choi , N.-y. and Lendlein , A. 2007 . Degradable shape-memory polymer networks from oligo [(L-lactide)-ran-glycolide] dimethacrylates . Soft Matter , 3 : 901 – 909 .
  • Lakhera , N. , Yakacki , C. M. , Nguyen , T. D. and Frick , C. P. 2012 . Partially constrained recovery of (meth)acrylate shape-memory polymer networks . J. Appl. Polym. Sci. , 126 : 72 – 82 .
  • Qi , H. J. , Nguyen , T. D. , Castroa , F. , Yakacki , C. M. and ShandaSa , R. 2008 . Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers . J. Mech. Phys. Solids , 56 : 1730 – 1751 .
  • Tobushi , H. , Hayashi , S. and Kojima , S. 1992 . Mechanical properties of shape memory polymer of polyurethane series - (basic characteristics of stress-strain-temperature relationship) . JSME Int. J., Ser. I , 35 : 296 – 302 .
  • Tobushi , H. , Hashimoto , T. , Ito , N. , Hayashi , S. and Yamada , E. 1998 . Shape fixity and shape recovery in a film of shape memory polymer of polyurethane series . J. Intell. Mater. Syst. Struct. , 9 : 127 – 136 .
  • Cui , J. , Kratz , K. and Lendlein , A. 2010 . Adjusting shape-memory properties of amorphous polyether urethanes and radio-opaque composites thereof by variation of physical parameters during programming . Smart Mater. Struct. , 19 : 065019
  • Schmidt , C. , Chowdhury , A. M.S. , Neuking , K. and Eggeler , G. 2011 . Thermo-mechanical behavior of Shape Memory Polymers, e.g., Tecoflex® by 1WE method: SEM and IR analysis . J. Polym. Res. , 18 : 1807 – 1812 .
  • Schmidt , C. , Chowdhury , A. M.S. , Neuking , K. and Eggeler , G. 2011 . Mechanical behavior of shape memory polymers by 1WE Method: Application to Tecoflex® . J. Thermoplast. Compos. Mater. , 24 : 853 – 860 .
  • Schmidt , C. , Chowdhury , A. M.S. , Neuking , K. and Eggeler , G. 2011 . Studies on the cycling, processing and programming of an industrially applicable shape memory polymer Tecoflex® (or TFX EG 72D) . High Perform. Polym. , 23 : 300 – 307 .
  • Schmidt , C. , Neuking , K. and Eggeler , G. 2009 . Functional fatigue of shape-memory polymers . Mater. Res. Soc. Symp. Proc. , 1190 : 43 – 48 .
  • Lendlein , A. , Schmidt , A. M. and Langer , R. 2001 . AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties . Proc. Natl. Acad. Sci. U.S.A. , 98 : 842 – 847 .
  • Atli , B. , Gandhi , F. and Karst , G. 2009 . Thermomechanical characterization of shape memory polymers . J. Intell. Mater. Syst. Struct. , 20 : 87 – 95 .
  • Schmidt , C. , Neuking , K. and Eggeler , G. 2008 . Functional fatigue of shape memory polymers . Adv. Eng. Mater. , 10 : 922 – 927 .
  • McClung , A. J.W. , Tandon , G. P. and Baur , J. W. 2011 . Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin . Mech. Time-Depend. Mater. , DOI:10.1007/s11043-011-9157-6 (In Press
  • McClung , A. J.W. , Tandon , G. P. and Baur , J. W. Asme In “The strain rate- and temperature-dependent mechanical behavior of VERIFLEX-E in tension . Proceedings of the Asme Conference on Smart Materials, Adaptive Structures and Intelligent Systems , Vol. 1 , pp. 69 – 78 . 2010
  • Hu , J. L. , Ji , F. L. and Wong , Y. W. 2005 . Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions . Polym. Int. , 54 : 600 – 605 .
  • Azra , C. , Plummer , C. J.G. and Manson , J. A.E. 2011 . Isothermal recovery rates in shape memory polyurethanes . Smart Mater. Struct. , 20 : 082002
  • Ping , P. , Wang , W. S. , Chen , X. S. and Jing , X. B. 2005 . Poly(epsilon-caprolactone) polyurethane and its shape-memory property . Biomacromolecules , 6 : 587 – 592 .
  • Tobushi , H. , Hashimoto , T. , Hayashi , S. and Yamada , E. 1997 . Thermomechanical constitutive modeling in shape memory polymer of polyurethane series . J. Intell. Mater. Syst. Struct. , 8 : 711 – 718 .
  • Tobushi , H. , Okumura , K. , Hayashi , S. and Ito , N. 2001 . Thermomechanical constitutive model of shape memory polymer . Mech. Mater. , 33 : 545 – 554 .
  • Barot , G. and Rao , I. J. 2006 . Constitutive modeling of the mechanics associated with crystallizable shape memory polymers . Z. Angew. Math. Phys. , 57 : 652 – 681 .
  • Barot , G. , Rao , I. J. and Rajagopal , K. R. 2008 . A thermodynamic framework for the modeling of crystallizable shape memory polymers . Int. J. Eng. Sci. , 46 : 325 – 351 .
  • Liu , Y. P. , Gall , K. , Dunn , M. L. , Greenberg , A. R. and Diani , J. 2006 . Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling . Int. J. Plast. , 22 : 279 – 313 .
  • Wang , Z. D. , Li , D. F. , Xiong , Z. Y. and Chang , R. N. 2009 . Modeling thermomechanical behaviors of shape memory polymer . J. Appl. Polym. Sci. , 113 : 651 – 656 .
  • Nguyen , T. D. , Qi , H. J. , Castro , F. and Long , K. N. 2008 . A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation . J. Mech. Phys. Solids , 56 : 2792 – 2814 .
  • Chen , Y.-C. and Lagoudas , D. C. 2008 . A constitutive theory for shape memory polymers. Part I - Large deformations . J. Mech. Phys. Solids , 56 : 1752 – 1765 .
  • Chen , Y.-C. and Lagoudas , D. C. 2008 . A constitutive theory for shape memory polymers. Part II - A linearized model for small deformations . J. Mech. Phys. Solids , 56 : 1766 – 1778 .
  • Volk , B. L. , Lagoudas , D. C. and Chen , Y.-C. 2010 . Analysis of the finite deformation response of shape memory polymers: II. 1D calibration and numerical implementation of a finite deformation, thermoelastic model . Smart Mater. Struct. , 19 : 075006
  • Volk , B. L. , Lagoudas , D. C. and Maitland , D. J. 2011 . Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer . Smart Mater. Struct. , 20 : 094004
  • Gall , K. , Dunn , M. L. , Liu , Y. P. , Finch , D. , Lake , M. and Munshi , N. A. 2002 . Shape memory polymer nanocomposites . Acta Mater. , 50 : 5115 – 5126 .
  • Liu , Y. P. , Gall , K. , Dunn , M. L. and McCluskey , P. 2003 . Thermomechanical recovery couplings of shape memory polymers in flexure . Smart Mater. Struct. , 12 : 947 – 954 .
  • Liu , Y. P. , Gall , K. , Dunn , M. L. and McCluskey , P. 2004 . Thermomechanics of shape memory polymer nanocomposites . Mech. Mater. , 36 : 929 – 940 .
  • Tobushi , H. , Hayashi , S. , Hoshio , K. and Ejiri , Y. 2008 . Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer . Sci. Technol. Adv. Mater. , 9 : 015009
  • Tobushi , H. , Hayashi , S. , Hoshio , K. , Makino , Y. and Miwa , N. 2006 . Bending actuation characteristics of shape memory composite with SMA and SMP . J. Intell. Mater. Syst. Struct. , 17 : 1075 – 1081 .
  • Di Prima , M. , Gall , K. , McDowell , D. L. , Guldberg , R. , Lin , A. , Sanderson , T. , Campbel , D. and Arzberger , S. C. 2010 . Deformation of epoxy shape memory polymer foam. Part I: Experiments and macroscale constitutive modeling . Mech. Mater. , 42 : 304 – 314 .
  • Di Prima , M. A. , Gall , K. , McDowell , D. L. , Guldberg , R. , Lin , A. , Sanderson , T. , Campbell , D. and Arzberger , S. C. 2010 . Cyclic compression behavior of epoxy shape memory polymer foam . Mech. Mater. , 42 : 405 – 416 .
  • Di Prima , M. A. , Gall , K. , McDowell , D. L. , Guldberg , R. , Lin , A. , Sanderson , T. , Campbell , D. and Arzberger , S. C. 2010 . Deformation of epoxy shape memory polymer foam: Part II. Mesoscale modeling and simulation . Mech. Mater. , 42 : 315 – 325 .
  • Kang , S. M. , Lee , S. J. and Kim , B. K. 2012 . Shape memory polyurethane foams . Express Polym. Lett. , 6 : 63 – 69 .
  • Tobushi , H. , Hayashi , S. , Hoshio , K. and Miwa , N. 2006 . Influence of strain-holding conditions on shape recovery and secondary-shape forming in polyurethane-shape memory polymer . Smart Mater. Struct. , 15 : 1033 – 1038 .
  • Tobushi , H. , Matsui , R. , Hayashi , S. and Shimada , D. 2004 . The influence of shape-holding conditions on shape recovery of polyurethane-shape memory polymer foams . Smart Mater. Struct. , 13 : 881 – 887 .
  • Tobushi , H. , Okumura , K. , Endo , M. and Hayashi , S. 2001 . Thermomechanical properties of polyurethane-shape memory polymer foam . J. Intell. Mater. Syst. Struct. , 12 : 283 – 287 .
  • Tobushi , H. , Shimada , D. , Hayashi , S. and Endo , M. 2003 . Shape fixity and shape recovery of polyurethane shape-memory polymer foams . Proc. Inst. Mech. Eng. L-J Mater. , 217 : 135 – 143 .
  • Sauter , T. , Lützow , K. , Schossig , M. , Kosmella , H. , Weigel , T. , Kratz , K. and Lendlein , A. 2012 . Shape-memory properties of polyetherurethane foams prepared by thermally induced phase separation . Adv. Eng. Mater. , 14 : 818 – 824 .
  • Tey , S. J. , Huang , W. M. and Sokolowski , W. M. 2001 . Influence of long-term storage in cold hibernation on strain recovery and recovery stress of polyurethane shape memory polymer foam . Smart Mater. Struct. , 10 : 321 – 325 .
  • Madbouly , S. A. , Kratz , K. , Klein , F. , Luetzow , K. and Lendlein , A. 2009 . Thermomechanical behaviour of biodegradable shape-memory polymer foams . Mater. Res. Soc. Symp. Proc. , 1190 : 99 – 104 .
  • Li , G. and Xu , W. 2011 . Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: Testing and constitutive modeling . J. Mech. Phys. Solids , 59 : 1231 – 1250 .
  • Di Prima , M. A. , Lesniewski , M. , Gall , K. , McDowell , D. L. , Sanderson , T. and Campbell , D. 2007 . Thermo-mechanical behavior of epoxy shape memory polymer foams . Smart Mater. Struct. , 16 : 2330 – 2340 .
  • Xu , W. and Li , G. 2010 . Constitutive modeling of shape memory polymer based self-healing syntactic foam . Int. J. Solids Struct. , 47 : 1306 – 1316 .
  • Li , G. and Nettles , D. 2010 . Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam . Polymer , 51 : 755 – 762 .
  • Chen , X. and Nguyen , T. D. 2011 . Influence of thermoviscoelastic properties and loading conditions on the recovery performance of shape memory polymers . Mech. Mater. , 43 : 127 – 138 .
  • Fabrizio , Q. , Loredana , S. and Anna , S. E. 2012 . Shape memory epoxy foams for space applications . Mater. Lett. , 69 : 20 – 23 .
  • Khan , F. , Koo , J.-H. , Monk , D. and Eisbrenner , E. 2008 . Characterization of shear deformation and strain recovery behavior in shape memory polymers . Polym. Test. , 27 : 498 – 503 .
  • Xu , T. and Li , G. 2011 . Cyclic stress-strain behavior of shape memory polymer based syntactic foam programmed by 2-D stress condition . Polymer , 52 : 4571 – 4580 .
  • Zotzmann , J. , Behl , M. , Feng , Y. and Lendlein , A. 2010 . Copolymer networks based on poly(omega-pentadecalactone) and poly(epsilon-caprolactone) segments as a versatile triple-shape polymer system . Adv. Funct. Mater. , 20 : 3583 – 3594 .
  • Ware , T. , Hearon , K. , Lonnecker , A. , Wooley , K. L. , Maitland , D. J. and Voit , W. 2012 . Triple-shape memory polymers based on self-complementary hydrogen bonding . Macromolecules , 45 : 1062 – 1069 .
  • Bothe , M. , Mya , K. Y. , Lin , E. M.J. , Yeo , C. C. , Lu , X. H. , He , C. B. and Pretsch , T. 2012 . Triple-shape properties of star-shaped POSS-polycaprolactone polyurethane networks . Soft Matter , 8 : 965 – 972 .
  • Li , J. and Xie , T. 2011 . Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect . Macromolecules , 44 : 175 – 180 .
  • Xie , T. , Xiao , X. and Cheng , Y.-T. 2009 . Revealing triple-shape memory effect by polymer bilayers . Macromol. Rapid Commun. , 30 : 1823 – 1827 .
  • Behl , M. , Bellin , I. , Kelch , S. , Wagermaier , W. and Lendlein , A. 2009 . One-step process for creating triple-shape capability of AB polymer networks . Adv. Funct. Mater. , 19 : 102 – 108 .
  • Zotzmann , J. , Behl , M. and Lendlein , A. 2011 . The Influence of programming conditions on the triple-shape effect of copolymer networks with poly(omega-pentadecalactone) and poly(epsilon-caprolactone) as switching segments . Macromol. Symp. , 309–310 : 147 – 153 .
  • Basit , A. , L’Hostis , G. and Durand , B. 2012 . Multi-shape memory effect in shape memory polymer composites . Mater. Lett. , 74 : 220 – 222 .
  • Yu , K. , Xie , T. , Leng , J. , Ding , Y. and Qi , H. J. 2012 . Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers . Soft Matter , 8 : 5687 – 5695 .
  • Khonakdar , H. A. , Jafari , S. H. , Rasouli , S. , Morshedian , J. and Abedini , H. 2007 . Investigation and modeling of temperature dependence recovery behavior of shape-memory crosslinked polyethylene . Macromol. Theory Simul. , 16 : 43 – 52 .
  • Kratz , K. , Voigt , U. and Lendlein , A. 2012 . Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies . Adv. Funct. Mater. , 22 : 3057 – 3065 .
  • Kang , T.-H. , Lee , J.-M. , Yu , W.-R. , Youk , J. H. and Ryu , H. W. 2012 . Two-way actuation behavior of shape memory polymer/elastomer core/shell composites . Smart Mater. Struct. , 21 : 035028
  • Li , J. J. , Rodgers , W. R. and Xie , T. 2011 . Semi-crystalline two-way shape memory elastomer . Polymer , 52 : 5320 – 5325 .
  • Pandini , S. , Passera , S. , Messori , M. , Paderni , K. , Toselli , M. , Gianoncelli , A. , Bontempi , E. and Ricco , T. 2012 . Two-way reversible shape memory behavior of crosslinked poly(epsilon-caprolactone) . Polymer , 53 : 1915 – 1924 .
  • Lee , K. M. , Knight , P. T. , Chung , T. and Mather , P. T. 2008 . Polycaprolactone-POSS chemical/physical double networks . Macromolecules , 41 : 4730 – 4738 .
  • Liu , C. , Qin , H. and Mather , P. T. 2007 . Review of progress in shape-memory polymers . J. Mater. Chem. , 17 : 1543 – 1558 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.