518
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Metallo-Biopolymers: Conjugation Strategies and Applications

, , &
Pages 627-676 | Received 16 Jan 2014, Accepted 03 Apr 2014, Published online: 30 Aug 2014

References

  • Ghosh, K.; Balog, E.R. M.; Sista, P.; Williams, D.J.; Kelly, D.; Martinez, J.S.; Rocha, R.C. “Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides”, APL Mater. 2014, 2, 021101.
  • Wang, L.-B.; Wang, Y.-C.; He, R.; Zhuang, A.; Wang, X.; Zeng, J.; Hou, J.G. “A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance”, J. Am. Chem. Soc. 2013, 135, 1272–1275.
  • Ge, J.; Lei, J.; Zare, R.N. “Protein-inorganic hybrid nanoflowers”, Nature Nanotechnol. 2012, 7, 428–432.
  • Abd-El-Aziz, A.S.; Manners, I. (Eds.) Frontiers in Transition Metal-Containing Polymers; John Wiley & Sons, Inc.: Hoboken, NJ, 2007.
  • Aggeli, A.; Nyrkova, I.A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T.C. B.; Semenov, A.N.; Boden, N. “Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers”, Proc. Natl. Acad. Sci. USA. 2001, 98, 11857–11862.
  • Petka, W.A.; Hardin, J.L.; McGrath, K.P.; Wirtz, D.; Tirrell, D.A. “Reversible hydrogels from self-assembling artificial proteins”, Science 1998, 281, 389–392.
  • Salgado, E.N.; Radford, R.J.; Tezcan, F.A. “Metal-directed protein self-assembly”, Acc. Chem. Res. 2010, 43, 661–672.
  • Kraatz, H.-B. “Ferrocene-conjugates of amino acids, peptides and nucleic acids”, J. Inorg. Organomet. Polym. Mater. 2005, 15, 83–106.
  • Moughton, A.O.; O’Reilly, R.K. “Using metallo-supramolecular block copolymers for the synthesis of higher order nanostructured assemblies”, Macromol. Rapid Commun. 2010, 31, 37–52.
  • Whittell, G.R.; Hager, M.D.; Schubert, U.S.; Manners, I. “Functional soft materials from metallopolymers and metallosupramolecular polymers”, Nat. Mater. 2011, 10, 176–188.
  • Bullous, A.J.; Alonso, C.M. A.; Boyle, R.W. “Photosensitiser-antibody conjugates for photodynamic therapy”, Photochem. Photobiol. Sci. 2011, 10, 721–750.
  • Schneider, R.; Tirand, L.; Frochot, C.; Vanderesse, R.; Thomas, N.; Gravier, J.; Guillemin, F.; Barberi-Heyob, M. “Recent improvements in the use of synthetic peptides for a selective photodynamic therapy”, Anti-Cancer. Agent. Me. 2006, 6, 469–488.
  • Severin, K.; Bergs, R.; Beck, W. “Metal complexes with biologically important ligands, Part 100. Bioorganometallic chemistry-transition metal complexes with α-amino acids and peptides”, Angew. Chem. Int. Ed. 1998, 37, 1635–1654.
  • Giuntini, F.; Alonso, C.M. A.; Boyle, R.W. “Synthetic approaches for the conjugation of porphyrins and related macrocycles to peptides and proteins”, Photochem. Photobiol. Sci. 2011, 10, 759–791.
  • Canalle, L.A.; Loewik, D.W. P. M.; van, H.J. C. M. “Polypeptide-polymer bioconjugates”, Chem. Soc. Rev. 2010, 39, 329–353.
  • Hermanson, G.T. (Ed.) Bioconjugate Techniques; Academic Press: New York, 1995.
  • El-Faham, A.; Albericio, F. “Peptide Coupling reagents, more than a letter soup”, Chem. Rev. 2011, 111, 6557–6602.
  • Merrifield, R.B. “Solid phase peptide synthesis. I. The synthesis of a tetrapeptide”, J. Am. Chem. Soc. 1963, 85, 2149–2154.
  • Cuingnet, E.; Dautrevaux, M.; Sergheraert, C.; Tartar, A.; Attali, B.; Cros, J. “Synthesis and biological activity of metallocenic enkephalin analogs”, Eur. J. Med. Chem. 1982, 17, 203–206.
  • Cuingnet, E.; Sergheraert, C.; Tartar, A.; Dautrevaux, M. “β-Ferrocenylalanyl peptides. I. Synthesis of [Fer4, Leu5]enkephalin”, J. Organomet. Chem. 1980, 195, 325–329.
  • van, S.D. R.; Metzler-Nolte, N. “Labeling of [Leu5]-enkephalin with organometallic Mo complexes by solid-phase synthesis”, Chem. Commun. 2002, 13, 1406–1407.
  • Zagermann, J.; Merz, K.; Metzler-Nolte, N. “Labeling of peptides with halocarbonyltungsten complexes containing functional η2-alkynyl ligands”, Organometallics 2009, 28, 5090–5095.
  • Metzler-Nolte, N. “Biomedical applications of organometal - peptide conjugates”, Top. Organomet. Chem. 2010, 32, 195–217.
  • Heinze, K.; Beckmann, M.; Hemple, K. “Solid-phase synthesis of transition-metal complexes”, Chem. Eur. J. 2008, 14, 9468–9480.
  • Stephenson, K.A.; Zubieta, J.; Banerjee, S.R.; Levadala, M.K.; Taggart, L.; Ryan, L.; McFarlane, N.; Boreham, D.R.; Maresca, K.P.; Babich, J.W.; Valliant, J.F. “A new strategy for the preparation of peptide-targeted radiopharmaceuticals based on an fmoc-lysine-derived single amino acid chelate (SAAC). Automated solid-phase synthesis, NMR characterization, and in vitro screening of fMLF(SAAC)G and fMLF[(SAAC-Re(CO)3)+]G”, Bioconjugate Chem. 2004, 15, 128–136.
  • Stephenson, K.A.; Banerjee, S.R.; Sogbein, O.O.; Levadala, M.K.; McFarlane, N.; Boreham, D.R.; Maresca, K.P.; Babich, J.W.; Zubieta, J.; Valliant, J.F. “A new strategy for the preparation of peptide-targeted technetium and rhenium radiopharmaceuticals. The automated solid-phase synthesis, characterization, labeling, and screening of a peptide-ligand library targeted at the formyl peptide receptor”, Bioconjugate Chem. 2005, 16, 1189–1195.
  • Valeur, E.; Bradley, M. “Amide bond formation: Beyond the myth of coupling reagents”, Chem. Soc. Rev. 2009, 38, 606–631.
  • Pattabiraman, V.R.; Bode, J.W. “Rethinking amide bond synthesis”, Nature 2011, 480, 471–479.
  • Dirscherl, G.; Koenig, B. “The use of solid-phase synthesis techniques for the preparation of peptide-metal complex conjugates”, Eur. J. Org. Chem. 2008, 597–634.
  • Allen, C.L.; Williams, J.M. J. “Metal-catalyzed approaches to amide bond formation”, Chem. Soc. Rev. 2011, 40, 3405–3415.
  • Montalbetti, C.A. G. N.; Falque, V. “Amide bond formation and peptide coupling”, Tetrahedron 2005, 61, 10827–10852.
  • Gilbertson, S.R.; Wang, X. “Synthesis of (Dicyclohexylphosphino)serine: Its incorporation into a dodecapeptide, and the coordination of rhodium”, J. Org. Chem. 1996, 61, 434–435.
  • Gilbertson, S.R.; Chen, G.; McLoughlin, M. “Versatile building block for the synthesis of phosphine-containing peptides: the sulfide of diphenylphosphinoserine”, J. Am. Chem. Soc. 1994, 116, 4481–4482.
  • Slate, C.A.; Striplin, D.R.; Moss, J.A.; Chen, P.; Erickson, B.W.; Meyer, T.J. “Photochemical energy transduction in helical proline arrays”, J. Am. Chem. Soc. 1998, 120, 4885–4886.
  • Nastri, F.; Lombardi, A.; Morelli, G.; Maglio, O.; D’Auria, G.; Pedone, C.; Pavone, V. “Hemoprotein models based on a covalent helix-heme-helix sandwich: 1. Design, synthesis, and characterization”, Chem. Eur. J. 1997, 3, 340–349.
  • D’Auria, G.; Maglio, O.; Nastri, F.; Lombardi, A.; Mazzeo, M.; Morelli, G.; Paolillo, L.; Pedone, C.; Pavone, V., “Hemoprotein models based on a covalent helix-heme-helix sandwich: 2. Structural characterization of CoIIImimochrome I Δ and Λ isomers”, Chem. Eur. J. 1997, 3, 350–362.
  • Herrick, R.S.; Jarret, R.M.; Curran, T.P.; Dragoli, D.R.; Flaherty, M.B.; Lindyberg, S.E.; Slate, R.A.; Thornton, L.C. “Ordered conformations in bis(amino acid) derivatives of 1,1’-ferrocenedicarboxylic acid”, Tetrahedron Lett. 1996, 37, 5289–5292.
  • Nomoto, A.; Moriuchi, T.; Yamazaki, S.; Ogawa, A.; Hirao, T. “A highly ordered ferrocene system regulated by podand peptide chains”, Chem. Commun. 1998, 18, 1963–1964.
  • Robillard, M.S.; Valentijn, A.R. P. M.; Meeuwenoord, N.J.; Van, d. M.G. A.; Van, B.J. H.; Reedijk, J. “The first solid-phase synthesis of a peptide-tethered platinum(II) complex”, Angew. Chem. Int. Ed. 2000, 39, 3096–3099.
  • Robillard, M.S.; Bacac, M.; van, d. E.H.; Flamigni, A.; van, d. M.G. A.; van, B.J. H.; Reedijk, J. “Automated parallel solid-phase synthesis and anticancer screening of a library of peptide-tethered platinum(II) complexes”, J. Comb. Chem. 2003, 5, 821–825.
  • Robillard, M.S.; van, A.S.; Meeuwenoord, N.J.; Jansen, B.A. J.; van, d. M.G. A.; van, B.J. H.; Reedijk, J. “Solid-phase synthesis of peptide-platinum complexes using platinum-chelating building blocks derived from amino acids”, New J. Chem. 2005, 29, 220–225.
  • Kuchta, M.C.; Gemel, C.; Metzler-Nolte, N. “An amino acid bioconjugate of an organoplatinum tris(pyrazolyl)borate complex: Synthesis and structure of [p-(tBuO-Phe-CO)C6H4Tp]PtMe3”, J. Organomet. Chem. 2007, 692, 1310–1314.
  • Kuchta, M.C.; Gross, A.; Pinto, A.; Metzler-Nolte, N. “Labeling of the neuropeptide enkephalin with functionalized tris(pyrazolyl)borate complexes: Solid-phase synthesis and characterization of p-[Enk-OH]COC6H4TpPtMe3 and p-[Enk-OH]COC6H4TpMeRe(CO)3”, Inorg. Chem. 2007, 46, 9400–9404.
  • Zagermann, J.; Kuchta, M.C.; Merz, K.; Metzler-Nolte, N. “Ruthenium-based bioconjugates: Synthesis and X-ray structure of the mixed ligand sandwich compound RuCpiPr(p-(CO2H)C6H4Tp) and labeling of amino acids and the neuropeptide enkephalin”, J. Organomet. Chem. 2009, 694, 862–867.
  • Gasser, G.; Ott, I.; Metzler-Nolte, N. “Organometallic anticancer compounds”, J. Med. Chem. 2011, 54, 3–25.
  • Köpf-Maier, P.; Köpf, H.; Neuse, E.W. “Ferrocenium salts: The first antineoplastic iron compounds”, Angew. Chem. Int. Ed. 1984, 23, 456–457.
  • Koepf-Maier, P.; Koepf, H. “Non-platinum group metal antitumor agents: History, current status, and perspectives”, Chem. Rev. 1987, 87, 1137–1152.
  • Chantson, J.T.; Falzacappa, M.V. V.; Crovella, S.; Metzler-Nolte, N. “Antibacterial activities of ferrocenoyl- and cobaltocenium-peptide bioconjugates”, J. Organomet. Chem. 2005, 690, 4564–4572.
  • Chantson, J.T.; Falzacappa, M.V. V.; Crovella, S.; Metzler-Nolte, N. “Solid-phase synthesis, characterization, and antibacterial activities of metallocene-peptide bioconjugates”, ChemMedChem 2006, 1, 1268–1274.
  • Pinto, A.; Hoffmanns, U.; Ott, M.; Fricker, G.; Metzler-Nolte, N. “Modification with organometallic compounds improves crossing of the blood-brain barrier of [Leu5]-enkephalin derivatives in an in vitro model system”, ChemBioChem 2009, 10, 1852–1860.
  • Appoh, F.E.; Sutherland, T.C.; Kraatz, H.-B. “Changes in the hydrogen bonding pattern in ferrocene peptides”, J. Organomet. Chem. 2004, 689, 4669–4677.
  • Butler, I.R.; Quayle, S.C. “The synthesis and characterization of heterosubstituted aminoferrocenes”, J. Organomet. Chem. 1998, 552, 63–68.
  • Barisic, L.; Dropucic, M.; Rapic, V.; Pritzkow, H.; Kirin, S.I.; Metzler-Nolte, N. “The first oligopeptide derivative of 1’-aminoferrocene-1-carboxylic acid shows helical chirality with antiparallel strands”, Chem. Commun. 2004, 17, 2004–2005.
  • Heinze, K.; Schlenker, M. “Main chain ferrocenyl amides from 1-aminoferrocene-1’-carboxylic acid”, Eur. J. Inorg. Chem. 2004, 14, 2974–2988.
  • Tebben, L.; Bussmann, K.; Hegemann, M.; Kehr, G.; Froehlich, R.; Erker, G. “Ferrocene-derived bioorganometallic chemistry: preparation of a [3]ferrocenophane γ-amino acid for use in peptide synthesis”, Organometallics 2008, 27, 4269–4272.
  • Jios, J.L.; Kirin, S.I.; Buceta, N.N.; Weyhermueller, T.; Della, V.C. O.; Metzler-Nolte, N. “Synthesis and structural characterization of metalated bioconjugates: C-terminal labeling of amino acids with aminoferrocene”, J. Organomet. Chem. 2007, 692, 4209–4214.
  • Kirin, S.I.; Kraatz, H.-B.; Metzler-Nolte, N. “Systematizing structural motifs and nomenclature in 1,N’-disubstituted ferrocene peptides”, Chem. Soc. Rev. 2006, 35, 348–354.
  • Nomoto, A.; Moriuchi, T.; Yamazaki, S.; Ogawa, A.; Hirao, T. “A highly ordered ferrocene system regulated by podand peptide chains”, Chem. Commun. 1998, 18, 1963–1964.
  • Biot, C.; Delhaes, L.; Abessolo, H.; Domarle, O.; Maciejewski, L.A.; Mortuaire, M.; Delcourt, P.; Deloron, P.; Camus, D.; Dive, D.; Brocard, J.S. “Novel metallocenic compounds as antimalarial agents. Study of the position of ferrocene in chloroquine”, J. Organomet. Chem. 1999, 589, 59–65.
  • Moriuchi, T.; Nomoto, A.; Yoshida, K.; Ogawa, A.; Hirao, T. “Chirality organization of ferrocenes bearing podand dipeptide chains: synthesis and structural characterization”, J. Am. Chem. Soc. 2001, 123, 68–75.
  • Appoh, F.E.; Sutherland, T.C.; Kraatz, H.-B. “Changes in the hydrogen bonding pattern in ferrocene peptides”, J. Organomet. Chem. 2004, 689, 4669–4677.
  • Moriuchi, T.; Nomoto, A.; Yoshida, K.; Hirao, T. “Intramolecular conformational control in ferrocenes bearing podand dipeptide chains”, Organometallics 2001, 20, 1008–1013.
  • Chowdhury, S.; Sanders, D.A. R.; Schatte, G.; Kraatz, H.-B. “Discovery of a pseudo β barrel: Synthesis and formation by tiling of ferrocene cyclopeptides”, Angew. Chem. Int. Ed. 2006, 45, 751–754.
  • van, S.D. R.; Metzler-Nolte, N. “Bioorganometallic chemistry of ferrocene”, Chem. Rev. 2004, 104, 5931–5985.
  • Lal, B.; Badshah, A.; Altaf, A.A.; Khan, N.; Ullah, S. “Miscellaneous applications of ferrocene-based peptides/amides”, Appl. Organomet. Chem. 2011, 25, 843–855.
  • Hnatowich, D.J.; Layne, W.W.; Childs, R.L.; Lanteigne, D.; Davis, M.A.; Griffin, T.W.; Doherty, P.W. “Radioactive labeling of antibody: A simple and efficient method”, Science 1983, 220, 613–615.
  • Edwards, W.B.; Fields, C.G.; Anderson, C.J.; Pajeau, T.S.; Welch, M.J.; Fields, G.B. “Generally applicable, convenient solid-phase synthesis and receptor affinities of octreotide analogs”, J. Med. Chem. 1994, 37, 3749–3757.
  • De Luca, S.; Morelli, G. “Synthesis and characterization of a sulfated and a non-sulfated cyclic CCK8 analogue functionalized with a chelating group for metal labelling”, J. Pept. Sci. 2004, 10, 265–273.
  • Anelli, P.L.; Fedeli, F.; Gazzotti, O.; Lattuada, L.; Lux, G.; Rebasti, F. “L-Glutamic acid and L-lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands”, Bioconjugate Chem. 1999, 10, 137–140.
  • Dirksen, A.; Langereis, S.; de, W.B. F. M.; van, G.M. H. P.; Meijer, E.W.; de, L.Q. G.; Hackeng, T.M. “Design and synthesis of a bimodal target-specific contrast agent for angiogenesis”, Org. Lett. 2004, 6, 4857–4860.
  • Langereis, S.; Dirksen, A.; De, W.B. F. M.; Van, G.M. H. P.; De, L.Q. G.; Hackeng, T.M.; Meijer, E.W. “Solid-phase synthesis of a cyclic NGR-functionalized GdIIIDTPA complex”, Eur. J. Org. Chem. 2005, 12, 2534–2538.
  • Williams, M.A.; Rapoport, H. “Synthesis of enantiomerically pure diethylenetriaminepentaacetic acid analogs. L-Phenylalanine as the educt for substitution at the central acetic acid”, J. Org. Chem. 1993, 58, 1151–1158.
  • Albert, R.; Smith-Jones, P.; Stolz, B.; Simeon, C.; Knecht, H.; Bruns, C.; Pless, J. “Direct synthesis of [DOTA-DPhe1]-octreotide and [DOTA-DPhe1,Tyr3]-octreotide (SMT487): Two conjugates for systemic delivery of radiotherapeutical nuclides to somatostatin receptor positive tumors in man”, Bioorg. Med. Chem. Lett. 1998, 8, 1207–1210.
  • Hsieh, H.P.; Wu, Y.T.; Chen, S.T.; Wang, K.T. “Direct solid-phase synthesis of octreotide conjugates: Precursors for use as tumor-targeted radiopharmaceuticals”, Biorg. Med. Chem. 1999, 7, 1797–1803.
  • Schottelius, M.; Schwaiger, M.; Wester, H.-J. “Rapid and high-yield solution-phase synthesis of DOTA-Tyr3-octreotide and DOTA-Tyr3-octreotate using unprotected DOTA”, Tetrahedron Lett. 2003, 44, 2393–2396.
  • Allen, M.J.; Meade, T.J. “Synthesis and visualization of a membrane-permeable MRI contrast agent”, J. Biol. Inorg. Chem. 2003, 8, 746–750.
  • Lemke, J.; Metzler-Nolte, N. “The synthesis of ruthenium and rhodium complexes with functionalized N-heterocyclic carbenes and their use in solid phase peptide synthesis”, Eur. J. Inorg. Chem. 2008, 3359–3366.
  • Peindy, N.D. H. W.; Ott, I.; Gust, R.; Schatzschneider, U. “Microwave-assisted solid-phase synthesis, cellular uptake, and cytotoxicity studies of cymantrene-peptide bioconjugates”, J. Organomet. Chem. 2009, 694, 823–827.
  • Pfeiffer, H.; Rojas, A.; Niesel, J.; Schatzschneider, U. “Sonogashira and “Click” reactions for the N-terminal and side-chain functionalization of peptides with [Mn(CO)3(tpm)]+-based CO releasing molecules (tpm = tris(pyrazolyl)methane)”, Dalton. Trans. 2009, 22, 4292–4298.
  • N’Dongo, H.W. P.; Neundorf, I.; Merz, K.; Schatzschneider, U. “Synthesis, characterization, X-ray crystallography, and cytotoxicity of a cymantrene keto carboxylic acid for IR labelling of bioactive peptides on a solid support”, J. Inorg. Biochem. 2008, 102, 2114–2119.
  • Neundorf, I.; Hoyer, J.; Splith, K.; Rennert, R.; Peindy, N.D. H. W.; Schatzschneider, U. “Cymantrene conjugation modulates the intracellular distribution and induces high cytotoxicity of a cell-penetrating peptide”, Chem. Commun. 2008, 43, 5604–5606.
  • Splith, K.; Neundorf, I.; Hu, W.; N’Dongo, H.W. P.; Vasylyeva, V.; Merz, K.; Schatzschneider, U. “Influence of the metal complex-to-peptide linker on the synthesis and properties of bioactive CpMn(CO)3 peptide conjugates”, Dalton. Trans. 2010, 39, 2536–2545.
  • Futaki, S.; Niwa, M.; Nakase, I.; Tadokoro, A.; Zhang, Y.; Nagaoka, M.; Wakako, N.; Sugiura, Y. “Arginine carrier peptide bearing Ni(II) chelator to promote cellular uptake of histidine-tagged proteins”, Bioconjugate Chem. 2004, 15, 475–481.
  • Hutinec, A.; Ziogas, A.; Rieker, A. “Non-natural phenolic amino acids: Synthesis and application in peptide chemistry”, Amino Acids 1996, 11, 345–366.
  • Humphrey, J.M.; Chamberlin, A.R. “Chemical synthesis of natural product peptides: Coupling methods for the incorporation of noncoded amino acids into peptides”, Chem. Rev. 1997, 97, 2243–2266.
  • Ishida, H.; Suga, M.; Donowaki, K.; Ohkubo, K. “Highly effective binding of phosphomonoester with neutral cyclic peptides which include a non-natural amino acid”, J. Org. Chem. 1995, 60, 5374–5375.
  • Alsfasser, R.; van, E.R. “Novel building blocks for biomimetic assemblies. Synthesis, characterization, and spectroscopic and electrochemical properties of new bidentate ligands derived from lysine and cysteine and their complexes with Bis(2,2’-bipyridine)ruthenium(II)”, Inorg. Chem. 1996, 35, 628–636.
  • Zhong, Z.; Yang, H.; Zhang, C.; Lewis, J.C. “Synthesis and catalytic activity of amino acids and metallopeptides with catalytically active metallocyclic side chains”, Organometallics 2012, 31, 7328–7331.
  • Bishop, B.M.; McCafferty, D.G.; Erickson, B.W. “4’-Aminomethyl-2,2’-bipyridyl-4-carboxylic Acid (Abc) and related derivatives: Novel bipyridine amino acids for the solid-phase incorporation of a metal coordination site within a peptide backbone”, Tetrahedron 2000, 56, 4629–4638.
  • Heinze, K.; Hempel, K. “Solid-phase synthesis of peptide libraries combining α-amino acids with inorganic and organic chromophores”, Chem. Eur. J. 2009, 15, 1346–1358.
  • Ishida, H.; Kyakuno, M.; Oishi, S. “Molecular design of functional peptides by utilizing unnatural amino acids: Toward artificial and photofunctional protein”, Peptide Science 2004, 76, 69–82.
  • Hamzavi, R.; Happ, T.; Weitershaus, K.; Metzler-Nolte, N. “The use of 3,3-bis(2-imidazolyl)propionic acid (bip-OH) as a new chelating ligand for Re(CO)3 and Ru complexes: Formation of organometallic PNA oligomers with (bip)Re(CO)3 and their interaction with complementary DNA”, J. Organomet. Chem. 2004, 689, 4745–4750.
  • Maurer, A.; Kraatz, H.-B.; Metzler-Nolte, N. “Synthesis and electrochemical characterization of metallocene-PNA oligomers”, Eur. J. Inorg. Chem. 2005, 16, 3207–3210.
  • Boutorine, A.S.; Brault, D.; Takasugi, M.; Delgado, O.; Helene, C. “Chlorin-oligonucleotide conjugates: synthesis, properties, and red light-induced photochemical sequence-specific DNA cleavage in duplexes and triplexes”, J. Am. Chem. Soc. 1996, 118, 9469–9476.
  • Kutyavin, I.V.; Gamper, H.B.; Gall, A.A.; Meyer, R.B. , Jr. “Efficient, specific interstrand cross-linking of double-stranded DNA by a chlorambucil-modified, triplex-forming oligonucleotide”, J. Am. Chem. Soc. 1993, 115, 9303–9304.
  • Harding, M.M.; Lehn, J.-M. “Synthesis of oligobipyridine strands bearing nucleoside and amino acid side chains”, Aust. J. Chem. 1996, 49, 1023–1027.
  • Choi, J.S.; Kang, C.W.; Jung, K.; Yang, J.W.; Kim, Y.-G.; Han, H. “Synthesis of DNA triangles with vertexes of bis(terpyridine)iron(II) complexes”, J. Am. Chem. Soc. 2004, 126, 8606–8607.
  • Mokhir, A.; Stiebing, R.; Kraemer, R. “Peptide nucleic acid-metal complex conjugates: facile modulation of PNA-DNA duplex stability”, Bioorg. Med. Chem. Lett. 2003, 13, 1399–1401.
  • Reeh, P.; de, M.J. “Dynamic Multivalency for carbohydrate-protein recognition through dynamic combinatorial libraries based on FeII-bipyridine complexes”, Chem. Eur. J. 2013, 19, 5259–5262.
  • Gariepy, J.; Remy, S.; Zhang, X.; Ballinger, J.R.; Bolewska-Pedyczak, E.; Rauth, M.; Bisland, S.K. “A simple two-step approach for introducing a protected diaminedithiol chelator during solid-phase assembly of peptides”, Bioconjugate Chem. 2002, 13, 679–684.
  • Hnatowich, D.J.; Qu, T.; Chang, F.; Ley, A.C.; Ladner, R.C.; Rusckowski, M. “Labeling peptides with technetium-99m using a bifunctional chelator of a N-hydroxysuccinimide ester of mercaptoacetyltriglycine”, J. Nucl. Med. 1998, 39, 56–64.
  • Okarvi, S.M. “Peptide-based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases”, Med. Res. Rev. 2004, 24, 357–397.
  • Boschi, A.; Uccelli, L.; Bolzati, C.; Marastoni, M.; Tomatis, R.; Spisani, S.; Traniello, S.; Piffanelli, A. “A CD4/T4 receptor peptide ligand labeled with technetium-99m: Synthesis and biological activity”, Nucl. Med. Biol. 2000, 27, 791–795.
  • Riddoch, R.W.; Schaffer, P.; Valliant, J.F. “A solid-phase labeling strategy for the preparation of technetium and rhenium bifunctional chelate complexes and associated peptide conjugates”, Bioconjugate Chem. 2006, 17, 226–235.
  • Valliant, J.F.; Riddoch, R.W.; Hughes, D.W.; Roe, D.G.; Fauconnier, T.K.; Thornback, J.R. “The solid phase synthesis and NMR spectroscopy of a 99Tc chelate-bombesin derived peptide conjugate”, Inorg. Chim. Acta 2001, 325, 155–163.
  • Smith, C.J.; Gali, H.; Sieckman, G.L.; Higginbotham, C.; Volkert, W.A.; Hoffman, T.J. “Radiochemical Investigations of 99mTc-N3S-X-BBN[7-14]NH2: An in vitro/in vivo structure-activity relationship study where X = 0-, 3-, 5-, 8-, and 11-carbon tethering moieties”, Bioconjugate Chem. 2003, 14, 93–102.
  • Hovinen, J.; Hakala, H. “Versatile strategy for oligonucleotide derivatization. Introduction of lanthanide(III) chelates to oligonucleotides”, Org. Lett. 2001, 3, 2473–2476.
  • Peuralahti, J.; Hakala, H.; Mukkala, V.-M.; Loman, K.; Hurskainen, P.; Mulari, O.; Hovinen, J. “Introduction of lanthanide(III) chelates to oligopeptides on solid phase”, Bioconjugate Chem. 2002, 13, 870–875.
  • Dupray, L.M.; Meyer, T.J. “Synthesis and characterization of amide-derivatized, polypyridyl-based metallopolymers”, Inorg. Chem. 1996, 35, 6299–6307.
  • Dupray, L.M.; Devenney, M.; Striplin, D.R.; Meyer, T.J. “An antenna polymer for visible energy transfer”, J. Am. Chem. Soc. 1997, 119, 10243–10244.
  • Walsh, J.J.; Zeng, Q.; Forster, R.J.; Keyes, T.E. “Highly luminescent Ru(II) metallopolymers: photonic and redox properties in solution and as thin films”, Photoch. Photobio. Sci. 2012, 11, 1547–1557.
  • Giuntini, F.; Alonso, C.M. A.; Boyle, R.W. “Synthetic approaches for the conjugation of porphyrins and related macrocycles to peptides and proteins”, Photoch. Photobio. Sci. 2011, 10, 759–791.
  • Asayama, S.; Kawamura, E.; Nagaoka, S.; Kawakami, H. “Design of manganese porphyrin modified with mitochondrial signal peptide for a new antioxidant”, Mol. Pharm. 2006, 3, 468–470.
  • Renno, R.Z.; Terada, Y.; Haddadin, M.J.; Michaud, N.A.; Gragoudas, E.S.; Miller, J.W. “Selective photodynamic therapy by targeted verteporfin delivery to experimental choroidal neovascularization mediated by a homing peptide to vascular endothelial growth factor receptor-2”, Arch. Ophthalmol. 2004, 122, 1002–1011.
  • Choma, C.T.; Kaestle, K.; Akerfeldt, K.S.; Kim, R.M.; Groves, J.T.; DeGrado, W.F. “A general method for coupling unprotected peptides to bromacetamido porphyrin templates”, Tetrahedron Lett. 1994, 35, 6191–6194.
  • Dawson, P.E.; Kent, S.B. H. “Convenient total synthesis of a 4-helix template-assembled synthetic protein (TASP) molecule by chemoselective ligation”, J. Am. Chem. Soc. 1993, 115, 7263–7266.
  • Geier, G.R. , III; Sasaki, T. “The design, synthesis and characterization of a porphyrin-peptide conjugate”, Tetrahedron Lett. 1997, 38, 3821–3824.
  • Geier, G.R. , III; Sasaki, T. “Catalytic oxidation of alkenes with a surface-bound metalloporphyrin-peptide conjugate”, Tetrahedron 1999, 55, 1859–1870.
  • Geier, G.R. , III; Lybrand, T.P.; Sasakia, T. “On the absence of stereoselectivity in the catalytic oxidation of alkenes with a surface-bound metalloporphyrin-peptide conjugate”, Tetrahedron 1999, 55, 1871–1880.
  • Chaloin, L.; Bigey, P.; Loup, C.; Marin, M.; Galeotti, N.; Piechaczyk, M.; Heitz, F.; Meunier, B. “Improvement of porphyrin cellular delivery and activity by conjugation to a carrier peptide”, Bioconjugate Chem. 2001, 12, 691–700.
  • Arai, T.; Inudo, M.; Ishimatsu, T.; Akamatsu, C.; Tokusaki, Y.; Sasaki, T.; Nishino, N. “Self-assembling of the porphyrin-linked acyclic penta- and heptapeptides in aqueous trifluoroethanol”, J. Org. Chem. 2003, 68, 5540–5549.
  • Caddy, J.; Hoffmanns, U.; Metzler-Nolte, N. “Introduction of phosphine-gold(I) precursors into a Cys-modified enkephalin neuropeptide as part of solid phase peptide synthesis”, Z. Naturforsch., B: Chem. Sci. 2007, 62, 460–466.
  • Albrecht, M.; Rodriguez, G.; Schoenmaker, J.; van, K.G. “New peptide labels containing covalently bonded platinum(II) centers as diagnostic biomarkers and biosensors”, Org. Lett. 2000, 2, 3461–3464.
  • Guillena, G.; Halkes, K.M.; Rodriguez, G.; Batema, G.D.; van, K.G.; Kamerling, J.P. “Organoplatinum(II) complexes as a color biomarker in solid-phase peptide chemistry and screening”, Org. Lett. 2003, 5, 2021–2024.
  • Stephenson, K.A.; Banerjee, S.R.; Besanger, T.; Sogbein, O.O.; Levadala, M.K.; McFarlane, N.; Lemon, J.A.; Boreham, D.R.; Maresca, K.P.; Brennan, J.D.; Babich, J.W.; Zubieta, J.; Valliant, J.F. “Bridging the gap between in vitro and in vivo imaging: Isostructural Re and 99mTc complexes for correlating fluorescence and radioimaging studies”, J. Am. Chem. Soc. 2004, 126, 8598–8599.
  • Dirscherl, G.; Knape, R.; Hanson, P.; Koenig, B. “Solid-phase synthesis of metal-complex containing peptides”, Tetrahedron 2007, 63, 4918–4928.
  • Letsinger, R.L.; Lunsford, W.B. “Synthesis of thymidine oligonucleotides by phosphite triester intermediates”, J. Am. Chem. Soc. 1976, 98, 3655–3661.
  • Matteucci, M.D.; Caruthers, M.H. “Synthesis of deoxyoligonucleotides on a polymer support”, J. Am. Chem. Soc. 1981, 103, 3185–3191.
  • Beaucage, S.L.; Caruthers, M.H. “Deoxynucleoside phosphoramidites: A new class of key intermediates for deoxypolynucleotide synthesis”, Tetrahedron Lett. 1981, 22, 1859–1862.
  • Caruthers, M.H. “Gene synthesis machines: DNA chemistry and its uses”, Science 1985, 230, 281–285.
  • Caruthers, M.H. “Chemical synthesis of DNA and DNA analogs”, Acc. Chem. Res. 1991, 24, 278–284.
  • Bannwarth, W.; Schmidt, D.; Stallard, R.L.; Hornung, C.; Knorr, R.; Mueller, F. “Bathophenanthroline-ruthenium(II) complexes as non-radioactive labels for oligonucleotides which can be measured by time-resolved fluorescence techniques”, Helv. Chim. Acta 1988, 71, 2085–2099.
  • Bannwarth, W.; Schmidt, D. “A simple specific labeling for oligonucleotides by bathophenanthroline-ruthenium(II) complexes as nonradioactive label molecules”, Tetrahedron Lett. 1989, 30, 1513–1516.
  • Khan, S.I.; Beilstein, A.E.; Sykora, M.; Smith, G.D.; Hu, X.; Grinstaff, M.W. “Automated solid-phase DNA Synthesis and photophysical properties of oligonucleotides labeled at the 5’-terminus with Ru(bpy)32+”, Inorg. Chem. 1999, 38, 3922–3925.
  • Khan, S.I.; Beilstein, A.E.; Grinstaff, M.W. “Automated solid-phase synthesis of site-specifically labeled ruthenium-oligonucleotides”, Inorg. Chem. 1999, 38, 418–419.
  • Vargas-Baca, I.; Mitra, D.; Zulyniak, H.J.; Banerjee, J.; Sleiman, H.F. “Solid-phase synthesis of transition metal linked, branched oligonucleotides”, Angew. Chem. Int. Ed. 2001, 40, 4629–4632.
  • Nickita, N.; Gasser, G.; Bond, A.M.; Spiccia, L. “Synthesis, spectroscopic properties and electrochemical oxidation of ruii-polypyridyl complexes attached to a peptide nucleic acid monomer backbone”, Eur. J. Inorg. Chem. 2009, 14, 2179–2186.
  • Hurley, D.J.; Tor, Y. “Metal-containing oligonucleotides: Solid-phase synthesis and luminescence properties”, J. Am. Chem. Soc. 1998, 120, 2194–2195.
  • Ossipov, D.; Pradeepkumar, P.I.; Holmer, M.; Chattopadhyaya, J. “Synthesis of [Ru(phen)2dppz]2+-tethered oligo-DNA and studies on the metallointercalation mode into the DNA duplex”, J. Am. Chem. Soc. 2001, 123, 3551–3562.
  • Wiener, E.C.; Brechbiel, M.W.; Brothers, H.; Magin, R.L.; Gansow, O.A.; Tomalia, D.A.; Lauterbur, P.C. “Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents”, Magn. Reson. Med. 1994, 31, 1–8.
  • Toth, E.; Pubanz, D.; Vauthey, S.; Helm, L.; Merbach, A.E. “High-pressure NMR kinetics. 72. The role of water exchange in attaining maximum relaxivities for dendrimeric MRI contrast agents”, Chem. Eur. J. 1996, 2, 1607–1615.
  • Kobayashi, H.; Kawamoto, S.; Jo, S.-K.; Bryant, H.L. , Jr.; Brechbiel, M.W.; Star, R.A. “Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores”, Bioconjugate Chem. 2003, 14, 388–394.
  • Langereis, S.; De, L.Q. G.; Van, G.M. H. P.; Backes, W.H.; Meijer, E.W. “Multivalent contrast agents based on gadolinium-diethylenetriaminepentaacetic acid-terminated poly(propylene imine) dendrimers for magnetic resonance imaging”, Macromolecules 2004, 37, 3084–3091.
  • Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. “A stepwise Huisgen cycloaddition process: copper(I. -catalyzed regioselective “ligation” of azides and terminal alkynes”, Angew. Chem. Int. Ed. 2002, 41, 2596–2599.
  • Kolb, H.C.; Finn, M.G.; Sharpless, K.B. “Click chemistry: Diverse chemical function from a few good reactions”, Angew. Chem. Int. Ed. 2001, 40, 2004–2021.
  • Seo, T.S.; Li, Z.; Ruparel, H.; Ju, J. “Click chemistry to construct fluorescent oligonucleotides for DNA sequencing”, J. Org. Chem. 2003, 68, 609–612.
  • Tornoe, C.W.; Christensen, C.; Meldal, M. “Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides”, J. Org. Chem. 2002, 67, 3057–3064.
  • Koester, S.D.; Dittrich, J.; Gasser, G.; Huesken, N.; Henao, C.I. C.; Jios, J.L.; Della, V.C. O.; Metzler-Nolte, N. “Spectroscopic and electrochemical studies of ferrocenyl triazole amino acid and peptide bioconjugates synthesized by click chemistry”, Organometallics 2008, 27, 6326–6332.
  • Ikawa, Y.; Harada, H.; Toganoh, M.; Furuta, H. “Synthesis and protonation behavior of a water-soluble N-fused porphyrin: Conjugation with an oligoarginine by click chemistry”, Bioorg. Med. Chem. Lett. 2009, 19, 2448–2452.
  • Mindt, T.L.; Struthers, H.; Brans, L.; Anguelov, T.; Schweinsberg, C.; Maes, V.; Tourwe, D.; Schibli, R. “‘Click to chelate’: Synthesis and installation of metal chelates into biomolecules in a single step”, J. Am. Chem. Soc. 2006, 128, 15096–15097.
  • Struthers, H.; Spingler, B.; Mindt, T.L.; Schibli, R. “‘Click-to-chelate’ : Design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest”, Chem. Eur. J. 2008, 14, 6173–6183.
  • Mindt, T.L.; Schweinsberg, C.; Brans, L.; Hagenbach, A.; Abram, U.; Tourwe, D.; Garcia-Garayoa, E.; Schibli, R. “A click approach to structurally diverse conjugates containing a central Di-1,2,3-triazole metal chelate”, ChemMedChem 2009, 4, 529–539.
  • Gierlich, J.; Gutsmiedl, K.; Gramlich, P.M. E.; Schmidt, A.; Burley, G.A.; Carell, T. “Synthesis of highly modified DNA by a combination of PCR with alkyne-bearing triphosphates and click chemistry”, Chem. Eur. J. 2007, 13, 9486–9494.
  • Gramlich, P.M. E.; Warncke, S.; Gierlich, J.; Carell, T. “Click-click-click: Single to triple modification of DNA”, Angew. Chem. Int. Ed. 2008, 47, 3442–3444.
  • Gasser, G.; Huesken, N.; Koester, S.D.; Metzler-Nolte, N. “Synthesis of organometallic PNA oligomers by click chemistry”, Chem. Commun. 2008, 3675–3677.
  • Husken, N.; Gasser, G.; Koster, S.D.; Metzler-Nolte, N. ““Four-potential” ferrocene labeling of PNA oligomers via click chemistry”, Bioconjugate Chem. 2009, 20, 1578–1586.
  • Villien, M.; Deroo, S.; Gicquel, E.; Defrancq, E.; Moucheron, C.; Kirsch-De, M.A.; Dumy, P. “The oxime bond formation as an efficient tool for the conjugation of ruthenium complexes to oligonucleotides and peptides”, Tetrahedron 2007, 63, 11299–11306.
  • Rose, K. “Facile synthesis of homogeneous artificial proteins”, J. Am. Chem. Soc. 1994, 116, 30–33.
  • Cervigni, S.E.; Dumy, P.; Mutter, M. “Synthesis of glycopeptides and lipopeptides by chemoselective ligation”, Angew. Chem. Int. Ed. 1996, 35, 1230–1232.
  • Zhao, Y.; Kent, S.B. H.; Chait, B.T. “Rapid, sensitive structure analysis of oligosaccharides”, Proc. Natl. Acad. Sci. USA. 1997, 94, 1629–1633.
  • Forget, D.; Boturyn, D.; Defrancq, E.; Lhomme, J.; Dumy, P. “Highly efficient synthesis of peptide-oligonucleotide conjugates: chemoselective oxime and thiazolidine formation”, Chem. Eur. J. 2001, 7, 3976–3984.
  • Singh, Y.; Renaudet, O.; Defrancq, E.; Dumy, P. “Preparation of a multitopic glycopeptide-oligonucleotide conjugate”, Org. Lett. 2005, 7, 1359–1362.
  • Edupuganti, O.P.; Singh, Y.; Defrancq, E.; Dumy, P. “New strategy for the synthesis of 3’,5’-bi-functionalized oligonucleotide conjugates through sequential formation of chemoselective oxime bonds”, Chem. Eur. J. 2004, 10, 5988–5995.
  • Hoffmanns, U.; Metzler-Nolte, N. “Use of the sonogashira coupling reaction for the “two-step” labeling of phenylalanine peptide side chains with organometallic compounds”, Bioconjugate Chem. 2006, 17, 204–213.
  • Sergeant, C.D.; Ott, I.; Sniady, A.; Meneni, S.; Gust, R.; Rheingold, A.L.; Dembinski, R. “Metallo-nucleosides: synthesis and biological evaluation of hexacarbonyl dicobalt 5-alkynyl-2’-deoxyuridines”, Org. Biomol. Chem. 2008, 6, 73–80.
  • Ott, I.; Koch, T.; Shorafa, H.; Bai, Z.; Poeckel, D.; Steinhilber, D.; Gust, R. “Synthesis, cytotoxicity, cellular uptake and influence on eicosanoid metabolism of cobalt-alkyne modified fructoses in comparison to auranofin and the cytotoxic COX inhibitor Co-ASS”, Org. Biomol. Chem. 2005, 3, 2282–2286.
  • Rack, J.J.; Krider, E.S.; Meade, T.J. “Spectroscopy and electrochemistry of ruthenium-modified nucleic acids: Design of a novel metal-binding nucleoside”, J. Am. Chem. Soc. 2000, 122, 6287–6288.
  • van, H.J. C. M.; Tirrell, D.A. “Efficient introduction of alkene functionality into proteins in vivo”, FEBS Lett. 1998, 428, 68–70.
  • Van, H.J. C. M.; Kiick, K.L.; Tirrell, D.A. “Efficient incorporation of unsaturated methionine analogues into proteins in vivo”, J. Am. Chem. Soc. 2000, 122, 1282–1288.
  • Clark, T.D.; Ghadiri, M.R. “Supramolecular design by covalent capture. design of a peptide cylinder via hydrogen-bond- promoted intermolecular olefin metathesis”, J. Am. Chem. Soc. 1995, 117, 12364–12365.
  • Brik, A. “Metathesis in peptides and peptidomimetics”, Adv. Synth. Catal. 2008, 350, 1661–1675.
  • Lin, Y.A.; Chalker, J.M.; Davis, B.G. “Olefin metathesis for site-selective protein modification”, ChemBioChem 2009, 10, 959–969.
  • Kirshenbaum, K.; Arora, P.S. “Cross-dressing proteins by olefin metathesis”, Nat. Chem. Biol. 2008, 4, 527–528.
  • Sol, V.; Chaleix, V.; Granet, R.; Krausz, P. “An efficient route to dimeric porphyrin-RGD peptide conjugates via olefin metathesis”, Tetrahedron 2008, 64, 364–371.
  • Feeney, M.M.; Kelly, J.M.; Tossi, A.B.; Kirsch-de, M.A.; Lecomte, J.-P. “Photoaddition of ruthenium(II)-tris-1,4,5,8-tetraazaphenanthrene to DNA and mononucleotides”, J. Photochem. Photobiol. B: Biol. 1994, 23, 69–78.
  • Lecomte, J.-P.; Kirsch-De, M.A.; Feeney, M.M.; Kelly, J.M. “Ruthenium(II) complexes with 1,4,5,8,9,12-hexaazatriphenylene and 1,4,5,8-tetraazaphenanthrene ligands: Key role played by the photoelectron transfer in DNA cleavage and adduct formation”, Inorg. Chem. 1995, 34, 6481–6491.
  • Moucheron, C.; Kirsch-De, M.A.; Kelly, J.M. “Photoreactions of ruthenium(II) and osmium(II) complexes with deoxyribonucleic acid (DNA)”, J. Photochem. Photobiol. B: Biol. 1997, 40, 91–106.
  • Jacquet, L.; Kelly, J.M.; Kirsch-De, M.A. “Photoadduct between tris(1,4,5,8-tetraazaphenanthrene)ruthenium(II) and guanosine monophosphate: A model for a new mode of covalent binding of metal complexes to DNA”, J. Chem. Soc., Chem. Commun. 1995, 9, 913–914.
  • Jacquet, L.; Davies, R.J. H.; Mesmaeker, A.K.-D.; Kelly, J.M. “Photoaddition of Ru(tap)2(bpy)2+ to DNA: A new mode of covalent attachment of metal complexes to duplex DNA”, J. Am. Chem. Soc. 1997, 119, 11763–11768.
  • Blasius, R.; Nierengarten, H.; Luhmer, M.; Constant, J.-F.; Defrancq, E.; Dumy, P.; Van, D.A.; Moucheron, C.; Kirsch-DeMesmaeker, A. “Photoreaction of [Ru(hat)2phen]2 +with guanosine-5’-monophosphate and DNA: Formation of new types of photoadducts”, Chem. Eur. J. 2005, 11, 1507–1517.
  • Gicquel, E.; Boisdenghien, A.; Defrancq, E.; Moucheron, C.; Kirsch-De, M.A. “Adduct formation by photoinduced electron transfer between photooxidizing Ru(II) complexes and tryptophan”, Chem. Commun. 2004, 23, 2764–2765.
  • Elias, B.; Kirsch-De, M.A. “Photo-reduction of polyazaaromatic Ru(II) complexes by biomolecules and possible applications”, Coord. Chem. Rev. 2006, 250, 1627–1641.
  • Lentzen, O.; Constant, J.F.; Defrancq, E.; Prevost, M.; Schumm, S.; Moucheron, C.; Dumy, P.; Kirsch-De, M.A. “Photocrosslinking in ruthenium-labelled duplex oligonucleotides”, ChemBioChem 2003, 4, 195–202.
  • Uji-i, H.; Foubert, P.; De, S.F. C.; De, F.S.; Gicquel, E.; Etoc, A.; Moucheron, C.; Kirsch-De, M.A. “[Ru(TAP)3]2+-photosensitized DNA cleavage studied by atomic force microscopy and gel electrophoresis: A comparative study”, Chem. Eur. J. 2006, 12, 758–762.
  • Prescher, J.A.; Bertozzi, C.R. “Chemistry in living systems”, Nat. Chem. Biol. 2005, 1, 13–21.
  • Soellner, M.B.; Tam, A.; Raines, R.T. “Staudinger ligation of peptides at non-glycyl residues”, J. Org. Chem. 2006, 71, 9824–9830.
  • Saxon, E.; Bertozzi, C.R. “Cell surface engineering by a modified Staudinger reaction”, Science 2000, 287, 2007–2010.
  • Saxon, E.; Armstrong, J.I.; Bertozzi, C.R. “A “Traceless” Staudinger ligation for the chemoselective synthesis of amide bonds”, Org. Lett. 2000, 2, 2141–2143.
  • Nilsson, B.L.; Kiessling, L.L.; Raines, R.T. “High-yielding Staudinger ligation of a phosphinothioester and azide to form a peptide”, Org. Lett. 2001, 3, 9–12.
  • Umezawa, N.; Matsumoto, N.; Iwama, S.; Kato, N.; Higuchi, T. “Facile synthesis of peptide-porphyrin conjugates: Towards artificial catalase”, Biorg. Med. Chem. 2010, 18, 6340–6350.
  • Brunner, H.; Koenig, W.; Nuber, B. “Enantioselective catalysis. 83. Synthesis of optically active ferrocenylalanine”, Tetrahedron: Asymmetry 1993, 4, 699–707.
  • Jackson, R.F. W.; Turner, D.; Block, M.H. “Direct synthesis of metal-complexed aromatic amino acid derivatives by palladium-catalyzed coupling processes”, Synlett 1996, 862–864.
  • Younathan, J.N.; McClanahan, S.F.; Meyer, T.J. “Synthesis and characterization of soluble polymers containing electron- and energy-transfer reagents”, Macromolecules 1989, 22, 1048–1054.
  • Banin, E.; Lozinski, A.; Brady, K.M.; Berenshtein, E.; Butterfield, P.W.; Moshe, M.; Chevion, M.; Greenberg, E.P.; Banin, E. “The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent”, Proc. Natl. Acad. Sci. 2008, 105, 16761–16766.
  • Fossheim, R.; Dugstad, H.; Dahl, S.G. “Structure-stability relationships of gadolinium(III) ion complexes for magnetic resonance imaging”, J. Med. Chem. 1991, 34, 819–826.
  • Brechbiel, M.W.; Gansow, O.A. “Backbone-substituted DTPA ligands for yttrium-90 radioimmunotherapy”, Bioconjugate Chem. 1991, 2, 187–194.
  • Brittain, H.G.; Richardson, F.S.; Martin, R.B. “Terbium(III) emission as a probe of calcium(II) binding sites in proteins”, J. Am. Chem. Soc. 1976, 98, 8255–8260.
  • Kruppa, M.; Koenig, B. “Reversible coordinative bonds in molecular recognition”, Chem. Rev. 2006, 106, 3520–3560.
  • Top, S.; Vessieres, A.; Leclercq, G.; Quivy, J.; Tang, J.; Vaissermann, J.; Huche, M.; Jaouen, G. “Synthesis, biochemical properties and molecular modeling studies of organometallic specific estrogen receptor modulators (SERMs), the ferrocifens and hydroxyferrocifens: Evidence for an antiproliferative effect of hydroxyferrocifens on both hormone-dependent and hormone-independent breast cancer cell lines”, Chem. Eur. J. 2003, 9, 5223–5236.
  • Guo, M.; Sun, H.; McArdle, H.J.; Gambling, L.; Sadler, P.J. “Uptake and release by human serum transferrin and recognition of TiIV-transferrin by cancer cells: Understanding the mechanism of action of the anticancer drug titanocene dichloride”, Biochemistry 2000, 39, 10023–10033.
  • Jaouen, G.; Top, S.; Vessieres, A.; Leclercq, G.; Quivy, J.; Jin, L.; Croisy, A. “The first organometallic antioestrogens and their antiproliferative effects”, C.R. Acad. Sci., Ser. IIc: Chim. 2000, 3, 89–93.
  • Morris, R.E.; Aird, R.E.; Murdoch, P.d. S.; Chen, H.; Cummings, J.; Hughes, N.D.; Parsons, S.; Parkin, A.; Boyd, G.; Jodrell, D.I.; Sadler, P.J. “Inhibition of cancer cell growth by ruthenium(II) arene complexes”, J. Med. Chem. 2001, 44, 3616–3621.
  • Jung, M.; Kerr, D.E.; Senter, P.D. “Bioorganometallic chemistry: Synthesis and antitumor activity of cobalt carbonyl complexes”, Arch. Pharm. 1997, 330, 173–176.
  • Schmidt, K.; Jung, M.; Keilitz, R.; Schnurr, B.; Gust, R. “Acetylenehexacarbonyldicobalt complexes, a novel class of antitumor drugs”, Inorg. Chim. Acta 2000, 306, 6–16.
  • Kopf, H.; Kopf-Maier, P. “Titanocene dichloride: The first metallocene with cancerostatic activity”, Angew. Chem. Int. Ed. 1979, 18, 477–478.
  • Kopf-Maier, P.; Hesse, B.; Voigtlander, R.; Kopf, H. “Tumor inhibition by metallocenes: antitumor activity of titanocene dihalides (C5H5)2TiX2 (X = F, Cl, Br, I, NCS) and their application in buffered solutions as a method for suppressing drug-induced side effects”, J. Cancer Res. Clin. Oncol. 1980, 97, 31–39.
  • Cowley, A.R.; Davis, J.; Dilworth, J.R.; Donnelly, P.S.; Dobson, R.; Nightingale, A.; Peach, J.M.; Shore, B.; Kerr, D.; Seymour, L. “Fluorescence studies of the intra-cellular distribution of zinc bis(thiosemicarbazone) complexes in human cancer cells”, Chem. Commun. 2005, 7, 845–847.
  • Zhang, C.X.; Lippard, S.J. “New metal complexes as potential therapeutics”, Curr. Opin. Chem. Biol. 2003, 7, 481–489.
  • Sharma, A.K.; Pavlova, S.T.; Kim, J.; Finkelstein, D.; Hawco, N.J.; Rath, N.P.; Kim, J.; Mirica, L.M. “Bifunctional compounds for controlling metal-mediated aggregation of the Aβ42 peptide”, J. Am. Chem. Soc. 2012, 134, 6625–6636.
  • Jung, Y.; Lippard, S.J. “Direct cellular responses to platinum-induced DNA damage”, Chem. Rev. 2007, 107, 1387–1407.
  • Harstrick, A.; Schmoll, H.J.; Sass, G.; Poliwoda, H.; Rustum, Y. “Titanocendichloride activity in cisplatin and doxorubicin-resistant human ovarian carcinoma cell lines”, Eur. J. Cancer 1993, 29A, 1000–1002.
  • Drewry, J.A.; Gunning, P.T. “Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes”, Coord. Chem. Rev. 2011, 255, 459–472.
  • Thompson, K.H.; Orvig, C. “Metal complexes in medicinal chemistry: New vistas and challenges in drug design”, Dalton. Trans. 2006, 761–764.
  • Bruijnincx, P.C. A.; Sadler, P.J. “New trends for metal complexes with anticancer activity”, Curr. Opin. Chem. Biol. 2008, 12, 197–206.
  • Bierer, D.W. “Bismuth subsalicylate: History, chemistry, and safety”, Rev. Infect. Dis. 1990, 12, S3–S8.
  • Sadler, P.J.; Li, H.; Sun, H. “Coordination chemistry of metals in medicine: Target sites for bismuth”, Coord. Chem. Rev. 1999, 185-186, 689–709.
  • Che, C.-M.; Siu, F.-M. “Metal complexes in medicine with a focus on enzyme inhibition”, Curr. Opin. Chem. Biol. 2010, 14, 255–261.
  • Lau, S.-J.; Kruck, T.P. A.; Sarkar, B. “Peptide molecule mimicking the copper(II) transport site of human serum albumin: Comparative study between the synthetic site and albumin”, J. Biol. Chem. 1974, 249, 5878–5884.
  • Kimoto, E.; Tanaka, H.; Gyotoku, J.; Morishige, F.; Pauling, L. “Enhancement of antitumor activity of ascorbate against Ehrlich ascites tumor cells by the copper:glycylglycylhistidine complex”, Cancer Res. 1983, 43, 824–828.
  • Garvie, C.W.; Wolberger, C. “Recognition of specific DNA sequences”, Mol. Cell 2001, 8, 937–946.
  • Samejima, K.; Earnshaw, W.C. “Trashing the genome: The role of nucleases during apoptosis”, Nat. Rev. Mol. Cell Biol. 2005, 6, 677–688.
  • Harford, C.; Sarkar, B. “Amino terminal Cu(II)- and Ni(II)-binding motif of proteins and peptides: Metal binding, DNA cleavage, and other properties”, Acc. Chem. Res. 1997, 30, 123–130.
  • Dervan, P.B. “Characterization of protein-DNA complexes by affinity cleaving”, Methods Enzymol. 1991, 208, 497–515.
  • Long, E.C.; Eason, P.D.; Liang, Q. “Synthetic metallopeptides as probes of protein-DNA interactions”, Met. Ions Biol. Syst. 1996, 33, 427–452.
  • Huang, X.; Pieczko, M.E.; Long, E.C. “Combinatorial optimization of the DNA cleaving Ni(II)·Xaa-Xaa-His metallotripeptide domain”, Biochemistry 1999, 38, 2160–2166.
  • Sheardy, R.D.; Wilson, W.D.; King, H.D. From Reporter Molecules to Peptides: Interactions with Nucleic Acids; Adenine Press: New York, 1990; pp 175–212.
  • Schlawe, D.; Majdalani, A.; Velcicky, J.; Hessler, E.; Wieder, T.; Prokop, A.; Schmalz, H.-G. “Iron-containing nucleoside analogs with pronounced apoptosis-inducing activity”, Angew. Chem. Int. Ed. 2004, 43, 1731–1734.
  • Pierroz, V.; Joshi, T.; Leonidova, A.; Mari, C.; Schur, J.; Ott, I.; Spiccia, L.; Ferrari, S.; Gasser, G. “Molecular and cellular characterization of the biological effects of ruthenium(II) complexes incorporating 2-pyridyl-2-pyrimidine-4-carboxylic acid”, J. Am. Chem. Soc. 2012, 134, 20376–20387.
  • Okarvi, S.M. “Recent developments in 99Tcm-labelled peptide-based radiopharmaceuticals: An overview”, Nuclear Medicine Communications 1999, 20, 1093–1112.
  • Liu, S.; Edwards, D.S. “99mTc-labeled small peptides as diagnostic radiopharmaceuticals”, Chem. Rev. 1999, 99, 2235–2268.
  • Fani, M.; Maecke, H.R. “Radiopharmaceutical development of radiolabelled peptides”, Eur. J. Nucl. Med. Mol. Imag. 2012, 39 Suppl 1, S11–30.
  • Langer, M.; Beck-Sickinger, A.G. “Peptides as carrier for tumor diagnosis and treatment”, Curr. Med. Chem.: Anti-Cancer Agents 2001, 1, 71–93.
  • Hoffman, T.J.; Quinn, T.P.; Volkert, W.A. “Radiometallated receptor-avid peptide conjugates for specific in vivo targeting of cancer cells”, Nucl. Med. Biol. 2001, 28, 527–539.
  • Signore, A.; Annovazzi, A.; Chianelli, M.; Corsetti, F.; Van, d. W.C.; Watherhouse, R.N.; Scopinaro, F. “Peptide radiopharmaceuticals for diagnosis and therapy”, European Journal of Nuclear Medicine 2001, 28, 1555–1565.
  • Heppeler, A.; Froidevaux, S.; Eberle, A.N.; Maecke, H.R. “Receptor targeting for tumor localisation and therapy with radiopeptides”, Curr. Med. Chem. 2000, 7, 971–994.
  • Okarvi, S.M. “Peptide-based radiopharmaceuticals and cytotoxic conjugates: Potential tools against cancer”, Cancer Treat. Rev. 2008, 34, 13–26.
  • Jamous, M.; Haberkorn, U.; Mier, W. “Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases”, Molecules 2013, 18, 3379–3409.
  • Karvinen, J.; Elomaa, A.; Mäkinen, M.-L.; Hakala, H.; Mukkala, V.-M.; Peuralahti, J.; Hurskainen, P.; Hovinen, J.; Hemmilä, I. “Caspase multiplexing: Simultaneous homogeneous time-resolved quenching assay (TruPoint) for caspases 1, 3, and 6”, Anal. Biochem. 2004, 325, 317–325.
  • Karvinen, J.; Laitala, V.; Mäkinen, M.-L.; Mulari, O.; Tamminen, J.; Hermonen, J.; Hurskainen, P.; Hemmilä, I. “Fluorescence quenching-based assays for hydrolyzing enzymes: Application of time-resolved fluorometry in assays for caspase, helicase, and phosphatase”, Anal. Chem. 2004, 76, 1429–1436.
  • De, R.A.; Naviglio, D.; Di, L.A. “Advances in photodynamic therapy of cancer”, Current Cancer Therapy Reviews 2011, 7, 234–247.
  • O’Connor, A.E.; Gallagher, W.M.; Byrne, A.T. “Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy”, Photochem. Photobiol. 2009, 85, 1053–1074.
  • Pandey, R.K. “Recent advances in photodynamic therapy”, J. Porphyrins Phthalocyanines 2000, 4, 368–373.
  • Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. “Photodynamic therapy of cancer: An update”, CA Cancer J Clin 2011, 61, 250–281.
  • Ferruti, P.; Ranucci, E.; Trotta, F.; Gianasi, E.; Evagorou, E.G.; Wasil, M.; Wilson, G.; Duncan, R. “Synthesis, characterization, and antitumor activity of platinum(II) complexes of novel functionalised poly(amido amine)s”, Macromol. Chem. Phys. 1999, 200, 1644–1654.
  • Ferruti, P. “Poly(amidoamine)s: Past, present, and perspectives”, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2319–2353.
  • Hnatowich, D.J.; Layne, W.W.; Childs, R.L.; Lanteigne, D.; Davis, M.A.; Griffin, T.W.; Doherty, P.W. “Radioactive labeling of antibody: A simple and efficient method”, Science 1983, 220, 613–615.
  • Corneillie, T.M.; Whetstone, P.A.; Fisher, A.J.; Meares, C.F. “A rare earth-DOTA-binding antibody: Probe properties and binding affinity across the lanthanide series”, J. Am. Chem. Soc. 2003, 125, 3436–3437.
  • Steunenberg, P.; Ruggi, A.; van, d. B.N. S.; Buckle, T.; Kuil, J.; van, L.F. W. B.; Velders, A.H. “Phosphorescence imaging of living cells with amino acid-functionalized Tris(2-phenylpyridine)iridium(III) complexes”, Inorg. Chem. 2012, 51, 2105–2114.
  • Neugebauer, U.; Pellegrin, Y.; Devocelle, M.; Forster, R.J.; Signac, W.; Moran, N.; Keyes, T.E. “Ruthenium polypyridyl peptide conjugates: Membrane permeable probes for cellular imaging”, Chem. Commun. 2008, 42, 5307–5309.
  • Liu, S.; Edwards, D.S.; Barrett, J.A. “99mTc labeling of highly potent small peptides”, Bioconjugate Chem. 1997, 8, 621–636.
  • Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. “Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications”, Chem. Rev. 1999, 99, 2293–2352.
  • Fichna, J.; Janecka, A. “Synthesis of target-specific radiolabeled peptides for diagnostic imaging”, Bioconjugate Chem. 2003, 14, 3–17.
  • Anderson, C.J.; Welch, M.J. “Radiometal-labeled agents (non-technetium) for diagnostic imaging”, Chem. Rev. 1999, 99, 2219–2234.
  • De, L.-R. L. M.; Kovacs, Z.; Dieckmann, G.R.; Sherry, A.D. “Solid-phase synthesis of DOTA-peptides”, Chem. Eur. J. 2004, 10, 1149–1155.
  • De, L.-R. L. M.; Ortiz, A.; Weiner, A.L.; Zhang, S.; Kovacs, Z.; Kodadek, T.; Sherry, A.D. “Magnetic resonance imaging detects a specific peptide-protein binding event”, J. Am. Chem. Soc. 2002, 124, 3514–3515.
  • Polyakov, V.; Sharma, V.; Dahlheimer, J.L.; Pica, C.M.; Luker, G.D.; Piwnica-Worms, D. “Novel tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy”, Bioconjugate Chem. 2000, 11, 762–771.
  • Bullok, K.E.; Dyszlewski, M.; Prior, J.L.; Pica, C.M.; Sharma, V.; Piwnica-Worms, D. “Characterization of novel histidine-tagged tat-peptide complexes dual-labeled with 99mTc-tricarbonyl and fluorescein for scintigraphy and fluorescence microscopy”, Bioconjugate Chem. 2002, 13, 1226–1237.
  • Huang, F.; Pei, Y.-Y.; Zuo, H.-H.; Chen, J.-L.; Yang, Y.; Su, X.-C. “Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag”, Chem. - Eur. J. 2013, 19, 17141–17149.
  • Lo, K.K.-W.; Lee, P.-K.; Lau, J.S.-Y. “Synthesis, characterization, and properties of luminescent organoiridium(III) polypyridine complexes appended with an alkyl chain and their interactions with lipid bilayers, surfactants, and living cells”, Organometallics 2008, 27, 2998–3006.
  • Yu, M.; Zhao, Q.; Shi, L.; Li, F.; Zhou, Z.; Yang, H.; Yi, T.; Huang, C. “Cationic iridium(III) complexes for phosphorescence staining in the cytoplasm of living cells”, Chem. Commun. 2008, 18, 2115–2117.
  • Zhao, Q.; Yu, M.; Shi, L.; Liu, S.; Li, C.; Shi, M.; Zhou, Z.; Huang, C.; Li, F. “Cationic Iridium(III) complexes with tunable emission color as phosphorescent dyes for live cell imaging”, Organometallics 2010, 29, 1085–1091.
  • Allen, K.N.; Imperiali, B. “Lanthanide-tagged proteins: An illuminating partnership”, Curr. Opin. Chem. Biol. 2010, 14, 247–254.
  • Vazquez-Ibar, J.L.; Weinglass, A.B.; Kaback, H.R. “Engineering a terbium-binding site into an integral membrane protein for luminescence energy transfer”, Proc. Natl. Acad. Sci. USA. 2002, 99, 3487–3492.
  • Josephson, L.; Tung, C.-H.; Moore, A.; Weissleder, R. “High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates”, Bioconjugate Chem. 1999, 10, 186–191.
  • Dodd, C.H.; Hsu, H.C.; Chu, W.J.; Yang, P.; Zhang, H.G.; Mountz, J.D.; Zinn, K.; Forder, J.; Josephson, L.; Weissleder, R.; Mountz, J.M.; Mountz, J.D. “Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles”, J. Immunol. Methods 2001, 256, 89–105.
  • Bhorade, R.; Weissleder, R.; Nakakoshi, T.; Moore, A.; Tung, C.-H. “Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-Tat derived membrane translocation peptide”, Bioconjugate Chem. 2000, 11, 301–305.
  • Lewis, M.R.; Jia, F.; Gallazzi, F.; Wang, Y.; Zhang, J.; Shenoy, N.; Lever, S.Z.; Hannink, M. “Radiometal-labeled peptide-PNA conjugates for targeting bcl-2 expression: Preparation, characterization, and in vitro mRNA binding”, Bioconjugate Chem. 2002, 13, 1176–1180.
  • Wunderbaldinger, P.; Josephson, L.; Weissleder, R. “Tat Peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles”, Bioconjugate Chem. 2002, 13, 264–268.
  • Nune, S.K.; Gunda, P.; Thallapally, P.K.; Lin, Y.-Y.; Laird, F.M.; Berkland, C.J. “Nanoparticles for biomedical imaging”, Expert. Opin. Drug. Del. 2009, 6, 1175–1194.
  • Donghi, D.; Maggioni, D.; D’Alfonso, G.; Amigoni, F.; Ranucci, E.; Ferruti, P.; Manfredi, A.; Fenili, F.; Bisazza, A.; Cavalli, R. “Tricarbonyl-rhenium complexes of a thiol-functionalized amphoteric poly(amidoamine)”, Biomacromolecules 2009, 10, 3273–3282.
  • Maggioni, D.; Fenili, F.; D’Alfonso, L.; Donghi, D.; Panigati, M.; Zanoni, I.; Marzi, R.; Manfredi, A.; Ferruti, P.; D’Alfonso, G.; Ranucci, E. “Luminescent rhenium and ruthenium complexes of an amphoteric poly(amidoamine) functionalized with 1,10-phenanthroline”, Inorg. Chem. 2012, 51, 12776–12788.
  • Ferri, E.; Donghi, D.; Panigati, M.; Prencipe, G.; D’Alfonso, L.; Zanoni, I.; Baldoli, C.; Maiorana, S.; D’Alfonso, G.; Licandro, E. “Luminescent conjugates between dinuclear rhenium(I) complexes and peptide nucleic acids (PNA) for cell imaging and DNA targeting”, Chem. Commun. 2010, 46, 6255–6257.
  • Nielsen, P.E. “Addressing the challenges of cellular delivery and bioavailability of peptide nucleic acids (PNA)”, Q. Rev. Biophys. 2005, 38, 345–350.
  • Jorgensen, L.; Nielsen, H.M. (Eds.) Delivery Technologies For Biopharmaceuticals: Peptides, Proteins, Nucleic Acids And Vaccines; John Wiley & Sons: Hoboken, NJ, 2009.
  • Gasser, G.; Sosniak, A.M.; Metzler-Nolte, N. “Metal-containing peptide nucleic acid conjugates”, Dalton. Trans. 2011, 40, 7061–7076.
  • Noor, F.; Wuestholz, A.; Kinscherf, R.; Metzler-Nolte, N. “A cobaltocenium-peptide bioconjugate shows enhanced cellular uptake and directed nuclear delivery”, Angew. Chem. Int. Ed. 2005, 44, 2429–2432.
  • Hoyer, J.; Hunold, A.; Schmalz, H.-G.; Neundorf, I. “A novel conjugate of a cell-penetrating peptide and a ferrocenyl amino acid: A potential electrochemical sensor for living cells?”, Dalton. Trans. 2012, 41, 6396–6398.
  • Boonyarattanakalin, S.; Athavankar, S.; Sun, Q.; Peterson, B.R. “Synthesis of an artificial cell surface receptor that enables oligohistidine affinity tags to function as metal-dependent cell-penetrating peptides”, J. Am. Chem. Soc. 2006, 128, 386–387.
  • Joshi, T.; Gasser, G.; Martin, L.L.; Spiccia, L. “Specific uptake and interactions of peptide nucleic acid derivatives with biomimetic membranes”, RSC Advances 2012, 2, 4703–4712.
  • Mechler, A.; Praporski, S.; Piantavigna, S.; Heaton, S.M.; Hall, K.N.; Aguilar, M.-I.; Martin, L.L. “Structure and homogeneity of pseudo-physiological phospholipid bilayers and their deposition characteristics on carboxylic acid terminated self-assembled monolayers”, Biomaterials 2008, 30, 682–689.
  • Fuessl, A.; Schleifenbaum, A.; Goeritz, M.; Riddell, A.; Schultz, C.; Kraemer, R. “Cellular uptake of PNA-terpyridine conjugates and its enhancement by Zn2+ Ions”, J. Am. Chem. Soc. 2006, 128, 5986–5987.
  • Kirin, S.I.; Ott, I.; Gust, R.; Mier, W.; Weyhermueller, T.; Metzler-Nolte, N. “Cellular uptake quantification of metalated peptide and peptide nucleic acid bioconjugates by atomic absorption spectroscopy”, Angew. Chem. Int. Ed. 2008, 47, 955–959.
  • Gasser, G.; Neumann, S.; Ott, I.; Seitz, M.; Heumann, R.; Metzler-Nolte, N. “Preparation and biological evaluation of di-hetero-organometallic-containing PNA bioconjugates”, Eur. J. Inorg. Chem. 2011, 2011, 5471–5478.
  • Gasser, G.; Pinto, A.; Neumann, S.; Sosniak, A.M.; Seitz, M.; Merz, K.; Heumann, R.; Metzler-Nolte, N. “Synthesis, characterisation and bioimaging of a fluorescent rhenium-containing PNA bioconjugate”, Dalton. Trans. 2012, 41, 2304–2313.
  • Last, J.A.; Waggoner, T.A.; Sasaki, D.Y. “Lipid membrane reorganization induced by chemical recognition”, Biophys. J. 2001, 81, 2737–2742.
  • Pack, D.W.; Arnold, F.H. “Langmuir monolayer characterization of metal chelating lipids for protein targeting to membranes”, Chem. Phys. Lipids 1997, 86, 135–152.
  • Joyner, J.C.; Reichfield, J.; Cowan, J.A. “Factors influencing the DNA nuclease activity of iron, cobalt, nickel, and copper chelates”, J. Am. Chem. Soc. 2011, 133, 15613–15626.
  • Luedtke, N.W.; Tor, Y. “Fluorescence-based methods for evaluating the RNA affinity and specificity of HIV-1 Rev-RRE inhibitors”, Biopolymers 2003, 70, 103–119.
  • Joyner, J.C.; Cowan, J.A. “Targeted cleavage of HIV RRE RNA by rev-coupled transition metal chelates”, J. Am. Chem. Soc. 2011, 133, 9912–9922.
  • Joyner, J.C.; Keuper, K.D.; Cowan, J.A. “DNA nuclease activity of Rev-coupled transition metal chelates”, Dalton. Trans. 2012, 41, 6567–6578.
  • Hutschenreiter, S.; Neumann, L.; Raedler, U.; Schmitt, L.; Tampe, R. “Metal-chelating amino acids as building blocks for synthetic receptors sensing metal ions and histidine-tagged proteins”, ChemBioChem 2003, 4, 1340–1344.
  • Gibson, E.A.; Duhme-Klair, A.-K.; Perutz, R.N. “Design and synthesis of water soluble (metallo)porphyrins with pendant arms: studies of binding to xanthine oxidase”, New J. Chem. 2010, 34, 1125–1134.
  • Lentzen, O.; Defrancq, E.; Constant, J.-F.; Schumm, S.; Garcia-Fresnadillo, D.; Moucheron, C.; Dumy, P.; Kirsch-De, M.A. “Determination of DNA guanine sites forming photo-adducts with Ru(II)-labeled oligonucleotides: DNA polymerase inhibition by the resulting photo-crosslinking”, J. Biol. Inorg. Chem. 2004, 9, 100–108.
  • Mito-Oka, Y.; Tsukiji, S.; Hiraoka, T.; Kasagi, N.; Shinkai, S.; Hamachi, I. “Zn(II) dipicolylamine-based artificial receptor as a new entry for surface recognition of α-helical peptides in aqueous solution”, Tetrahedron Lett. 2001, 42, 7059–7062.
  • Ojida, A.; Mitooka, Y.; Inoue, M.; Hamachi, I. “First artificial receptors and chemosensors toward phosphorylated peptide in aqueous solution”, J. Am. Chem. Soc. 2002, 124, 6256–6258.
  • Ojida, A.; Inoue, M.; Mitooka, Y.; Hamachi, I. “Cross-linking strategy for molecular recognition and fluorescent sensing of a multi-phosphorylated peptide in aqueous solution”, J. Am. Chem. Soc. 2003, 125, 10184–10185.
  • Kinoshita, E.; Takahashi, M.; Takeda, H.; Shiro, M.; Koike, T. “Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex”, Dalton. Trans. 2004, 1189–1193.
  • Han, M.S.; Kim, D.H. “Visual detection of AMP and real-time monitoring of cyclic nucleotide phosphodiesterase (PDE) activity in neutral aqueous solution: Chemosensor-coupled assay of PDE and PDE inhibitors”, Bioorg. Med. Chem. Lett. 2003, 13, 1079–1082.
  • Tobey, S.L.; Anslyn, E.V. “Determination of inorganic phosphate in serum and saliva using a synthetic receptor”, Org. Lett. 2003, 5, 2029–2031.
  • Tobey, S.L.; Jones, B.D.; Anslyn, E.V. “C3v Symmetric receptors show high selectivity and high affinity for phosphate”, J. Am. Chem. Soc. 2003, 125, 4026–4027.
  • Tobey, S.L.; Anslyn, E.V. “Energetics of phosphate binding to ammonium and guanidinium containing metallo-receptors in water”, J. Am. Chem. Soc. 2003, 125, 14807–14815.
  • Kurzak, B.; Bogusz, K.; Kroczewska, D.; Jezierska, J. “Mixed-ligand copper(II) complexes with diethylenetriamine and histidine- or methioninehydroxamic acids in water solution”, Polyhedron 2001, 20, 2627–2636.
  • Tsiveriotis, P.; Hadjiliadis, N.; Stavropoulos, G. “NMR study of the interaction of platinum(II) and palladium(II) complex ions with His-Ala and His-Gly-Ala”, Inorg. Chim. Acta 1997, 261, 83–92.
  • Gasowska, A.; Jastrzab, R.; Bregier-Jarzebowska, R.; Lomozik, L. “Intermolecular and coordination reactions in the systems of copper(II) with adenosine 5’-monophosphate or cytidine 5’-monophosphate and triamines”, Polyhedron 2001, 20, 2305–2313.
  • Hortala, M.A.; Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A. “Designing the selectivity of the fluorescent detection of amino acids: A chemosensing ensemble for histidine”, J. Am. Chem. Soc. 2003, 125, 20–21.
  • Striegler, S. “Carbohydrate recognition in cross-linked sugar-templated poly(acrylates)”, Macromolecules 2003, 36, 1310–1317.
  • Striegler, S. “Discrimination of epimeric disaccharides by templated polymers”, Anal. Chim. Acta 2005, 539, 91–95.
  • Cai, J.; Hu, X.; Bernal, I.; Ji, L.-N. “Nickel(II) complexes of amino acids in comparison with the cobalt(III) analogues: Interesting structural aspects relative to intermolecular hydrogen bonds and chiral recognition”, Polyhedron 2002, 21, 817–823.
  • Salam, M.A.; Aoki, K. “Metal ion interactions with nucleobases in the tripodal tris(2-aminoethyl)amine (tren) ligand-system. Crystal structures of [Cu(tren)(adeninato)]·ClO4, [Ni(tren)(9-ethylguanine-0.5H)(H2O)]2·(ClO4)2.5·(ClO3)0.5 and [{Cu(tren)}2(hypoxanthinato)]·(ClO4)3”, Inorg. Chim. Acta 2001, 314, 71–82.
  • Fabbrizzi, L.; Licchelli, M.; Parodi, L.; Poggi, A.; Taglietti, A. “A versatile fluorescent system for sensing of H+, transition metals, and aromatic carboxylates”, Eur. J. Inorg. Chem. 1999, 1, 35–39.
  • Fabbrizzi, L.; Francese, G.; Licchelli, M.; Perotti, A.; Taglietti, A. “Fluorescent sensor of imidazole and histidine”, Chem. Commun. 1997, 6, 581–582.
  • Fabbrizzi, L.; Licchelli, M.; Perotti, A.; Poggi, A.; Rabaioli, G.; Sacchi, D.; Taglietti, A. “Fluorescent molecular sensing of amino acids bearing an aromatic residue”, Journal of the Chemical Society, Perkin Transactions 2 2001, 11, 2108–2113.
  • Bonizzoni, M.; Fabbrizzi, L.; Piovani, G.; Taglietti, A. “Fluorescent detection of glutamate with a dicopper(II) polyamine cage”, Tetrahedron 2004, 60, 11159–11162.
  • Boiocchi, M.; Bonizzoni, M.; Fabbrizzi, L.; Piovani, G.; Taglietti, A. “A dimetallic cage with a long ellipsoidal cavity for the fluorescent detection of dicarboxylate anions in water”, Angew. Chem. Int. Ed. 2004, 43, 3847–3852.
  • Kienberger, F.; Moser, R.; Schindler, H.; Blaas, D.; Hinterdorfer, P. “Quasi-crystalline arrangement of human rhinovirus 2 on model cell membranes”, Single. Mol. 2001, 2, 99–103.
  • Celia, H.; Wilson-Kubalek, E.; Milligan, R.A.; Teyton, L. “Structure and function of a membrane-bound murine MHC class I molecule”, Proc. Natl. Acad. Sci. USA. 1999, 96, 5634–5639.
  • Bischler, N.; Balavoine, F.; Milkereit, P.; Tschochner, H.; Mioskowski, C.; Schultz, P. “Specific interaction and two-dimensional crystallization of histidine tagged yeast RNA polymerase I on nickel-chelating lipids”, Biophys. J. 1998, 74, 1522–1532.
  • Gritsch, S.; Neumaier, K.; Schmitt, L.; Tampe, R. “Engineering fusion molecules at chelator lipid interfaces imaged by reflection interference contrast microscopy (RICM)”, Biosens. Bioelectron. 1995, 10, 805–812.
  • Haddour, N.; Cosnier, S.; Gondran, C. “Electrogeneration of a poly(pyrrole)-NTA chelator film for a reversible oriented immobilization of histidine-tagged proteins”, J. Am. Chem. Soc. 2005, 127, 5752–5753.
  • Hopgood, D.; Angelici, R.J. “Equilibrium and stereochemical studies of the interactions of amino acids and their esters with divalent metal nitrilotriacetate complexes”, J. Am. Chem. Soc. 1968, 90, 2508–2513.
  • Kruppa, M.; Mandl, C.; Miltschitzky, S.; Koenig, B. “A luminescent receptor with affinity for n-terminal histidine in peptides in aqueous solution”, J. Am. Chem. Soc. 2005, 127, 3362–3365.
  • Pack, D.W.; Chen, G.; Maloney, K.M.; Chen, C.-T.; Arnold, F.H. “A metal-chelating lipid for 2d protein crystallization via coordination of surface histidines”, J. Am. Chem. Soc. 1997, 119, 2479–2487.
  • Sun, S.; Fazal, M.A.; Roy, B.C.; Chandra, B.; Mallik, S. “Thermodynamic studies on the recognition of flexible peptides by transition-metal complexes”, Inorg. Chem. 2002, 41, 1584–1590.
  • Sun, S.; Abul, F.M.; Roy, B.C.; Mallik, S. “Recognition of flexible peptides in water by transition metal complexes”, Org. Lett. 2000, 2, 911–914.
  • Chen, Y.; Pasquinelli, R.; Ataai, M.; Koepsel, R.R.; Kortes, R.A.; Shepherd, R.E. “Coordination of two high-affinity hexamer peptides to copper(II) and palladium(II). Models of the peptide-metal chelation site on IMAC resins”, Inorg. Chem. 2000, 39, 1180–1186.
  • Striegler, S.; Tewes, E. “Investigation of sugar-binding sites in ternary ligand-copper(II)-carbohydrate complexes”, Eur. J. Inorg. Chem. 2002, 2, 487–495.
  • Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. “Metal chelate affinity chromatography, a new approach to protein fractionation”, Nature 1975, 258, 598–599.
  • Suen, S.-Y.; Liu, Y.-C.; Chang, C.-S. “Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species”, J. Chromatogr. B. 2003, 797, 305–319.
  • Shepherd, R.E. “Chromatographic and related electrophoretic methods in the separation of transition metal complexes or their ligands”, Coord. Chem. Rev. 2003, 247, 147–184.
  • Gaberc-Porekar, V.; Menart, V. “Perspectives of immobilized-metal affinity chromatography”, J. Biochem. Bioph. Methods 2001, 49, 335–360.
  • Chaga, G.S. “Twenty-five years of immobilized metal ion affinity chromatography: past, present and future”, J. Biochem. Bioph. Methods 2001, 49, 313–334.
  • Arnold, F.H. “Metal-affinity separations: A new dimension in protein processing”, Bio/Technology 1991, 9, 151–156.
  • Porath, J. “IMAC - immobilized metal ion affinity based chromatography”, TrAC, Trends Anal. Chem. 1988, 7, 254–259.
  • Guillena, G.; Rodriguez, G.; Albrecht, M.; Van, K.G. “Covalently bonded platinum(II) complexes of α-amino acids and peptides as a potential tool for protein labeling”, Chem. Eur. J. 2002, 8, 5368–5376.
  • Salmain, M.; Fischer-Durand, N.; Cavalier, L.; Rudolf, B.; Zakrzewski, J.; Jaouen, G. “Transition metal-carbonyl labeling of biotin and avidin for use in solid-phase carbonyl metallo immunoassay (CMIA)”, Bioconjugate Chem. 2002, 13, 693–698.
  • Yoshimura, I.; Miyahara, Y.; Kasagi, N.; Yamane, H.; Ojida, A.; Hamachi, I. “Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip”, J. Am. Chem. Soc. 2004, 126, 12204–12205.
  • Kiyonaka, S.; Sada, K.; Yoshimura, I.; Shinkai, S.; Kato, N.; Hamachi, I. “Semi-wet peptide/protein array using supramolecular hydrogel”, Nat. Mater. 2004, 3, 58–64.
  • Ojida, A.; Kohira, T.; Hamachi, I. “Phosphoprotein-selective recognition and staining in SDS-PAGE by bis-Zn(II)-dipycolylamine-appended anthracene”, Chem. Lett. 2004, 33, 1024–1025.
  • Wongkongkatep, J.; Miyahara, Y.; Ojida, A.; Hamachi, I. “Label-free, real-time glycosyltransferase assay based on a fluorescent artificial chemosensor”, Angew. Chem. Int. Ed. 2006, 45, 665–668.
  • Hanshaw, R.G.; Hilkert, S.M.; Jiang, H.; Smith, B.D. “An indicator displacement system for fluorescent detection of phosphate oxyanions under physiological conditions”, Tetrahedron Lett. 2004, 45, 8721–8724.
  • Lee, D.H.; Kim, S.Y.; Hong, J.-I. “Fluorescent sensors: A fluorescent pyrophosphate sensor with high selectivity over ATP in water”, Angew. Chem. Int. Ed. 2004, 43, 4777–4780.
  • Koulov, A.V.; Stucker, K.A.; Lakshmi, C.; Robinson, J.P.; Smith, B.D. “Detection of apoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine”, Cell Death Differ. 2003, 10, 1357–1359.
  • Lakshmi, C.; Hanshaw, R.G.; Smith, B.D. “Fluorophore-linked zinc(II)dipicolylamine coordination complexes as sensors for phosphatidylserine-containing membranes”, Tetrahedron 2004, 60, 11307–11315.
  • Xu, C.; Xu, K.; Gu, H.; Zhong, X.; Guo, Z.; Zheng, R.; Zhang, X.; Xu, B. “Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins”, J. Am. Chem. Soc. 2004, 126, 3392–3393.
  • Kapanidis, A.N.; Ebright, Y.W.; Ebright, R.H. “Site-specific incorporation of fluorescent probes into protein: Hexahistidine-tag-mediated fluorescent labeling with (Ni2+:Nitrilotriacetic Acid)n-fluorochrome conjugatesfluorescent probes”, J. Am. Chem. Soc. 2001, 123, 12123–12125.
  • Goldsmith, C.R.; Jaworski, J.; Sheng, M.; Lippard, S.J. “Selective labeling of extracellular proteins containing polyhistidine sequences by a fluorescein-nitrilotriacetic acid conjugate”, J. Am. Chem. Soc. 2006, 128, 418–419.
  • Moats, R.A.; Fraser, S.E.; Meade, T.J. “A “smart” magnetic resonance imaging agent that reports on specific enzymic activity”, Angew. Chem. Int. Ed. 1997, 36, 726–728.
  • Li, W.Fraser, S.E.; Meade, T.J. “A calcium-sensitive magnetic resonance imaging contrast agent”, J. Am. Chem. Soc. 1999, 121, 1413–1414.
  • Grum, D.; Franke, S.; Kraff, O.; Heider, D.; Schramm, A.; Hoffmann, D.; Bayer, P. “Design of a modular protein-based MRI contrast agent for targeted application”, PLoS One 2013, 8, e65346.
  • Kobayashi, H.; Brechbiel, M.W. “Dendrimer-based nanosized MRI contrast agents”, Curr. Pharm. Biotechnol. 2004, 5, 539–549.
  • Tyagi, S.; Kramer, F.R. “Molecular beacons: probes that fluoresce upon hybridization”, Nat. Biotechnol. 1996, 14, 303–308.
  • Weissleder, R.; Tung, C.-H.; Mahmood, U.; Bogdanov, A., Jr. “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes”, Nat. Biotechnol. 1999, 17, 375–378.
  • Watanabe, S.; Onogawa, O.; Komatsu, Y.; Yoshida, K. “Luminescent metalloreceptor with a neutral bis(acylaminoimidazoline) binding site: Optical sensing of anionic and neutral phosphodiesters”, J. Am. Chem. Soc. 1998, 120, 229–230.
  • Hannon, M.J. “Supramolecular DNA recognition”, Chem. Soc. Rev. 2007, 36, 280–295.
  • Triantafillidi, K.; Karidi, K.; Malina, J.; Garoufis, A. “Oligopyridine-ruthenium(II)-amino acid conjugates: Synthesis, characterization, DNA binding properties and interactions with the oligonucleotide duplex d(5’-CGCGCG-3’)2”, Dalton. Trans. 2009, 32, 6403–6415.
  • Triantafillidi, K.; Karidi, K.; Novakova, O.; Malina, J.; Garoufis, A. “DNA binding selectivity of oligopyridine-ruthenium(II)-lysine conjugate”, Dalton. Trans. 2011, 40, 472–483.
  • Karidi, K.; Garoufis, A.; Hadjiliadis, N.; Reedijk, J. “Solid-phase synthesis, characterization and DNA binding properties of the first chloro(polypyridyl)ruthenium conjugated peptide complex”, Dalton. Trans. 2005, 4, 728–734.
  • Karidi, K.; Reedijk, J.; Hadjiliadis, N.; Garoufis, A. “Synthesis, characterization and DNA binding properties of oligopyridine-ruthenium(II)-amino acid conjugates”, J. Inorg. Biochem. 2007, 101, 1483–1491.
  • Chow, C.-F. “Supramolecular polymeric chemosensor for biomedical applications: design and synthesis of a luminescent zinc metallopolymer as a chemosensor for adenine detection”, J. Fluoresc. 2012, 22, 1539–1546.
  • Zatsepin, T.S.; Andreev, S.Y.; Hianik, T.; Oretskaya, T.S. “Ferrocene-containing nucleic acids. Synthesis and electrochemical properties”, Russ. Chem. Rev. 2003, 72, 537–554.
  • Mucic, R.C.; Herrlein, M.K.; Mirkin, C.A.; Letsinger, R.L. “Synthesis and characterization of DNA with ferrocenyl groups attached to their 5’-termini: Electrochemical characterization of a redox-active nucleotide monolayer”, Chem. Commun. 1996, 4, 555–557.
  • Takenaka, S. “Highly sensitive probe for gene analysis by electrochemical approach”, Bull. Chem. Soc. Jpn. 2001, 74, 217–224.
  • Farkas, D.H. “Comments on: bioelectronic DNA chips for the clinical laboratory”, Clin. Chem. 2001, 47, 1871–1872.
  • Umek, R.M.; Lin, S.W.; Vielmetter, J.; Terbrueggen, R.H.; Irvine, B.; Yu, C.J.; Kayyem, J.F.; Yowanto, H.; Blackburn, G.F.; Farkas, D.H.; Chen, Y.-P. “Electronic detection of nucleic acids: A versatile platform for molecular diagnostics”, J. Mol. Diagn. 2001, 3, 74–84.
  • Wang, J.; Palecek, E.; Nielsen, P.E.; Rivas, G.; Cai, X.; Shiraishi, H.; Dontha, N.; Luo, D.; Farias, P.A. M. “Peptide nucleic acid probes for sequence-specific DNA biosensors”, J. Am. Chem. Soc. 1996, 118, 7667–7670.
  • Wang, J. “DNA biosensors based on peptide nucleic acid (PNA) recognition layers: A review”, Biosens. Bioelectron. 1998, 13, 757–762.
  • Myers, C.P.; Williams, M.E. “Directed self-assembly of inorganic redox complexes with artificial peptide scaffolds”, Coord. Chem. Rev. 2010, 254, 2416–2428.
  • Mahmoud, K.A.; Kraatz, H.-B. “A bioorganometallic approach for the electrochemical detection of proteins: a study on the interaction of ferrocene–peptide conjugates with papain in solution and on au surfaces”, Chem. Eur. J. 2007, 13, 5885–5895.
  • Alonso, B.; Armada, P.G.; Losada, J.; Cuadrado, I.; Gonzalez, B.; Casado, C.M. “Amperometric enzyme electrodes for aerobic and anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixed ferrocene-cobaltocenium dendrimers”, Biosens. Bioelectron. 2004, 19, 1617–1625.
  • Zhu, Y.; Chen, J.; Jiao, R. “Extraction of Am(III) and Eu(III) from nitrate solution with purified Cyanex 301”, Solvent Extr. Ion Exch. 1996, 14, 61–68.
  • Jensen, M.P.; Bond, A.H. “Comparison of covalency in the complexes of trivalent actinide and lanthanide cations”, J. Am. Chem. Soc. 2002, 124, 9870–9877.
  • Kolarik, Z. “Complexation and separation of lanthanides(III) and actinides(III) by heterocyclic N-donors in solutions”, Chem. Rev. 2008, 108, 4208–4252.
  • Drew, M.G. B.; Foreman, M.R. S. J.; Hill, C.; Hudson, M.J.; Madic, C. “6,6’-Bis-(5,6-diethyl[1,2,4]triazin-3-yl)-2,2’-bipyridyl the first example of a new class of quadridentate heterocyclic extraction reagents for the separation of americium(III) and europium(III)”, Inorg. Chem. Commun. 2005, 8, 239–241.
  • Jensen, M.P.; Morss, L.R.; Beitz, J.V.; Ensor, D.D. “Aqueous complexation of trivalent lanthanide and actinide cations by N,N,N’,N’-tetrakis(2-pyridylmethyl)ethylenediamine”, J. Alloys Compd. 2000, 303-304, 137–141.
  • Ozcubukcu, S.; Mandal, K.; Wegner, S.; Jensen, M.P.; He, C. “Selective recognition of americium by peptide-based reagents”, Inorg. Chem. 2011, 50, 7937–7939.
  • Korchev, Y.E.; Bashford, C.L.; Alder, G.M.; Apel, P.Y.; Edmonds, D.T.; Lev, A.A.; Nandi, K.; Zima, A.V.; Pasternak, C.A. “A novel explanation for fluctuations of ion current through narrow pores”, FASEB J. 1997, 11, 600–608.
  • Siwy, Z.; Fulinski, A. “Fabrication of a synthetic nanopore ion pump”, Phys. Rev. Lett. 2002, 89, 198103/198101-198103/198104.
  • Wolf, A.; Siwy, Z.; Korchev, Y.E.; Reber, N.; Spohr, R. “Ion current fluctuations in artificial ion track pores - power spectrum and generalized entropy”, Cell. Mol. Biol. Lett. 1999, 4, 553–565.
  • Jirage, K.B.; Hulteen, J.C.; Martin, C.R. “Nanotubule-based molecular-filtration membranes”, Science 1997, 278, 655–658.
  • Kohli, P.; Harrell, C.C.; Cao, Z.; Gasparac, R.; Tan, W.; Martin, C.R. “DNA-functionalized nanotube membranes with single-base mismatch selectivity”, Science 2004, 305, 984–986.
  • Siwy, Z.; Trofin, L.; Kohli, P.; Baker, L.A.; Trautmann, C.; Martin, C.R. “Protein biosensors based on biofunctionalized conical gold nanotubes”, J. Am. Chem. Soc. 2005, 127, 5000–5001.
  • Ali, M.; Ramirez, P.; Tahir, M.N.; Mafe, S.; Siwy, Z.; Neumann, R.; Tremel, W.; Ensinger, W. “Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein-lectin interactions”, Nanoscale 2011, 3, 1894–1903.
  • Sexton, L.T.; Horne, L.P.; Sherrill, S.A.; Bishop, G.W.; Baker, L.A.; Martin, C.R. “Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor”, J. Am. Chem. Soc. 2007, 129, 13144–13152.
  • Jagerszki, G.; Gyurcsanyi, R.E.; Hoefler, L.; Pretsch, E. “Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes: A new approach to quantitative label-free DNA analysis”, Nano Lett. 2007, 7, 1609–1612.
  • Ali, M.; Nasir, S.; Nguyen, Q.-H.; Sahoo, J.K.; Tahir, M.N.; Tremel, W.; Ensinger, W. “Metal Ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes”, J. Am. Chem. Soc. 2011, 133, 17307–17314.
  • Willner, I.; Heleg-Shabtai, V.; Katz, E.; Rau, H.K.; Haehnel, W. “Integration of a reconstituted de novo synthesized hemoprotein and native metalloproteins with electrode supports for bioelectronic and bioelectrocatalytic applications”, J. Am. Chem. Soc. 1999, 121, 6455–6468.
  • Wang, X.; Nagata, K.; Higuchi, M. “Functional regulation of an immobilized redox protein on an oriented metal coordinated peptide monolayer as an electron mediator”, Langmuir 2011, 27, 12569–12574.
  • Mutz, M.W.; McLendon, G.L.; Wishart, J.F.; Gaillard, E.R.; Corin, A.F. “Conformational dependence of electron transfer across de novo designed metalloproteins”, Proc. Natl. Acad. Sci. USA. 1996, 93, 9521–9526.
  • Striplin, D.R.; Reece, S.Y.; McCafferty, D.G.; Wall, C.G.; Friesen, D.A.; Erickson, B.W.; Meyer, T.J. “Solvent dependence of intramolecular electron transfer in a helical oligoproline assembly”, J. Am. Chem. Soc. 2004, 126, 5282–5291.
  • Nunez, M.E.; Barton, J.K. “Probing DNA charge transport with metallointercalators”, Curr. Opin. Chem. Biol. 2000, 4, 199–206.
  • Lomoth, R.; Magnuson, A.; Sjoedin, M.; Huang, P.; Styring, S.; Hammarstroem, L. “Mimicking the electron donor side of Photosystem II in artificial photosynthesis”, Photosynth. Res. 2006, 87, 25–40.
  • Huynh, M.H. V.; Dattelbaum, D.M.; Meyer, T.J. “Exited state electron and energy transfer in molecular assemblies”, Coord. Chem. Rev. 2005, 249, 457–483.
  • Rakitin, A.; Aich, P.; Papadopoulos, C.; Kobzar, Y.; Vedeneev, A.S.; Lee, J.S.; Xu, J.M. “Metallic conduction through engineered DNA: DNA nanoelectronic building blocks”, Phys. Rev. Lett. 2001, 86, 3670–3673.
  • Hwang, H.J.; Carey, J.R.; Brower, E.T.; Gengenbach, A.J.; Abramite, J.A.; Lu, Y. “Blue ferrocenium azurin: An organometalloprotein with tunable redox properties”, J. Am. Chem. Soc. 2005, 127, 15356–15357.
  • Solomon, E.I.; Xie, X.; Dey, A. “Mixed valent sites in biological electron transfer”, Chem. Soc. Rev. 2008, 37, 623–638.
  • Gray, H.B. “Biological inorganic chemistry at the beginning of the 21st century”, Proc. Natl. Acad. Sci. USA. 2003, 100, 3563–3568.
  • Solomon Edward, I.; Lowery Michael, D.; Guckert Jeffrey, A.; LaCroix Louis, B. Electron transfer in bioinorganic chemistry. In Electron Transfer Reactions; American Chemical Society, Washington DC, 1997; pp 317–330.
  • Hvasanov, D.; Mason, A.F.; Goldstein, D.C.; Bhadbhade, M.; Thordarson, P. “Optimising the synthesis, polymer membrane encapsulation and photoreduction performance of Ru(ii)- and Ir(iii)-bis(terpyridine) cytochrome c bioconjugates”, Org. Biomol. Chem. 2013, 11, 4602–4612.
  • Ward, T.R. “Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein”, Chem. Eur. J. 2005, 11, 3798–3804.
  • Jain, A.; Buchko, G.W.; Reback, M.L.; O’Hagan, M.; Ginovska-Pangovska, B.; Linehan, J.C.; Shaw, W.J. “Active hydrogenation catalyst with a structured, peptide-based outer-coordination sphere”, ACS Catal. 2012, 2, 2114–2118.
  • Lewis, J.C. “Artificial metalloenzymes and metallopeptide catalysts for organic synthesis”, ACS Catal. 2013, 3, 2954–2975.
  • Greenfield, S.J.; Gilbertson, S.R. “Preparation of diphenylphosphinoserine and synthesis of other phosphine containing amino acids using zinc/copper reagents”, Synthesis 2001, 15, 2337–2340.
  • Gilbertson, S.R.; Wang, X. “The combinatorial synthesis of chiral phosphine ligands”, Tetrahedron Lett. 1996, 37, 6475–6478.
  • Gilbertson, S.R.; Wang, X. “The parallel synthesis of peptide based phosphine ligands”, Tetrahedron 1999, 55, 11609–11618.
  • Gilbertson, S.R.; Collibee, S.E.; Agarkov, A. “Asymmetric catalysis with libraries of palladium β-turn phosphine complexes”, J. Am. Chem. Soc. 2000, 122, 6522–6523.
  • Agarkov, A.; Greenfield, S.J.; Ohishi, T.; Collibee, S.E.; Gilbertson, S.R. “Catalysis with phosphine-containing amino acids in various “turn” motifs”, J. Org. Chem. 2004, 69, 8077–8085.
  • Agarkov, A.; Uffman, E.W.; Gilbertson, S.R. “Parallel approach to selective catalysts for palladium-catalyzed desymmetrization of 2,4-cyclopentenediol”, Org. Lett. 2003, 5, 2091–2094.
  • Greenfield, S.J.; Agarkov, A.; Gilbertson, S.R. “High asymmetric induction with β-turn-derived palladium phosphine complexes”, Org. Lett. 2003, 5, 3069–3072.
  • Christensen, C.A.; Meldal, M. “Efficient solid-phase synthesis of peptide-based phosphine ligands: Towards combinatorial libraries of selective transition metal catalysts”, Chem. Eur. J. 2005, 11, 4121–4131.
  • Christensen, C.A.; Meldal, M. “Solid-phase synthesis of a peptide-based p,s-ligand system designed for generation of combinatorial catalyst libraries”, J. Comb. Chem. 2007, 9, 79–85.
  • Heine, A.; Stura, E.A.; Yli-Kauhaluoma, J.T.; Gao, C.; Deng, Q.; Beno, B.R.; Houk, K.N.; Janda, K.D.; Wilson, I.A. “An antibody exo Diels-Alderase inhibitor complex at 1.95 Angstrom resolution”, Science 1998, 279, 1934–1940.
  • Gust, D.; Moore, T.A.; Moore, A.L. “Mimicking photosynthetic solar energy transduction”, Acc. Chem. Res. 2001, 34, 40–48.
  • Gust, D.; Andreasson, J.; Pischel, U.; Moore, T.A.; Moore, A.L. “Data and signal processing using photochromic molecules”, Chem. Commun. 2012, 48, 1947–1957.
  • Gust, D.; Moore, T.A.; Moore, A.L. “Realizing artificial photosynthesis”, Faraday Discuss. 2012, 155, 9–26.
  • Terazono, Y.; Moore, T.A.; Moore, A.L.; Gust, D. Light Harvesting, Excitation Energy/Electron Transfer, and Photoregulation in Artificial Photosynthetic Systems; Pan Stanford Publishing Pte. Ltd.: Singapore 2012; pp 349–387.
  • Ziessel, R.; Harriman, A. “Artificial light-harvesting antennae: Electronic energy transfer by way of molecular funnels”, Chem. Commun. 2011, 47, 611–631.
  • Wasielewski, M.R. “Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems”, Acc. Chem. Res. 2009, 42, 1910–1921.
  • Fukuzumi, S. “Development of bioinspired artificial photosynthetic systems”, PCCP 2008, 10, 2283–2297.
  • Gust, D.; Moore, T.A.; Moore, A.L. “Solar fuels via artificial photosynthesis”, Acc. Chem. Res. 2009, 42, 1890–1898.
  • Mecklenburg, S.L.; Peek, B.M.; Erickson, B.W.; Meyer, T.J. “Photoinduced electron transfer in redox-active lysines”, J. Am. Chem. Soc. 1991, 113, 8540–8542.
  • Mecklenburg, S.L.; Peek, B.M.; Schoonover, J.R.; McCafferty, D.G.; Wall, C.G.; Erickson, B.W.; Meyer, T.J. “Photoinduced electron transfer in amino acid assemblies”, J. Am. Chem. Soc. 1993, 115, 5479–5495.
  • McCafferty, D.G.; Bishop, B.M.; Wall, C.G.; Hughes, S.G.; Mecklenberg, S.L.; Meyer, T.J.; Erickson, B.W. “Synthesis of redox derivatives of lysine and their use in solid-phase synthesis of a light-harvesting peptide”, Tetrahedron 1995, 51, 1093–1106.
  • Aldridge, W.S. , III; Hornstein, B.J.; Serron, S.; Dattelbaum, D.M.; Schoonover, J.R.; Meyer, T.J. “Synthesis and characterization of oligoproline-based molecular assemblies for light harvesting”, J. Org. Chem. 2006, 71, 5186–5190.
  • Perera, A.S.; Subbaiyan, N.K.; Kalita, M.; Wendel, S.O.; Samarakoon, T.N.; D’Souza, F.; Bossmann, S.H. “A hybrid soft solar cell based on the mycobacterial porin MspA linked to a sensitizer-viologen diad”, J. Am. Chem. Soc. 2013, 135, 6842–6845.
  • Ma, D.; Bettis, S.E.; Hanson, K.; Minakova, M.; Alibabaei, L.; Fondrie, W.; Ryan, D.M.; Papoian, G.A.; Meyer, T.J.; Waters, M.L.; Papanikolas, J.M. “Interfacial energy conversion in RuII polypyridyl-derivatized oligoproline assemblies on TiO2”, J. Am. Chem. Soc. 2013, 135, 5250–5253.
  • McCafferty, D.G.; Friesen, D.A.; Danielson, E.; Wall, C.G.; Saderholm, M.J.; Erickson, B.W.; Meyer, T.J. “Photochemical energy conversion in a helical oligoproline assembly”, Proc. Natl. Acad. Sci. USA. 1996, 93, 8200–8204.
  • Alstrum-Acevedo, J.H.; Brennaman, M.K.; Meyer, T.J. “Chemical approaches to artificial photosynthesis. 2”, Inorg. Chem. 2005, 44, 6802–6827.
  • Concepcion, J.J.; House, R.L.; Papanikolas, J.M.; Meyer, T.J. “Chemical approaches to artificial photosynthesis”, Proc. Natl. Acad. Sci. USA. 2012, 109, 15560–15564.
  • Werner, A. “The Asymmetric cobalt atom”, Ber. Dtsch. Chem. Ges. 1911, 44, 1887–1898.
  • Ousaka, N.; Takeyama, Y.; Iida, H.; Yashima, E. “Chiral information harvesting in dendritic metallopeptides”, Nat. Chem. 2011, 3, 856–861.
  • Inai, Y.; Tagawa, K.; Takasu, A.; Hirabayashi, T.; Oshikawa, T.; Yamashita, M. “Induction of one-handed helical screw sense in achiral peptide through the domino effect based on interacting its N-terminal amino group with chiral carboxylic acid”, J. Am. Chem. Soc. 2000, 122, 11731–11732.
  • Inai, Y.; Ishida, Y.; Tagawa, K.; Takasu, A.; Hirabayashi, T. “Noncovalent domino effect on helical screw sense of chiral peptides possessing c-terminal chiral residue”, J. Am. Chem. Soc. 2002, 124, 2466–2473.
  • Ousaka, N.; Inai, Y.; Kuroda, R. “Chain-terminus triggered chiral memory in an optically inactive 310-helical peptide”, J. Am. Chem. Soc. 2008, 130, 12266–12267.
  • Ousaka, N.; Inai, Y. “Transfer of noncovalent chiral information along an optically inactive helical peptide chain: Allosteric control of asymmetry of the C-terminal site by external molecule that binds to the N-terminal site”, J. Org. Chem. 2009, 74, 1429–1439.
  • Ousaka, N.; Takeyama, Y.; Yashima, E. “Anion-driven reversible switching of metal-centered stereoisomers in metallopeptides”, Chem. Eur. J. 2013, 19, 4680–4685.
  • Crassous, J. “Transfer of chirality from ligands to metal centers: Recent examples”, Chem. Commun. 2012, 48, 9684–9692.
  • Sasaki, T.; Kaiser, E.T. “Helichrome: synthesis and enzymic activity of a designed hemeprotein”, J. Am. Chem. Soc. 1989, 111, 380–381.
  • Lieberman, M.; Sasaki, T. “Iron(II) organizes a synthetic peptide into three-helix bundles”, J. Am. Chem. Soc. 1991, 113, 1470–1471.
  • Koide, T.; Yuguchi, M.; Kawakita, M.; Konno, H. “Metal-assisted stabilization and probing of collagenous triple helices”, J. Am. Chem. Soc. 2002, 124, 9388–9389.
  • Ghadiri, M.R.; Soares, C.; Choi, C. “A convergent approach to protein design: Metal ion-assisted spontaneous self-assembly of a polypeptide into a triple-helix bundle protein”, J. Am. Chem. Soc. 1992, 114, 825–831.
  • Mihara, H.; Nishino, N.; Hasegawa, R.; Fujimoto, T.; Usui, S.; Ishida, H.; Ohkubo, K. “Design of a hybrid of two α-helix peptides and ruthenium trisbipyridine complex for photo-induced electron transfer system in bilayer membrane”, Chem. Lett. 1992, 1813–1816.
  • Stang, P.J.; Olenyuk, B.; Muddiman, D.C.; Wunschel, D.S.; Smith, R.D. “Transition-metal-mediated rational design and self-assembly of chiral, nanoscale supramolecular polyhedra with unique T symmetry”, Organometallics 1997, 16, 3094–3096.
  • Romero, F.M.; Ziessel, R.; Dupont-Gervais, A.; Van, D.A. “Monitoring the iron(II)-induced self-assembly of preorganized tritopic ligands by electrospray mass spectrometry: Unique formation of metallomacrocycles”, Chem. Commun. 1996, 551–553.
  • Priimov, G.U.; Moore, P.; Maritim, P.K.; Butalanyi, P.K.; Alcock, N.W. “Synthesis of two covalently linked bis(2,2[prime or minute][ratio]6[prime or minute],2[prime or minute][prime or minute]-terpyridine) (terpy) chelating ligands with different length spacers, comparison of the crystal structures of their mononuclear nickel(II) complexes, and kinetic and mechanistic studies of the reaction of one ligand with [Fe(terpy)2]2+”, J. Chem. Soc., Dalton Trans. 2000, 0, 445–449.
  • Smith, C.B.; Constable, E.C.; Housecroft, C.E.; Kariuki, B.M. “Formation of a [1 + 1] metallomacrocycle from a heterotritopic ligand containing two terpy and one bipy metal-binding domains”, Chem. Commun. 2002, 18, 2068–2069.
  • Constable, E.C.; Housecroft, C.E.; Mundwiler, S. “Metal-directed assembly of cyclometallopeptides”, Dalton. Trans. 2003, 11, 2112–2114.
  • Constable, E.C.; Mundwiler, S.; Meier, W.; Nardin, C. “Reversible metal-directed assembly of clusters of vesicles”, Chem. Commun. 1999, 16, 1483–1484.
  • Mitra, D.; Di, C.N.; Sleiman, H.F. “DNA superstructures: Self-assembly of cyclic metal-DNA nanostructures using ruthenium tris(bipyridine)-branched oligonucleotides”, Angew. Chem. Int. Ed. 2004, 43, 5804–5808.
  • Aldaye, F.A.; Sleiman, H.F. “Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles”, Angew. Chem. Int. Ed. 2006, 45, 2204–2209.
  • Stewart, K.M.; Rojo, J.; McLaughlin, L.W. “DNA superstructures: Ru(II) tris(bipyridyl) complexes with six oligonucleotide arms as precursors for the generation of supramolecular assemblies”, Angew. Chem. Int. Ed. 2004, 43, 5808–5811.
  • Harrington, M.J.; Masic, A.; Holten-Andersen, N.; Waite, J.H.; Fratzl, P. “Iron-clad fibers: A metal-based biological strategy for hard flexible coatings”, Science 2010, 328, 216–220.
  • Broomell, C.C.; Mattoni, M.A.; Zok, F.W.; Waite, J.H. “Critical role of zinc in hardening of Nereis jaws”, J. Exp. Biol. 2006, 209, 3219–3225.
  • Werneke, S.W.; Swann, C.; Farquharson, L.A.; Hamilton, K.S.; Smith, A.M. “The role of metals in molluscan adhesive gels”, J. Exp. Biol. 2007, 210, 2137–2145.
  • Harrington, M.J.; Waite, J.H. “pH-dependent locking of giant mesogens in fibers drawn from mussel byssal collagens”, Biomacromolecules 2008, 9, 1480–1486.
  • Harrington, M.J.; Gupta, H.S.; Fratzl, P.; Waite, J.H. “Collagen insulated from tensile damage by domains that unfold reversibly: In situ X-ray investigation of mechanical yield and damage repair in the mussel byssus”, J. Struct. Biol. 2009, 167, 47–54.
  • Lee, S.-M.; Pippel, E.; Goesele, U.; Dresbach, C.; Qin, Y.; Chandran, C.V.; Braeuniger, T.; Hause, G.; Knez, M. “Greatly increased toughness of infiltrated spider silk”, Science 2009, 324, 488–492.
  • Pires, M.M.; Chmielewski, J. “Self-assembly of collagen peptides into microflorettes via metal coordination”, J. Am. Chem. Soc. 2009, 131, 2706–2712.
  • Lee, H.; Scherer, N.F.; Messersmith, P.B. “Single-molecule mechanics of mussel adhesion”, Proc. Natl. Acad. Sci. USA. 2006, 103, 12999–13003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.