1,399
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Two-Dimensional and Related Polymers: Concepts, Synthesis, and their Potential Application as Separation Membrane Materials

, , , , &
Pages 57-89 | Received 26 May 2014, Accepted 02 Sep 2014, Published online: 28 Jan 2015

References

  • Mulder, M. Basic Principles of Membrane Technology; Kluwer Academic Publishers: Dordrecht, 1996.
  • Yampolskii, Y.; Pinnau, I.; Freedman, B.D. (Eds.) “Materials Science of Membranes for Gas and Vapor Separation,” John Wiley & Sons: West Sussex, 2006.
  • Yampolskii, Y.; Freedman, B.D., Eds. Membrane Gas Separation; John Wiley & Sons: West Sussex, 2010.
  • Iyoda, M.; Yamakawa, J.; Rahman, M.J. “Conjugated macrocycles: Concepts and applications,” Angew. Chem. Int. Ed. 2011, 50, 10522–10553.
  • Layek, R.K.; Nandi, A.K. “A review on synthesis and properties of polymer functionalized graphene,” Polymer 2013, 54, 5087–5103.
  • Kelly, K.F.; Billups, W.E. “Synthesis of soluble graphite and graphene,” Accounts Chem. Res. 2013, 46, 4–13.
  • Coleman, J.N. “Liquid exfoliation of defect-free graphene,” Accounts Chem. Res. 2013, 46, 14–22.
  • Terrones, M.; Botello-Méndez, A.R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y.I.; Rodríguez-Macías, F.J.; Elías, A.L.; Muñoz-Sandoval, E.; Cano-Márquez, A.G.; Charlier, J.C.; Terrones, H. “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications,” Nano Today 2010 5, 351–372.
  • Shioyama, H.; Akita, T. “A new route to carbon nanotubes,” Carbon 2003, 41, 179–198.
  • Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigirieva, I.V.; Firsov, A.A. “Electric field effect in atomically thin carbon films,” Science, 2004, 306, 666–669.
  • Geim, A.K.; Novoselov, K.S. “The rise of graphene,” Nat. Mater. 2007, 6, 183–191.
  • Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. “The structure of suspended graphene sheets,” Nature 2007, 446, 60–63.
  • Kim, H.W.; Yoon, H.W.; Yoon, S.; Yoo, B.M.; Ahn, B.K.; Cho, Y.H.; Shin, H.J.; Yang, H.; Paik, U.; Kwon, S.; Choi, J.; Park, H.B. “Selective gas transport through few-layered graphene and graphene oxide membranes,” Science, 2013, 342, 91–95.
  • Li, H.; Song, Z.; Zhang, X.; Huang, Y.; Li, S.; Mao, Y.; Ploehn, H.J.; Bao, Y.; Yu, M. “Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation,” Science, 2013, 342, 95–98.
  • Bai, J.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. “Graphene nanomesh,” Nat. Nanotechnol. 2010, 5, 190–194.
  • Bieri, M.; Treier, M.; Cai, J.; Aït-Mansour, K.; Ruffieux, P.; Gröning, O.; Gröning, P.; Kastler, M.; Rieger, R.; Feng, X.; Müllen, K.; Fasel, R. “Porous graphenes: Two-dimensional polymer synthesis with atomic precision,” Chem. Commun. 2009, 45, 6919–6921.
  • Schrier, J. “Carbon dioxide separation with a two-dimensional polymer membrane,” ACS Appl. Mater. Interfaces 2012, 4, 3745–3752.
  • Grimsdale, A.C.; Müllen, K. “1-, 2-, and 3-dimensional polyphenylenes: From molecular wires to functionalized nanoparticles,” The Chemical Record 2001, 1, 243–257.
  • Berresheim, A.J.; Müller, M.; Müllen, K. “Polyphenylene nanostructures,” Chem. Rev. 1999, 99, 1747–1785.
  • Türp, D.; Nguyen, T.T. T.; Baumgartena, M.; Müllen, K. “Uniquely versatile: Nano-site defined materials based on polyphenylene dendrimers,” New J. Chem. 2012, 36, 282–298.
  • Wu, J.; Pisula, W.; Müllen, K. “Graphenes as potential material for electronics,” Chem. Rev. 2007, 107, 718–747.
  • Chen, L.; Hernandez, Y.; Feng, X.; Müllen, K. “From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis,” Angew. Chem. Int. Ed. 2012, 51, 7640–7654.
  • Simpson, C.D.; Brand, J.D.; Berresheim, A.J.; Przybilla, L.; Räder, H.J.; Müllen, K. “Synthesis of a Giant 222 carbon graphite sheet,” Chem. Eur. J. 2002, 8, 1424–1429.
  • Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlüter, A.D. “Two-dimensional polymers: Just a dream of synthetic chemists?” Angew. Chem. Int. Ed. 2009, 48, 1030–1069.
  • Colson, J.W.; Dichtel W.R. “Rationally synthesized two-dimensional polymers,” Nat. Chem. 2013, 5, 453–465.
  • Kissel, P.; Erni, R.; Schweizer, W.B.; Rossell, M.D.; King, B.T.; Bauer, T.; Gotzinger, S.; Schlüter, A.D.; Sakamoto, J. “A two-dimensional polymer prepared by organic synthesis,” Nat. Chem. 2012, 4, 287–291.
  • Saha, A.; van Heijst, J.; Sakamoto, J.; Schlüter, A.D. “Synthesis of macrocycles with anthracene units and amide bonds; potential building blocks for 1D and 2D constructions,” Synlett 2012, 23, 1467–1472.
  • Schlüter, A.D.; Sakamoto, J. “Putting aromatic compounds to work: Rational synthesis of organic 2D polymers,” Pure Appl. Chem. 2012, 84, 861–867.
  • Münzenberg, C.; Rossi, A.; Feldman, K.; Fiolka, R.; Stemmer, A.; Kita-Tokarczyk, K.; Meier, W.; Sakamoto, J.; Lukin, O.; Schlüter, A.D. “Synthesis of compounds presenting three and four anthracene units as potential connectors to mediate infinite lateral growth at the air/water interface”, Chem. Eur. J. 2008, 14, 10797–10807.
  • Kissel, P.; van Heijst, J.; Enning, R.; Stemmer, A.; Schlüter, A.D.; Sakamoto, J. “Macrocyclic amphiphiles with 1,8-anthrylene fluorophores: Synthesis and attempts toward two-dimensional organization,” Org. Lett. 2010, 12, 2778–2781.
  • Kissel, P.; Schlüter, A.D.; Sakamoto, J. “Rational monomer design towards 2D polymers: Synthesis of a macrocycle with three 1,8-anthrylene units,” Chem. Eur. J. 2009, 15, 8955–8960.
  • Bhola, R.; Payamyar, P.; Murray, D.J.; Kumar, B.; Teator, A.J.; Schmidt, M.U.; Hammer, S.M.; Saha, A.; Sakamoto, J.; Schlüter, A.D.; King, B.T. “A two-dimensional polymer from the anthracene dimer and triptycene motifs,” J. Am. Chem. Soc. 2013, 135, 14134–14141.
  • Zhou, T.; Lin, F.; Li, Z.; Zhao, X. “Single-step solution-phase synthesis of free-standing two-dimensional polymers and their evolution into hollow spheres,” Macromolecules 2013, 46, 7745–7752.
  • Baek, K.; Yun, G.; Kim, Y.; Kim, D.; Hota, R.; Hwang, I.; Xu, D.; Ko, Y.H.; Gu, G.H.; Suh, J.H.; Park, C.G.; Sung, B.J.; Kim, K. “Free-standing, single-monomer-thick two-dimensional polymers through covalent self-assembly in solution,” J. Am. Chem. Soc. 2013, 135, 6523–6528.
  • Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. “Porous, crystalline, covalent organic frameworks,” Science, 2005, 310, 1166–1170.
  • Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. “A belt-shaped, blue luminescent, and semiconducting covalent organic framework,” Angew. Chem. Int. Ed. 2008, 47, 8826–8830.
  • Spitler, E.L.; Colson, J.W.; Uribe-Romo, F.J.; Woll, A.R.; Giovino, M.R.; Saldivar, A.; Dichtel, W.R. “Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films,” Angew. Chem. Int. Ed. 2012, 51, 2623–2627.
  • Ding, S.; Wang, W. “Covalent organic frameworks (COFs): From design to applications,” Chem. Soc. Rev. 2013, 42, 548–568.
  • Feng, X.; Ding, X.; Jiang, D. “Covalent organic frameworks,” Chem. Soc. Rev. 2012, 41, 6010–6022.
  • Kalidindi, S.B.; Fischer, R.A. “Covalent organic frameworks and their metal nanoparticle composites: Prospects for hydrogen storage,” Phys. Status Solidi B, 2013, 250, 1119–1127.
  • Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S.; “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 2007, 45, 1558–1565.
  • Zhang, Y.; Tan, M.; Li, H.; Zheng, Y.; Gao, S.; Zhang, H.; Ying, J.Y. “Mesoscopic organic nanosheets peeled from stacked 2D covalent frameworks,” Chem. Commun. 2011, 47, 7365–7367.
  • Berlanga, I.; Ruiz-Gonzalez, M.L.; González-Calbet, J.M.; Fierro, J.L. G.; Mas-Ballesté, R.; Zamora, F. “Delamination of layered covalent organic frameworks” Small 2011, 7, 1207–1211.
  • Berlanga, I.; Mas-Ballesté, R.; Zamora, F. “Tuning delamination of layered covalent organic frameworks through structural design,” Chem. Commun. 2012, 48, 7976–7978.
  • Bunck, D.N.; Dichtel, W.R. “Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks,” J. Am. Chem. Soc. 2013, 135, 14952–14955.
  • El Garah, M.; MacLeod, J.M.; Rosei, F. “Covalently bonded networks through surface-confined polymerization,” Surf. Sci. 2013, 613, 6–14.
  • Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M.V.; Hecht, S. ”Nano-architectures by covalent assembly of molecular building blocks,” Nat. Nanotechnol. 2007, 2, 687–691.
  • Zwaneveld, N.A. A.; Pawlak, R.; Abel, M.; Catalin, D.; Gigmes, D.; Bertin, D.; Porte, L. “Organized formation of 2D extended covalent organic frameworks at surfaces,” J. Am. Chem. Soc. 2008, 130, 6678–6679.
  • Dienstmaier, J.F.; Gigler, A.M.; Goetz, A.J.; Knochel, P.; Bein, T.; Lyapin, A.; Reichlmaier, S.; Heckl, W.M.; Lackinger, M. “Synthesis of well-ordered COF monolayers: Surface growth of nanocrystalline precursors versus direct on-surface polycondensation,” ACS Nano 2011, 5, 9737–9745.
  • Schlögl, S.; Sirtl, T.; Eichhorn, J.; Heckl, W.M.; Lackinger, M. “Synthesis of two-dimensional phenylene–boroxine networks through in vacuo condensation and on-surface radical addition,” Chem. Commun. 2011, 47, 12355–12357.
  • Tanoue, R.; Higuchi, R.; Enoki, N.; Miyasato, Y.; Uemura, S.; Kimizuka, N.; Stieg, A.Z.; Gimzewski, J.K.; Kunitake, M. “Thermodynamically controlled self-assembly of covalent nanoarchitectures in aqueous solution,” ACS Nano 2011, 5, 3923–3929.
  • Tanoue, R.; Higuchi, R.; Ikebe, K.; Uemura, S.; Kimizuka, N.; Stieg, A.Z.; Gimzewski, J.K.; Kunitake, M. “Positional selectivity of reversible azomethine condensation reactions at solid/liquid interfaces leading to supramolecule formation,” J. Electroanal. Chem. 2014, 716, 145–149.
  • Lafferentz, L.; Eberhardt, V.; Dri, C.; Africh, C.; Comelli, G.; Esch, F.; Hecht, S.; Grill, L. “Controlling on-surface polymerization by hierarchical and substrate-directed growth,” Nat. Chem. 2012, 4, 215–220.
  • Dienstmaier, J.F.; Medina, D.D.; Dogru, M.; Knochel, P.; Bein, T.; Heckl, W.M.; Lackinger, M. “Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids,” ACS Nano 2012, 6, 7234–7242.
  • Cardenas, L.; Gutzler, R.; Lipton-Duffin, J.; Fu, C.Y.; Brusso, J.L.; Dinca, L.E.; Vondráčak, M.; Fagot-Revurat, Y.; Malterre, D.; Rosei, F.; Perepichka, D.F. “Synthesis and electronic structure of a two dimensional π-conjugated polythiophene,” Chem. Sci. 2013, 4, 3263–3268.
  • Liang, H.; He, Y.; Ye, Y.; Xu, X.; Cheng, F.; Sun, W.; Shao, X.; Wang, Y.; Li, J.; Wu, K. “Two-dimensional molecular porous networks constructed by surface assembling,” Coord. Chem. Rev. 2009, 253, 2959–2979.
  • Kudernac, T.; Lei, S.; Elemans, J.A. A. W.; De Feyter, S. “Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces,” Chem. Soc. Rev. 2009, 38, 402–421.
  • Zhang, K.; Tian, J.; Hanifi, D.; Zhang, Y.B.; Sue, A.C.; Zhou, T.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z. “Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water,” J. Am. Chem. Soc. 2013, 135, 17913–17918.
  • Teyssandier, J.; Battaglini, N.; Seydou, M.; Anquetin, G.; Diawara, B.; Sun, X.; Maurel, F.; Lang, P. “Elaboration of hydrogen-bonded 2D supramolecular assemblies on Au(111) From solutions: Toward naphthalene tetracarboxylic diimide-melamine nanoporous networks”, J. Phys. Chem. C 2013, 117, 8737–8745.
  • Song, Q.; Cao, S.; Zavala-Rivera, P.; Lu, L.P.; Li, W.; Ji, Y.; Al-Muhtaseb, S.A.; Cheetham, A.K.; Sivaniah, E. “Photo-oxidative enhancement of polymeric molecular sieve membranes,” Nat. Commun. 2013, 4, 1918.
  • Krieg, E.; Albeck, S.; Weissman, H.; Shimoni, E.; Rybtchinski, B. “Separation, immobilization, and biocatalytic utilization of proteins by a supramolecular membrane,” PLoS One 2013, 8, e63188.
  • Prakash, M.J.; Lah, M.S. “Metal–organic macrocycles, metal–organic polyhedra and metal–organic frameworks” Chem. Commun. 2009, 45, 3326–3341.
  • Li, S.; Northrop, B.H.; Yuan, Q.; Wan, L.; Stang, P.J. “Surface confined metallosupramolecular architectures: Formation and scanning tunneling microscopy characterization,” Accounts Chem. Res. 2009, 42, 249–259.
  • Li, Y.; Liang, F.; Bux, H.; Feldhoff, A.; Yang, W.; Caro, J. “Molecular sieve membrane: Supported metal–organic framework with high hydrogen selectivity,” Angew. Chem. Int. Ed. 2010, 49, 548–551.
  • Huang, A.; Chen, Y.; Wang, N.; Hu, Z.; Jiang, J.; Caro, J. “A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H-2/CO2 separation,” Chem. Commun. 2012, 48, 10981–10983.
  • Kita, H. Materials Science of Membranes for Gas and Vapor Separation, Ch. 55; Yampolskii, Y.; Pinnau, I.; Freedman, B.D., eds.; John Wiley: London, 2006; pp 337–354.
  • Salleh, W.N. W.; Ismail, A.F.; Matsuura, T.; Abdullah, M.S. “Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review,” Sep. Purif. Rev. 2011, 40, 261–311.
  • Geiszler, V.C.; Koros, W.J. “Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties,” Ind. Eng. Chem. Res. 1996, 35, 2999–3003.
  • Suda, H.; Haraya, K. “Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide,” J. Phys. Chem. B 1997, 101, 3988–3994.
  • Barsema, J.N.; van derVegt, N.F. A.; Koops, G.H.; Wessling, M. “Carbon molecular sieve membranes prepared from porous fiber precursor,” J. Membr. Sci. 2002, 205, 239–246.
  • Wei, W.; Hu, H.; You, L.; Chen, G. “Preparation of carbon molecular sieve membrane from phenol–formaldehyde Novolac resin,” Carbon 2002, 40, 465–467.
  • Kim, Y.K.; Park, H.B.; Lee, Y.M. “Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone,” J. Membr. Sci. 2005, 251, 159–167.
  • Kim, Y.K.; Park, H.B.; Lee, Y.M. “Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties,” J. Membr. Sci. 2005, 255, 265–273.
  • Low, B.T.; Chung, T.S. “Carbon molecular sieve membranes derived from pseudo-interpenetrating polymer networks for gas separation and carbon capture,” Carbon 2011, 49, 2014–2112.
  • Hosseini, S.S.; Omidkhah, M.R.; Moghaddam, A.Z.; Pirouzfar, V.; Krantz, W.B.; Tan, N.R. “Enhancing the properties and gas separation performance of PBI-polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process,” Sep. Purif. Technol. 2014, 122, 278–289.
  • Huang, A.; Liang, F.; Steinbach, F.; Gesing, T.M.; Caro, J. “Neutral and cation-free LTA-Type aluminophosphate (AlPO4) molecular sieve membrane with high hydrogen permselectivity,” J. Am. Chem. Soc. 2010, 132, 2140–2141.
  • Sanders, D.E.; Smith, Z.P.; Guo, R.L.; Robeson, L.M.; McGrath, J.E.; Paul, D.R.; Freeman, B.D. “Energy-efficient polymeric gas separation membranes for a sustainable future: A review,” Polymer, 2013, 54, 4729–4761.
  • Du, N.; Park, H.B.; Dal-Cin, M.M.; Guiver, M.D. “Advances in high permeability polymeric membrane materials for CO2 separations,” Energy Environ. Sci. 2012, 5, 7306–7322.
  • McKeown N.B. “Polymers of intrinsic microporosity,” ISRN Mater. Sci. 2012, Article ID 513986.
  • Dawson, R.; Cooper, A.I.; Adams, D.J. “Nanoporous organic polymer networks,” Prog. Polym. Sci. 2012, 37, 530–563.
  • Du, N.Y.; Dal-Cin, M.M.; Robertson, G.P.; Guiver, M.D. “Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation,” Macromolecules 2012, 45, 5134–5139.
  • Khan, M.M.; Filiz, V.; Bengtson, G.; Shishatskiy, S.; Rahman, M.; Abetz, V. “Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation,” Nanoscale Res. Lett. 2012, 7, 1–12.
  • Li, P.; Chung, T.; Paul, D. “Gas sorption and permeation in PIM-1,” J. Membr. Sci. 2013, 432, 50–57.
  • Zhu, X.; Tian, C.; Mahurin, S.M.; Chai, S.; Wang, C.; Brown, S.; Veith, G.M.; Luo, H.; Liu, H.; Dai, S. “A Superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation,” J. Am. Chem. Soc. 2012, 134, 10478–10484.
  • Swaidan, R.; Ma, X.; Litwiller, E.; Pinnau, I. “High pressurepure-and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity,” J. Membr. Sci., 2013, 447, 387–394.
  • Madkour, T.M.; Mark, J.E. “Molecular modeling investigation of the fundamental structural parameters of polymers of intrinsic microporosity for the design of tailor-made ultra-permeable and highly selective gas separation membranes,” J. Membr. Sci. 2013, 431, 37–46.
  • Bronstein, L.M.; Shifrina, Z.B. “Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles,” Chem. Rev. 2011, 111, 5301–5344.
  • Rosen, B.M.; Wilson, C.J.; Wilson, D.A.; Peterca, M.; Imam, M.R.; Percec, V. “Dendron-mediated self-assembly, disassembly, and self-organization of complex systems,” Chem. Rev. 2009, 109, 6275–6540.
  • Voit, Brigitte.I.; Lederer, A. “Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects,” Chem. Rev. 2009, 109, 5924–5973.
  • Wu, J.; Gherghel, L.; Watson, M.D.; Li, J.; Wang, Z.; Simpson, C.D.; Kolb, U.; Müllen, K. “From branched polyphenylenes to graphite ribbons,” Macromolecules 2003, 36, 7082–7089.
  • Schwab, M.G.; Narita, A.; Hernandez, Y.; Balandina, T.; Mali, K.S.; De Feyter, S.; Feng, X.; Müllen, K. “Structurally defined graphene nanoribbons with high lateral extension,” J. Am. Chem. Soc. 2012, 134, 18169–18172.
  • Narita, A.; Feng, X.; Hernandez, Y.; Jensen, S.A.; Bonn, M.; Yang, H.; Verzhbitskiy, I.A.; Casiraghi, C.; Hansen, M.R.; Koch, A.H. R.; Fytas, G.; Ivasenko, O.; Li, B.; Mali, K.S.; Balandina, T.; Mahesh, S.; De Feyter, S.; Müllen, K. “Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons,” Nat. Chem. 2014, 6, 126–132.
  • Zhou, Q.L.; Yan, S.; Han, C.C.; Xie, P.; Zhang, R. “Promising functional materials based on ladder polysiloxanes,” Adv. Mater. 2008, 20, 2970–2976.
  • Fu, W.; He, C.; Jiang, S.; Chen, Z.; Zhang, J.; Li, Z.; Yan, S.; Zhang, R. “Synthesis of a polymeric electron acceptor based on perylenediimide-bridged ladder polysiloxane,” Macromolecules 2011, 44, 203–207.
  • Zhang, T.; Deng, K.; Zhang, P.; Xie, P.; Zhang, R. “Supramolecular template-directed synthesis of perfect phenelenediimino-bridged ladderlike polyphenylsiloxanes,” Chem. Eur. J. 2006, 12, 3630–3635.
  • Sun, J.; Tang, H.; Jiang, J.; Zhou, X.; Xie, P.; Zhang, R.; Fu, P. “Hydrogen-bonding-aided synthesis of novel ladderlike organobridged polysiloxane containing side-chain naphthyl groups,” J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 636–644.
  • Zhang, J.; Chen, Z.; Fu, W.; Xie, P.; Li, Z.; Yan, S.; Zhang, R. “Supramolecular template-directed synthesis of stable and high-efficiency photoluminescence 9,10-diphenylanthryl-bridged ladder polysiloxane,” J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 2491–2497.
  • Baney, R.H.; Itoh, M.; Sakakibara, A.; Suzuki, T. “Silsesquioxanes,” Chem. Rev. 1995, 95, 1409–1430.
  • Krishnan, P.S. G.; He, C.; Shang, C.T. S. “Synthesis, characterization, and curing kinetics of novel ladder-like polysilsesquioxanes containing side-chain maleimide groups,” J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 4036–4046.
  • Zhang, X.; Xie, P.; Shen, Z.; Jiang, J.; Zhu, C.; Li, H.; Zhang, T.; Han, C.C.; Wan, L.; Yan, S.; Zhang, R. “Confined synthesis of a cis-isotactic ladder polysilsesquioxane by using a pi-stacking and H-bonding superstructure,” Angew. Chem. Int. Ed. 2006, 45, 3112–3116.
  • Ren, Z.; Sun, D.; Li, H.; Fu, Q.; Ma, D.; Zhang, J.; Yan, S. “Synthesis of dibenzothiophene-containing ladder polysilsesquioxane as a blue phosphorescent host material,” Chem. Eur. J. 2012, 18, 4115–4123.
  • Li, Z.; Cao, X.Y.; Xu, H.; Xie, P.; Cao, M.; Zhang, R. “Synthesis and characterization of reactive ladderlike polyallylsilsesquioxane and polyvinylsilsesquioxane,” React. Funct. Polym. 1999, 31, 1–7.
  • Ren, Z.; Xie, P.; Jiang, S.; Yan, S.; Zhang, R. “Study of the supramolecular architecture-directed synthesis of a well-defined triple-chain ladder polyphenylsiloxane,” Macromolecules 2010, 43, 2130–2136.
  • Chen, Z.; Li, Z.; Guo, H.; Zhang, J.; Ren, Z.; Yan, S.; Xie, P.; Zhang, R. “Supramolecular template-directed synthesis of soluble quadruple-chain ladder polyphenylsiloxane (Ph-QCLP) with high molecular weight,” Chem. Mater. 2012, 24, 1968–1973.
  • Satoh, T.; Ishihara, H.; Sasaki, H.; Kaga, H.; Kakuchi, T. “A novel ladder polymer. Two-step polymerization of oxetanyl oxirane leading to a “fused 15-crown-4 polymer” having a high li+-binding ability,” Macromolecules 2003, 36, 15221525.
  • Chen, Y.; Huang, W.; Li, C.; Bo, Z. “Synthesis of fully soluble azomethine-bridged ladder-type poly(p-phenylenes) by Bischler-Napieralski reaction,” Macromolecules 2010, 43, 10216–10220.
  • Durban, M.M.; Kazarinoff, P.D.; Segawa, Y.; Luscombe, C.K. “Synthesis and characterization of solution-processable ladderized n-type naphthalene bisimide copolymers for OFET applications,” Macromolecules 2011, 44, 4721–4728.
  • Yuan, Z.; Xiao, Y.; Yang, Y.; Xiong, T. “Soluble ladder conjugated polymer composed of perylenediimides and thieno[3,2-b]thiophene (LCPT): A highly efficient synthesis via photocyclization with the sunlight,” Macromolecules 2011, 44, 1788–1791.
  • Matsuzaswa, H.; Okada, S.; Sarkar, A.; Nakanishi, H.; Matsuda, H. “Synthesis of ladder polymers containing polydiacetylene backbones connected with methylene chains and their optical properties,” J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 35373548.
  • Hou, X.; Wang, Z.; Lee, J.; Wysocki, E.; Oian, C.; Schlak, J.; Chu, Q.R. “Synthesis of polymeric ladders by topochemical polymerization,” Chem. Commun. 2014, 50, 1218–1220.
  • Chen, C.; Chang, H.; Lee, S.; Hsu, I.; Lee, J.; Chen, C.; Luh, T. “Hexa-peri-hexabenzocoronene (HBC)-incorporated single- and double-stranded polynorbornenes,” Macromolecules 2010, 43, 8741–8746
  • Yang, K.; Xu, J.; Chen, C.; Huang, H.H.; Yu, T.J.; Lim, T.; Chen, C.; Luh, T. “Triple-stranded polymeric ladderphanes,” Macromolecules 2010, 43, 51885194.
  • Aoki, T.; Kaneko, T.; Maruyama, N.; Sumi, A.; Takahashi, M.; Sato, T.; Teraguchi, M. “Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system,” J. Am. Chem. Soc. 2003, 125, 6346–6347.
  • Liu, L.; Namikoshi, T.; Zang, Y.; Aoki, T.; Hadano, S.; Abe, Y.; Wasuzu, I.; Tsutsuba, T.; Teraguchi, M.; Kaneko, T. “Top-down preparation of self-supporting supramolecular polymeric membranes using highly selective photocyclic aromatization of cis-cisoid helical poly(phenylacetylene)s in the membrane state,” J. Am. Chem. Soc. 2013, 135, 602–605.
  • Miyata, M.; Tanagi, H.; Teraguchi, M.; Kaneko, T.; Aoki, T. “Synthesis of 2D polymer membranes by highly selective cycloaromatization of cross-linked cis-cisoidal poly(phenylacetylene) membranes,” Polym. Prepr. Japan, 2012, 61, 2233–2234.
  • Tanagi, H.; Teraguchi, M.; Kaneko, T.; Aoki, T. “Synthesis of multi-strand polymers by postpolymerization of cis-cisoidal poly(phenylacetylene)s as a template,”Polym. Prepr. Japan, 2012, 61, 2559.
  • Saito, R.; Teraguchi, M.; Kaneko, T.; Aoki, T. “Synthesis and gas permeability of surface-graphenized poly(p-trimethylsilylphenylacetylene)”Abstracts of the Annual Meeting of Membrane Society of Japan, 2014, 36, 78.
  • Zang, Y.; Wang, J.; Li, J.; Teraguchi, M.; Kaneko, T.; Aoki, T. “Improvement of oxygen permselectivity of membranes by surface modification with amphiphilic cyclic trimers,” Abstracts of the Membrane Symposium of Membrane Society of Japan, 2012, 24, 244.
  • Wang, J.; Aoki, T.; Liu, L.; Namikoshi, T.; Teraguchi, M.; Kaneko, T. “Facile synthesis of an amphiphilic 1,3,5-trisubstituted benzene as a novel surface modifier by selective photocyclic aromatization and efficient improvement of oxygen permselectivity by the addition of the surface modifier,” Chem. Lett. 2013, 42, 1090–1092.
  • Wang, J.; Zang, Y.; Yin, G.; Aoki, T.; Urita, H.; Taguwa, K.; Liu, L.; Namikoshi, T.; Teraguchi, M.; Kaneko, T.; Ma, L.; Jia H. “Facile synthesis of five 2D surface modifiers by highly selective photocyclic aromatization and efficient enhancement of oxygen permselectivities of three polymer membranes by surface modification using a small amount of the 2D surface modifiers,”Polymer 2014, 55, 1384–1396.
  • Unpublished data.
  • Kaneko, T.; Yamamoto, K.; Asano, M.; Teraguchi, M.; Aoki, T. “Synthesis of poly(phenylacetylene)-based polydendrons consisting of a phenyleneethynylene repeating unit, and oxygen/nitrogen permeation behavior of their membranes,” J. Membr. Sci. 2006, 278, 365–372.
  • Li, J.; Wang, J.; Zang, Y.; Aoki, T.; Kaneko, T.; Teraguchi, M. “Enhanced gas permselectivity of copoly(hyperbranched macromonomer) synthesized by one-pot simultaneous copolymerization of dimethylsilyl-containing phenylacetylenes,” Chem. Lett. 2012, 41 1462–1464.
  • Mataga, N. “Possible ”Ferromagnetic states” of some hypothetical hydrocarbons,” Theor. Chim. Acta 1968, 10, 372–376.
  • Ovchinnikov, A.A. “Multiplicity of the ground state of large alternant organic molecules with conjugated bonds,” Theor. Chim. Acta 1978, 47, 297–304.
  • Klein, D.J.; Nelin, C.J.; Alexander, S.; Matsen, F.A. “High-spin hydrocarbons,” J. Chem. Phys. 1982, 77, 3101–3108.
  • Tyutyulkov, N.N.; Karabunarliev, S.H. “Structure and properties of non-classical polymers. IV. Magnetic properties of polymers with superexchange interaction,” Chem. Phys. 1987, 112, 293–299.
  • Yamaguchi, K.; Toyoda, Y.; Fueno, T.A “Generalized MO (GMO) approach to unstable molecules with quasi-degenerate electronic states: GMO calculations of intramolecular effective exchange integrals and designing of organic magnetic polymers,” Synth. Met. 1987, 19, 81–86.
  • Lahti, P.M.; Ichimura, A.S. “Semiempirical study of electron exchange interaction in organic high-spin π-systems. Classifying structural effects in organic magnetic molecules,” J. Org. Chem. 1991, 56, 3030–3042.
  • Rajca, A.; Rajca, S.; Desai, S.R. “Macrocyclic π-conjugated carbopolyanions and polyradicals based upon calix[4]arene and calix[3]arene rings,” J. Am. Chem. Soc. 1995, 117, 806–816.
  • Rajca, A.; Wongsriratanakul, J.; Rajca, S.; Cerny, R.A “Dendritic macrocyclic organic polyradical with a very high spin of S = 10,” Angew. Chemie Int. Ed. 1998, 37, 1229–1232.
  • Rajca, S.; Rajca, A.; Wongsriratanakul, J.; Butler, P.; Choi, S. “Organic spin clusters. A dendritic-macrocyclic poly(arylmethyl) polyradical with very high spin of S = 10 and its derivatives: Synthesis, magnetic studies, and small-angle neutron scattering,” J. Am. Chem. Soc. 2004, 126, 6972–6986.
  • Rajca, A.; Lu, K.; Rajca, S. “High-spin polyarylmethyl polyradical: Fragment of a macrocyclic 2-strand based upon calix[4]arene rings,” J. Am. Chem. Soc. 1997, 119, 10335–10345.
  • Rajca, A.; Wongsriratanakul, J.; Rajca, S. “Organic spin clusters: Macrocyclic-macrocyclic polyarylmethyl polyradicals with very high spin S = 5-13,” J. Am. Chem. Soc. 2004, 126, 6608–6626.
  • Rajca, A.; Wongsriratanakul, J.; Rajca, S.; Cerny, R.L. “Organic spin clusters: Annelated macrocyclic polyarylmethyl polyradicals and a polymer with very high spin S = 6-18,” Chem. - A Eur. J. 2004, 10, 3144–3157.
  • Rajca, A.; Rajca, S.; Wongsriratanakul, J. “Very high-spin organic polymer: π-Conjugated hydrocarbon network with average spin of S ≥ 40,” J. Am. Chem. Soc. 1999, 121, 6308–6309.
  • Rajca, A.; Wongsriratanakul, J.; Rajca, S. “Magnetic ordering in an organic polymer,” Science 2001, 294, 1503–1505.
  • Matsuda, K.; Nakamura, N.; Takahashi, K.; Inoue, K.; Koga, N.; Iwamura, H. “Design, synthesis, and characterization of three kinds of π-cross-conjugated hexacarbenes with high-spin (S = 6) ground states,” J. Am. Chem. Soc. 1995, 117, 5550–5560.
  • Matsuda, K.; Nakamura, N.; Inoue, K.; Koga, N.; Iwamura, H. “Design and synthesis of a “starburst”-type nonadiazo compound and magnetic characterization of its photoproduct,” Chem. - A Eur. J. 1996, 2, 259–264.
  • Nishide, H.; Ozawa, T.; Miyasaka, M.; Tsuchida, E. “A nanometer-sized high-spin polyradical: Poly(4-phenoxyl-1,2-phenylenevinylene) planarily extended in a non-kekulé fashion and its magnetic force microscopic images,” J. Am. Chem. Soc. 2001, 123, 5942–5946.
  • Nishide, H.; Takahashi, M.; Takashima, J.; Pu, Y.-J.; Tsuchida, E. “Acyclic and cyclic di- and tri(4-oxyphenyl-1,2-phenyleneethynylene)s: Their synthesis and ferromagnetic spin interaction,” J. Org. Chem. 1999, 64, 7375–7380.
  • Hosaka, Y.; Wang, J.; Peng, J.; Teraguchi, M.; Kaneko, T.; Aoki, T. “Synthesis and permeation of new composite membranes of a supramolecular polymer membrane supported by a substituted polyacetylene prepared by partial highly selective photocyclic aromatization,” Abstracts of the Annual Meeting of Membrane Society of Japan, 2014, 36, 90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.