1,149
Views
61
CrossRef citations to date
0
Altmetric
Reviews

Stimuli-Responsive Injectable In situ-Forming Hydrogels for Regenerative Medicines

, , , , &
Pages 407-452 | Received 07 May 2014, Accepted 22 Oct 2014, Published online: 24 Jun 2015

References

  • Yu, L.; Ding, J. “Injectable hydrogels as unique biomedical materials”, Chem. Soc. Rev. 2008, 1473–1481.
  • Venault, A.; Chang, Y.; Wang, D.; Bouyer, D. “A review on polymeric membranes and hydrogels prepared by vapor-induced phase separation process”, Polymer Reviews. 2013, 53, 568–626.
  • Puppi, D.; Chiellini, F.; Piras, A.M.; Chiellini, E. “Polymeric materials for bone and cartilage repair”, Prog. Polym. Sci. 2010, 35, 403–440.
  • Kim, M.S.; Kim, J.H.; Min, B.H.; Chun H.J.; Han, D.K.; Lee, H.B. “Polymeric scaffolds for regenerative medicine”, Polymer Reviews. 2011, 51, 23–52.
  • Hearon, K.; Singhal, P.; Horn, J.; Small IV, W.; Olsovsky, C.; Maitland, K.C.; Wilson, T.S.; Maitland, D.J. “Porous shape-memory polymers”, Polymer Reviews. 2013, 53, 41–75.
  • Bae, K.H.; Wang, L.S.; Kurisawa, M. “Injectable biodegradable hydrogels: Progress and challenges”, J. Mater. Chem. B. 2013, 1, 5371–5388.
  • Ware, T.; Simon, D.; Rennaker II, R.L.; Voit, W. “Smart polymers for neural interfaces”, Polymer Reviews. 2013, 53, 108–129.
  • Sonam, A.; Chaudhary, H.; Arora, V.; Kholi, K.; Kumar, V. “Effect of physicochemical properties of biodegradable polymers on nano drug delivery”, Polymer Reviews. 2013, 53, 546–67.
  • Bhattarai, N.; Gunn, J.; Zhang, M. “Chitosan-based hydrogels for controlled, localized drug delivery”, Adv. Drug Deliv. Rev. 2009, 62, 83–99.
  • Oh, J.K.; Lee, D.I.; Park, J.M. “Biopolymer-based microgels/nanogels for drug delivery applications”, Prog. Polym. Sci. 2009, 34, 1261–1282.
  • Ferstl, M.; Strasser, A.; Wittmann, H.J.; Drechsler, M.; Rischer, M.; Engel, J.; Goepferich, A. “Nanofibers resulting from cooperative electrostatic and hydrophobic interactions between peptides and polyelectrolytes of opposite charge”, Langmuir 2011, 27, 14450–14459.
  • Otero, T.F. “Biomimetic conducting polymers: synthesis, materials, properties, functions, and devices”, Polymer Reviews. 2013, 53, 311–351.
  • Hua, Z.; Chen, Z.; Li, Y.; Zhao, M. “Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin”, Langmuir. 2008, 24, 5773–5780.
  • Ballauff, M. “Spherical polyelectrolyte brushes”, Prog. Polym. Sci. 2007, 32, 1135–1151.
  • Chapel, J.P.; Berret, J.F. “Versatile electrostatic assembly of nanoparticles and polyelectrolytes: Coating, clustering and layer-by-layer processes”, Curr. Opin. Colloid Interface Sci. 2012, 17, 97–105.
  • Roy, D.; Cambre, J.N.; Sumerlin, B.S. “Future perspectives and recent advances in stimuli-responsive materials”, Prog. Polym. Sci. 2010, 35, 278–301.
  • Lee, H.I.; Pietrasik, J.; Sheiko, S.S.; Matyjaszewski, K. “Stimuli-responsive molecular brushes”, Prog. Polym. Sci. 2010, 35, 24–44.
  • Rinaudo, M. “Chitin and chitosan: Properties and applications”, Prog. Polym. Sci. 2006, 31, 603–632.
  • Fang, J.Y.; Chen, J.P.; Leu, Y.L.; Hu, J.W. “Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery”, Eur. J. Pharm. Biopharm. 2008, 68, 626–636.
  • Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. “Chitosan-A versatile semi-synthetic polymer in biomedical applications”, Prog. Polym. Sci. 2011, 36, 981–1014.
  • Pillai, C.K. S.; Paul, W.; Sharma, C.P. “Chitin and chitosan polymers: chemistry, solubility and fiber formation”, Prog. Polym. Sci. 2009, 34, 641–678.
  • Cho, M.H.; Kim, K.S.; Ahn, H.H.; Kim, M.S.; Kim, S.H.; Khang, G.; Lee, B.; Lee, H.B. “Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo”, Tissue Eng. Part A. 2008, 14, 1099–1108.
  • Li, J.; Shu, Y.; Hao, T.; Wang, Y.; Qian, Y.; Duan, C.; Sun, H.; Lin, Q.; Wang, C. “A chitosan–glutathione based injectable hydrogel for suppression of oxidative stress damage in cardiomyocytes”, Biomaterials. 2013, 34, 9071–9081.
  • Park, M.R.; Seo, B.B.; Song, S.C. “Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone”, Biomaterials. 2013, 34, 1327–1336.
  • Guo, H.; Zhang, D.; Li, C.; Jia, L.; Liu, G.; Hao, L.; Zheng, D.; Shen, J.; Li, T.; Guo, Y.; Zhang, Q. “Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin”, Int. J. Pham. 2013, 458, 31–38.
  • Torre, P.M.; Torrado, S.; Torrado, S. “Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium”, Biomaterials. 2003, 24, 1459–1468.
  • Kwon, J.S.; Kim, G.H.; Kim, D.Y.; Yoon, S.M.; Seo, H.W.; Kim, J.H.; Min, B.H.; Kim, M.S. “Chitosan-based hydrogels to induce neuronal differentiation of rat muscle-derived stem cells”, Int. J. Biol. Macromol. 2012, 51, 974–979.
  • Peng, Y.; Li, J.; Li, J.; Fei, Y.; Dong, J.; Pan, W. “Optimization of thermosensitive chitosan hydrogels for the sustained delivery of venlafaxine hydrochloride”, Int. J. Pharm. 2013, 441, 482–490.
  • Aliaghaie, M.; Mirzadeh, H.; Dashtimoghadam, E.; Taranejoo, S. “Investigation of gelation mechanism of an injectable hydrogel based on chitosan by rheological measurements for a drug delivery application”, Soft Matter. 2012, 8, 7128–7137.
  • Wu, Q.X.; Zhang, Q.L.; Lin, D.Q.; Yao, S.J. “Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes”, Int. J. Pharm. 2013, 455, 124–131.
  • Yun, Y.P.; Lee, S.Y.; Kim, H.J.; Song, J.J.; Kim, S.E. “Improvement of osteoblast functions by sustained release of bone morphogenetic protein-2 (BMP-2) from heparin-coated chitosan scaffold”, Tissue Eng. Regen. Med. 2013, 10, 183–191.
  • Kwon, J.S.; Kim, G.H.; Kim, D.Y.; Lee, B.N.; Lee, B.; Kim, J.H.; Min, B.H.; Kim, M.S. “Neural differentiation of rat muscle-derived stem cells in the presence of valproic acid: a preliminary study”, Tissue Eng. Regen. Med. 2012, 9, 10–16.
  • Wei, W.; Lv, P.P.; Chen, X.M.; Yue, Z.G.; Fu, Q.; Liu, S.Y.; Yue, H.; Ma, G.H. “Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression”, Biomaterials. 2013, 34, 3912–3923.
  • Huang, Z.; Yu, B.; Feng, Q.; Li, S.; Chen, Y.; Luo, L. “In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells”, Carbohydr. Polym. 2011, 85, 261–267.
  • Wang, L.; Stegemann, J.P. “Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration”, Acta Biomater. 2011, 7, 2410–2417.
  • Wang, L.; Stegemann, J.P. “Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering”, Biomaterials. 2010, 31, 3976–3985.
  • Kim, S.M.; Jo, S.Y.; Shin, E.K.; Kim, D.Y.; Noh, I.S. “Evaluations of nerve cell compatibility of self-cross-linking chitosan-poly(ethylene oxide) hydrogel”, Tissue Eng. Regen. Med. 2012, 9, 84–91.
  • Kim, K.S.; Lee, J.H.; Ahn, H.H.; Lee, J.Y.; Khang, G.; Lee, B.; Lee, H.B.; Kim, M.S. “The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds”, Biomaterials. 2008, 29, 4420–4428.
  • Cho, B.C.; Chung, H.Y.; Lee, D.G.; Yang, J.D.; Park, J.W.; Roh, K.H.; Kim, G.U.; Lee, D.S.; Kwon, I.C.; Bae, E.H.; Jang, K.H.; Park, R.W.; Kim, I.S. “The effect of chitosan bead encapsulating calcium sulfate as an injectable bone substitute on consolidation in the mandibular distraction osteogenesis of a dog model”, J. Oral Maxillofac. Surg. 2005, 63, 1753–1764.
  • Bi, L.; Cheng, W.; Fan, H.; Pei, G. “Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma”, Biomaterials. 2010, 31, 3201–3211.
  • Wu, H.D.; Yang, J.C.; Tsaid, T.; Ji, D.Y.; Chang, W.J.; Chen, C.C.; Lee, S.Y. “Development of a chitosan-polyglutamate based injectable polyelectrolyte complex scaffold”, Carbohydr. Polym. 2011, 85, 318–324.
  • Kim, S.; Tsao, H.; Kang, Y.; Young, D.A.; Sen, M.; Wenke, J.C.; Yang, Y. “In vitro evaluation of an injectable chitosangel for sustained local delivery of BMP-2 for osteoblastic differentiation”, J. Biomed. Mater. Res. 2011, 99, 380–390.
  • Park, D.J.; Choi, B.H.; Zhu, S.J.; Huh, J.Y.; Kim, B.Y.; Lee, S.H. “Injectable bone using chitosan-alginate gel/mesenchymal stem cells/BMP-2 composites”, J. Craniomaxillofac. Surg. 2005, 33, 50–54.
  • Ngoenkam, J.; Faikrua, A.; Yasothornsrikul, S.; Viyoch, J. “Potential of an injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocyte function”, Int. J. Pharm. 2010, 391, 115–124.
  • Hao, T.; Wen, N.; Cao, J.K.; Wang, H.B.; Lü, S.H.; Liu, T.; Lin, Q.X.; Duan, C.M.; Wang, C.Y. “The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels”, Osteoarthr. Cartilage. 2010, 18, 257–165.
  • Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M.D.; Hoemann, C.D.; Leroux, J.C.; Atkinson, B.L.; Binette, F.; Selmani, A. “Novel injectable neutral solutions of chitosan form biodegradable gels in situ”, Biomaterials. 2000, 21, 2155–2161.
  • Hoemann, C.D.; Sun, J.; McKee, M.D.; Chevrier, A.; Rossomacha, E.; Rivard, G.E.; Hurtig, M.; Buschmann, M.D. “Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects”, Osteoarthr. Cartilage. 2007, 15, 78–89.
  • Chevrier, A.; Hoemann, C.D.; Sun, J.; Buschmann, M.D. “Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects”, Osteoarthr. Cartilage. 2007, 15, 316–327.
  • Marchand, C.; Rivard, G.E.; Sun, J.; Hoemann, C.D. “Solidification mechanisms of chitosaneglycerol phosphate/blood implant for articular cartilage repair”, Osteoarthr. Cartilage. 2009, 17, 953–960.
  • Chevrier, A.; Hoemann, C.D.; Sun, J.; Buschmann, M.D. “Temporal and spatial modulation of chondrogenic foci in subchondral microdrill holes by chitosan-glycerol phosphate/blood implants”, Osteoarthr. Cartilage. 2011, 19, 136–144.
  • Richardson, S.M.; Hughes, N.; Hunt, J.A.; Freemont, A.J.; Hoyland, J.A. “Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels”, Biomaterials. 2008, 29, 85–93.
  • Kim, G.H.; Kang, Y.M.; Kang, K.N.; Kim, D.Y.; Kim, H.J.; Min, B.H.; Kim, J.H.; Kim, M.S. “Wound dressings for wound healing and drug delivery”, Tissue Eng. Regen. Med. 2011, 8, 1–7.
  • Casettari, L.; Vllasaliu, D.; Lam, J.K.; Soliman, M.; Illum, L. “Biomedical applications of amino acid-modified chitosans: a review”, Biomaterials. 2012, 33, 7565–7583.
  • Fatimi, A.; Chabrot, P.; Berrahmoune, S.; Coutu, J.M.; Soulez, G.; Lerouge, S. “A new injectable radiopaque chitosan-based sclerosing embolizing hydrogel for endovascular therapies”, Acta Biomater. 2012, 8, 2712–2721.
  • Liu, Z.; Wang, H.; Wang, Y.; Lin, Q.; Yao, A.; Cao, F.; Li, D.; Zhou, J.; Duan, C.; Du, Z.; Wang, Y.; Wang, C. “The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment”, Biomaterials. 2012, 33, 3093–3106.
  • Rajan, M.; Raj, V.; Al-Arfaj, A.A.; Murugan, A.M. “Hyaluronidase enzyme core-5-fluorouracil-loaded chitosan-PEG-gelatin polymer nanocomposites as targeted and controlled drug delivery vehicles”, Int. J. Pharm. 2013, 453, 5145–22.
  • Weng, L.; Romanov, A.; Rooney, J.; Chen, W. “Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran”, Biomaterials. 2008, 29, 3905–3913.
  • Sung, J.H.; Hwang, M.R.; Kim, J.O.; Lee, J.H.; Kim, Y.I.; Kim, J.H.; Chang, S.W.; Jin, S.G.; Kim, J.A.; Lyoo, W.S.; Han, S.S.; Ku, S.K.; Yong, C.S.; Choi, H.G. “Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan”, Int. J. Pharm. 2010, 392, 232–240.
  • Wang, T.; Zhu, X.K.; Xue, X.T.; Wu, D.Y. “Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings”, Carbohydr. Polym. 2012, 88, 75–83.
  • Ji, Q.X.; Deng, J.; Xing, X.M.; Yuan, C.Q.; Yu, X.B.; Xu, Q.C.; Yue, J. “Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration”, Carbohydr. Polym. 2010, 82, 1153–1160.
  • Yang, K.C.; Qi, Z.; Wu, C.C.; Shirouza, Y.; Lin, F.H.; Yanai, G.; Sumi, S. “The cytoprotection of chitosan based hydrogels in xenogeneic islet transplantation: an in vivo study in streptozotocin-induced diabetic mouse”, Biochem. Biophys. Res. Commun. 2010, 393, 818–823.
  • Kang, Y.M.; Kim, K.S.; Lee, J.Y.; Lee, J.H.; Kim, E.S.; Lee, B.; Park, Y.H.; Ko, J.H.; Khang, G.; Lee, H.B.; Kim, M.S. “Fabrication and application of multilayered polyelectrolyte surfaces for gene delivery”, Tissue Eng. Regen. Med. 2008, 5, 678–682.
  • Ruel-Gariépy, E.; Shive, M.; Bichara, A.; Berrada, M.; Le Garrec, D.; Chenite, A.; Leroux, J.C. “A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel”, Eur. J. Pharm. Biopharm. 2004, 57, 53–63.
  • Berrada, M.; Serreqi, A.; Dabbarh, F.; Owusu, A.; Gupta, A.; Lehnert, S. “A novel non-toxic camptothecin formulation for cancer chemotherapy”, Biomaterials. 2005, 26, 2115–2120.
  • Han, H.D.; Song, C.K.; Park, Y.S.; Noh, K.H.; Kim, J.H.; Hwang, T.; Kim, T.W.; Shin, B.C. “A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine”, Int. J. Pharm. 2008, 350, 27–34.
  • Zhou, H.Y.; Zhang, Y.P.; Zhang, W.F.; Chen, X.G. “Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery”, Carbohydr. Polym. 2011, 83, 1643–1651.
  • Ta, H.T.; Dass, C.R.; Larson, I.; Choong, P.F.; Dunstan, D.E. “A chitosan-dipotassium orthophosphate hydrogel for the delivery of doxorubicin in the treatment of osteosarcoma”, Biomaterials. 2009, 30, 3605–3613.
  • Zahedi, P.; De Souza, R.; Piquette-Miller, M.; Allen, C. “Chitosan-phospholipid blend for sustained and localized delivery of docetaxel to the peritoneal cavity”, Int. J. Pharm. 2009, 377, 76–84.
  • Obara, K.; Ishihara, M.; Ozeki, Y.; Ishizuka, T.; Hayashi, T.; Nakamura, S.; Saito, Y.; Yura, H.; Matsui, T.; Hattori, H.; Takase, B.; Ishihara, M.; Kikuchi, M.; Maehara, T. “Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice”, J. Control. Release. 2005, 110, 79–89.
  • Cho, Y.I.; Park, S.; Jeong, S.Y.; Yoo, H.S. “In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan-doxorubicin conjugates”, Eur. J. Pharm. Biopharm. 2009, 73, 59–65.
  • Zhou, L.; Li, X.; Chen, X.; Li, Z.; Liu, X.; Zhou, S.; Zhong, Q.; Yi, T.; Wei, Y.; Zhao, X.; Qian, Z. “In vivo antitumor and antimetastatic activities of camptothecin encapsulated with N-trimethyl chitosan in a preclinical mouse model of liver cancer”, Cancer Lett. 2010, 297, 56–64.
  • Hsiao, M.H.; Larsson, M.; Larsson, A.; Evenbratt, H.; Chen, Y.Y.; Chen, Y.Y.; Liu, D.M. “Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide”, J. Control. Release. 2012, 161, 942–948.
  • Liu, L.; Tang, X.; Wang, Y.; Guo, S. “Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system”, Int. J. Pharm. 2011, 414, 6–15.
  • Martin, L.; Wilson, C.G.; Koosha, F.; Uchegbu, I.F. “Sustained buccal delivery of the hydrophobic drug denbufylline using physically cross-linked palmitoyl glycol chitosan hydrogels”, Eur. J. Pharm. Biopharm. 2003, 55, 35–45.
  • Zaharoff, D.A.; Rogers, C.J.; Hance, K.W.; Schlom, J.; Greiner, J.W. “Chitosan solution enhances the immunoadjuvant properties of GM-CSF”, Vaccine. 2007, 25, 8673–8686.
  • Chung, T.W.; Liu, D.Z.; Yang, J.S. “Effects of interpenetration of thermo-sensitive gels by crosslinking of chitosan on nasal delivery of insulin: in vitro characterization and in vivo study”, Carbohydr. Polym. 2010, 82, 316–322.
  • Wang, H.; Zhang, X.; Li, Y.; Ma, Y.; Zhang, Y.; Liu, Z.; Zhou, J.; Lin, Q.; Wang, Y.; Duan, C.; Wang, C. “Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel”, J. Heart Lung Transplant. 2010, 29, 881–887.
  • Kofuji, K.; Akamine, H.; Qian, C.J.; Watanabe, K.; Togan, Y.; Nishimura, M.; Sugiyama, I.; Murata, Y.; Kawashima, S. “Therapeutic efficacy of sustained drug release from chitosan gel on local inflammation”, Int. J. Pharm. 2004, 272, 65–78.
  • Aksungur, P.; Sungur, A.; Ünal, S.; İskit, A.B.; Squier, C.A.; Şenel, S. “Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies”, J. Control. Release. 2004, 98, 269–279.
  • Csaba, N.; Köping-Höggård, M.; Alonso, M.J. “Ionically crosslinked chitosan /tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery”, Int. J. Pharm. 2009, 382, 205–14.
  • Leea, K.Y.; Mooney, D.J. “Alginate: Properties and biomedical applications”, Prog. Polym. Sci. 2012, 37, 106–126.
  • Augst, A.D.; Kong, H.J.; Mooney, D.J. “Alginate hydrogels as biomaterials”, Macromol. Biosci. 2006, 6, 623–633.
  • Crow, B.B.; Nelson, K.D. “Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber”, Biopolymers. 2006, 81, 419–427.
  • Kuo, C.K.; Ma, P.X. “Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties”, Biomaterials. 2001, 22, 511–521.
  • Tomme, S.R. V.; Storm, G.; Hennink, W.E. “In situ gelling hydrogels for pharmaceutical and biomedical applications”, Int. J. Pharm. 2008, 355, 1–18.
  • Coviello, T.; Matricardi, P.; Marianecci, C.; Alhaique, F. “Polysaccharide hydrogels for modified release formulations”, J. Control. Release. 2007, 119, 5–24.
  • Rastogi, R.; Sultana, Y.; Aquil, M.; Ali, A.; Kumar, S.; Chuttani, K.; Mishra, A.K. “Alginate microsphere of isoniazid for oral sustained drug delivery”, Int. J. Pharm. 2007, 334, 71–77.
  • Ishak, R.A.; Awad, G.A.; Mortada, N.D.; Nour, S.A. “Preparation in vitro and in vivo evaluation of stomach-specific metronidazole-loaded alginate beads as local anti-helicobacter pylori therapy”, J. Control. Release. 2007, 119, 207–214.
  • Ain, Q.; Sharma, S.; Khuller, G.K.; Garg, S.K. “Alginate-based oral drug delivery system for tuberculosis: Pharmacokinetics and therapeutic effects”, J. Antimicrob. Chemother. 2003, 51, 931–938.
  • Ahmad, Z.; Pandey, R.; Sharma, S.; Khuller, G.K. “Alginate nanoparticles as antituberculosis drug carriers: Formulation development, pharmacokinetics and therapeutic potential”, Indian J. Chest Dis. Allied Sci. 2006, 48, 4171–4176.
  • Miyazaki, S.; Kubo, W.; Attwood, D. “Oral sustained delivery of theophylline using in-situ gelation of sodium alginate”, J. Control. Release. 2000, 67, 275–280.
  • Lucinda-Silva, R.M.; Salgado, H.R. N.; Evangelista, R.C. “Alginate-chitosan systems: Iin vitro controlled release of triamcinolone and in vivo gastrointestinal transit”, Carbohydr. Polym. 2010, 81, 260–268.
  • Zhou, S.; Bismarck, A.; Steinke, J.H. G. “Ion-responsive alginate based macroporous injectable hydrogel scaffolds prepared by emulsion templating”, J. Mater. Chem. B. 2013, 1, 4736–4745.
  • Ansorena, P. E.; Berdt, P. D.; Ucakar, B.; Simón-Yarza, T.; Jacobs, D.; Schakman, O.; Jankovski, A.; Deumens, R.; Blanco-Prieto, M.J.; Préat, V.; Rieux, A.D. “Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury”, Int. J. Pharm. 2013, 455, 148–158.
  • Kubo, W.; Miyazaki, S.; Attwood, D. “Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations”, Int. J. Pharm. 2003, 258, 55–64.
  • Miyazaki, S.; Kawasaki, N.; Kubo, W.; Endo, K.; Attwood, D. “Comparison of in situ gelling formulations for the oral delivery of cimetidine”, Int. J. Pharm. 2001, 220, 161–168.
  • Kim, J.O.; Park, J.K.; Kim, J.H.; Jin, S.G.; Yong, C.S.; Li, D.X.; Choi, J.Y.; Woo, J.S.; Yoo, B.K.; Lyoo, W.S.; Kim, J.A.; Choi, H.G. “Development of polyvinyl alcohol-sodium alginate gel-matrix-based wound dressing system containing nitrofurazone”, Int. J. Pharm. 2008, 359, 79–86.
  • Lin, H.R.; Sung, K.C.; Vong, W.J. “In situ gelling of alginate/Pluronic solutions for ophthalmic delivery of pilocarpine”, Biomacromolecules. 2004, 5, 2358–2365.
  • Abdi, S.I. H.; Choi, J.Y.; Lee, J.S.; Lim, H.J.; Lee, C.H.; Kim, J.H.; Chung, H.Y.; Lim, J.O. “In vivo study of a blended hydrogel composed of Pluronic F-127-alginate-hyaluronic acid for its cell injection application”, Tissue Eng. Regen. Med. 2012, 9, 1–9.
  • Al-Shamkhani, A.; Duncan, R. “Synthesis, controlled release properties and antitumour activity of alginate-cis-aconityl-daunomycin conjugates”, Int. J. of Pharm. 1995, 122, 107–119.
  • Raymond, J.; Metcalfe, A.; Desfaits, A.C.; Ribourtout, E.; Salazkin, I.; Gilmartin, K.; Embry, G.; Boock, R.J. “Alginate for endovascular treatment of aneurysms and local growth factor delivery”, AJNR. Am. J. Neuroradiol. 2003, 24, 1214–1221.
  • Tanihara, M.; Suzuki, Y.; Yamamoto, E.; Noguchi, A.; Mizushima, Y. “Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate”, J. Biomed. Mater. Res. A. 2001, 56, 216–221.
  • Ferreiro, M.G.; Tillman, L.G.; Hardee, G.; Bodmeier, R. “Alginate/poly-l-lysine microparticles for the intestinal delivery of antisense oligonucleotides”, Pharm. Res. 2002, 19, 755–764.
  • Silva, C.M.; Ribeiro, A.J.; Figueiredo, I.V.; Goncalves, A.R.; Veiga, F. “Alginate microspheres prepared by internal gelation: Development and effect on insulin stability”, Int. J. Pharm. 2006, 311, 1–10.
  • Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. “Alginate/chitosan nanoparticles are effective for oral insulin delivery”, Pharm. Res. 2007, 24, 2198–2206.
  • Ponce, S.; Orive, G.; Hernandez, R.M.; Gascon, A.R.; Canals, J.M.; Munoz, M.T.; Pedraz, J.L. “In vivo evaluation of EPO-secreting cells immobilized in different alginate-PLL microcapsules”, J. Controlled Release. 2006, 116, 28–34.
  • Li, X.Y.; Jin, L.J.; Uzonna, J.E.; Li, S.Y.; Liu, J.J.; Li, H.Q.; Lu, Y.N.; Zhen, Y.H.; Xu, Y.P. “Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY): Iin vivo evaluation in a pig model of enteric colibacillosis”, Vet. Immunol. Immunopathol. 2009, 129, 132–136.
  • Alsberg, E.; Anderson, K.W.; Albeiruti, A.; Franceschi, R.T.; Mooney, D.J. “Cell-interactive alginate hydrogels for bone tissue engineering”, J. Dent. Res. 2001, 80, 2025–2029.
  • Li, Z.; Ramay, H.R.; Hauch, K.D.; Xiao, D.; Zhang, M. “Chitosan-alginate hybrid scaffolds for bone tissue engineering”, Biomaterials. 2009, 26, 3919–3928.
  • Madry, H.; Kaul, G.; Cucchiarini, M.; Stein, U.; Zurakowski, D.; Remberger, K.; Menger, M.D.; Kohn, D.; Trippel, S.B. “Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I)”, Gene Ther. 2005, 12, 1171–1179.
  • Wang, L.; Shelton, R.M.; Cooper, P.R.; Lawson, M.; Triffitt, J.T.; Barralet, J.E. “Evaluation of sodium alginate for bone marrow cell tissue engineering”, Biomaterials. 2003, 24, 3475–3481.
  • Marijinissen, W.; Osch, G.; Aigner, J.; Veen, S.; Hollander, A.; Verwoerd-Verhoef, H.; Verhaar, J. “Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering”, Biomaterials. 2002, 23, 1511–1517.
  • Stevens, M.M.; Qanadilo, H.F.; Langer, R.; Shastri, V.P. “A rapid-curing alginate gel system: Utility in periosteum-derived cartilage tissue engineering”, Biomaterials. 2004, 25, 887–894.
  • Awad, A.A.; Wickham, M.Q.; Leddy, H.A.; Gimble, J.M.; Guilak, F. “Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds”, Biomaterials. 2004, 25, 3211–3222.
  • Erickson, G.R.; Gimble, J.M.; Franklin, D.M.; Rice, H.E.; Awad, H.; Guilak, F. “Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo”, Biochem. Biophys. Res. Commun. 2002, 290, 763–759.
  • Bian, L.; Zhai, D.Y.; Tous, E.; Rai, R.; Mauck, R.S.; Burdick, J.A. “Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo”, Biomaterials. 2011, 32, 6425–6434.
  • Re’em, T.; Tsur-Gang, O.; Cohen, S. “The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFβ1-induced chondrogenesis of human mesenchymal stem cells”, Biomaterials. 2010, 31, 6746–6755.
  • Park, H.; Kang, S.W.; Kim, B.S.; Mooney, D.J.; Lee, K.Y. “Shear-reversibly crosslinked alginate hydrogels for tissue engineering”, Macromol. Biosci. 2009, 9, 895–901.
  • Diduch, D.R.; Jordan, L.C. M.; Mierisch, C.M.; Balian, G. “Marrow stromal cells embedded in alginate for repair of osteochondral defects”, Arthroscopy. 2000, 16, 517–577.
  • Zheng, L.; Fan, H.S.; Sun, J.; Chen, X.N.; Wang, G.; Zhang, L.; Fan, Y.J.; Zhang, X.D. “Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: An in vivo study”, J. Biomed. Mater. Res. A. 2010, 93, 783–792.
  • Hsu, S.H.; Whu, S.W.; Hsieh, S.C.; Tsai, C.L.; Chen, D.C.; Tan, T.S. “Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration”, Artif. Organs. 2004, 28, 693–703.
  • Ho, S.T.; Cool, S.M.; Hui, J.H.; Hutmacher, D.W. “The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells”, Biomaterials. 2010, 31, 38–47.
  • Wayne, J.S.; Mcdowell, C.L.; Shields, K.J.; Tuan, R.S. “In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering”, Tissue Eng. 2005, 11, 953–963.
  • Bichara, D.A.; Zhao, X.; Hwang, N.S.; Bodugoz-Senturk, H.; Yaremchuk, M.J.; Randolph, M.A.; Muratoglu, O.K. “Porous poly(vinyl alcohol)-alginate gel hybrid construct for neocartilage formation using human nasoseptal cells”, J. Surg. Res. 2010, 163, 331–336.
  • Jin, X.B.; Sun, Y.S.; Zhang, K.; Wang, J.; Shi, T.P.; Ju, X.D.; Lou, S.Q. “Tissue engineered cartilage from hTGF β2 transduced human adipose derived stem cells seeded in PLGA/alginate compound in vitro and in vivo”, J. Biomed. Mater. Res. A. 2008, 86, 1077–1087.
  • Cohen, S.B.; Meirisch, C.M.; Wilson, H.A.; Diduch, D.R. “The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits”, Biomaterials. 2003, 24, 2653–2660.
  • Jing, W.; Lin, Y.; Wu, L.; Li, X.; Nie, X.; Liu, L.; Tang, W.; Zheng, X.; Tian, W. “Ectopic adipogenesis of preconditioned adipose-derived stromal cells in an alginate system”, Cell Tissue Res. 2007, 330, 567–572.
  • Abdi, S.I. H.; Choi, J.Y.; Lee, J.S.; Lim, H.J.; Lee, C.; Kim, J.; Chung, H.Y.; Lim, J.O. “In vivo study of a blended hydrogel composed of Pluronic F-127-alginate-hyaluronic acid for its cell injection application”, Tissue Eng. Regen. Med. 2012, 9, 1–9.
  • Seo, S.J.; Kim, I.Y.; Choi, Y.J.; Akaike, T.; Cho, C.S. “Enhanced liver functions of hepatocytes cocultured with NIH 3T3 in the alginate/galactosylated chitosan scaffold”, Biomaterials. 2006, 27, 1487–1495.
  • Mosahebi, A.; Wiberg, M.; Terenghi, G. “Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits”, Tissue Eng. 2003, 9, 209–218.
  • Leor, J.; Tuvia, S.; Guetta, V.; Manczur, F.; Castel, D.; Willenz, U.; Petneházy, Ö.; Landa, N.; Feinberg, M.S.; Konen, E.; Goitein, O.; Tsur-Gang, O.; Shaul, M.; Klapper, L.; Cohen, S. “Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine”, J. Am. Coll. Cardiol. 2009, 54, 1014–1023.
  • Landa, N.; Miller, L.; Feinberg, M.S.; Holbova, R.; Shachar, M.; Freeman, I.; Cohen, S.; Leor, J. “Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat”, Circulation. 2008, 117, 1388–1396.
  • Prang, P.; Muller, R.; Eljaouhari, A.; Jeckmann, K.; Kunz, W.; Weber, T.; Faber, C.; Vroemen, M.; Bogdahn, U.; Weidner, N. “The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels”, Biomaterials. 2006, 27, 3560–3569.
  • Perets, A.; Baruch, Y.; Weisbuch, F.; Shoshany, G.; Neufeld, G.; Cohen, S. “Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres”, J. Biomed. Mater. Res. A. 2003, 65, 489–497.
  • Liang, Y.; Liua, W.; Han, B.; Yang, C.; Ma, Q.; Song, F.; Bi, Q. “An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium”, Colloids Surf. B Biointerfaces. 2011, 82, 1–7.
  • Suzuki, Y.; Nishimura, Y.; Tanihara, M.; Suzuki, K.; Nakamura, T.; Shimizu, Y.; Yamawaki, Y.; Kakimaru, Y. “Evaluation of a novel alginate gel dressing: Cytotoxicity to fibroblasts in vitro and foreign-body reaction in pig skin in vivo”, J. Biomed. Mater. Res. 1998, 39, 317–322.
  • Balakrishnan, B.; Mohanty, M.; Umashankar, P.R.; Jayakrishnan, A. “Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin”, Biomaterials. 2005, 26, 6335–6342.
  • Ménard, M.; Dusseault, J.; Langlois, G.; Baille, W.E.; Tam, S.K.; Yahia, L.; Zhu, X.X.; Hallé, J.P. “Role of protein contaminants in the immunogenicity of alginates”, J. Biomed. Mater. Res. B. Appl. Biomater. 2010, 93, 333–340.
  • Renken, A.; Hunkeler, D. “Polymethylene-co-guanidine based capsules: A mechanistic study of the formation using alginate and cellulose sulphate”, J. Microencapsul. 2007, 24, 20–39.
  • Chang, C.; Zhang, L. “Cellulose-based hydrogels: present status and application prospects”, Carbohydr. Polym. 2011, 84, 40–53.
  • Wang, B.; Anzai, J. “Redox reactions of ferricyanide ions in layer-by-layer deposited polysaccharide films: A significant effect of the type of polycation in the films”, Langmuir. 2007, 23, 7378–7384.
  • Shang, J.; Shao, Z.; Chen, X. “Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel”, Biomacromolecules. 2008, 9, 1208–1213.
  • Shen, J.S.; Xu, B. “In situ encapsulating silver nanocrystals into hydrogels. A “green” signaling platform for thiol-containing amino acids or small peptides”, Chem. Commun. 2011, 47, 2577–2579.
  • Kök, F.; Arica, M.; Gencer, O.; Abak, K.; Hasirci, V. “Controlled release of aldicarb from carboxymethyl cellulose microspheres: Iin vitro and field applications”, Pestic. Sci. 1999, 55, 1194–1202.
  • Mathew, N.; Kalyanasundaram, M. “Development of biodegradable aluminum carboxymethylcellulose matrixes for mosquito larvicides”, Pest. Manage. Sci. 2004, 60, 685–690.
  • Li, J.; Li, Y.; Dong, H. “Controlled release of herbicide acetochlor from clay/carboxylmethylcellulose gel formulations”, J. Agric. Food Chem. 2008, 56, 1336–1342.
  • Kim, K.S.; Kang, Y.M.; Lee, J.Y.; Kim, E.S.; Kim, C.H.; Min. B.H.; Lee, H.B.; Kim, J.H.; Kim, M.S. “Injectable CMC/PEI gel as an in vivo scaffold for demineralized bone matrix”, Biomed. Mater. Eng. 2009, 19, 381–390.
  • Kim, K.S.; Lee, J.Y.; Kang, Y.M.; Kim, E.S.; Lee, B.; Chun, H.J.; Kim, J.H.; Min, B.H.; Lee, H.B.; Kim, M.S. “Electrostatic crosslinked in situ-forming in vivo scaffold for rat bone marrow mesenchymal stem cells”, Tissue Eng. Part A. 2009, 15, 3201–3209.
  • Lee, J.Y.; Kang, Y.M.; Kim, E.S.; Kang, M.L.; Lee, B.; Kim, J.H.; Min, B.H.; Park, K.; Kim, M.S. “In vitro and in vivo release of albumin from an electrostatically crosslinked in situ-forming gel”, J. Mater. Chem. 2010, 20, 3265–3271.
  • Jin, K.M.; Kim, Y.H. “Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery”, J. Control. Release. 2008, 127, 249–256.
  • Valeriani, M.; Mezzana, P.; Madonna Terracina, F.S. “Carboxy-methyl-cellulose hydrogel mammary implants: Our experience”, Acta Chir. Plast. 2002, 44, 71–76.
  • Van Tomme, S.R.; De Geest, B.G.; Braeckmans, K.; De Smedt, S.C.; Siepmann, F.; Siepmann, J.; Van Nostrum, C.F.; Hennink, W.E. “Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching”, J. Control. Release. 2005, 110, 67–78.
  • Cottet, H.; Simó, C.; Vayaboury, W.; Cifuentes, A. “Nonaqueous and aqueous capillary electrophoresis of synthetic polymers”, J. Chromatogr. A. 2005, 1068, 59–73.
  • He, C.; Kim, S.W.; Lee, D.S. “In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery”, J. Control. Release. 2008, 127, 189–207.
  • Arotcarena, M.; Heise, B.; Ishaya, S.; Laschewsky, A. “Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity”, J. Am. Chem. Soc. 2002, 124, 3787–3793.
  • Zhang, H.; Yu, L.; Ding, J. “Roles of hydrophilic homopolymers on the hydrophobic-association-induced physical gelling of amphiphilic block copolymers in water”, Macromolecules. 2008, 41, 6493–6499.
  • Li, T.; Ci, T.; Chen, L.; Yu, L.; Ding, J. “Salt-induced reentrant hydrogel of poly(ethylene glycol)–poly(lactide-co-glycolide) block copolymers”, Polym. Chem. 2014, 5, 979–991.
  • Lee, J.H.; Lee, H.B.; Andrade, J.D. “Blood compatibility of polyethylene oxide surfaces”, Prog. Polym. Sci. 1995, 20, 1043–1079.
  • Schields, R.; Harris, J.; Davies, M. “Suitability of polyethylene glycol as a dilution indicator in human colon”, Gastroenterology. 1968, 54, 331–333.
  • Ci, T.; Li, T.; Chang, G.; Yu, L.; Ding, J. “Simply mixing with poly(ethylene glycol) enhances the fraction of the active chemical form of antitumor drugs of camptothecin family”, J. Control. Release. 2013, 169, 329–335.
  • Hatefia, A.; Amsden, B. “Biodegradable injectable in situ forming drug delivery systems”, J. Control. Release. 2002, 80, 9–28.
  • Zhang, H.; Ding, J. “Frequency- and temperature-dependent rheological properties of an amphiphilic block co-polymer in water and including cell-culture media”, J. Biomater. Sci. Polym. Edit. 2010, 21, 253–269.
  • Álvarez-Ramírez, J.G.; Fernández, V.V. A.; Macías, E.R.; Rharbi, Y.; Taboada, P.; Gámez-Corrales, R.; Puig, J.E.; Soltero, J.F. A. “Phase behavior of the Pluronic P103/water system in the dilute and semi-dilute regimes”, J. colloid Interface Sci. 2009, 333, 655–662.
  • Yang Z.; Ding J. “A thermosensitive and biodegradable physical gel with chemically crosslinked nanogels as the building block”, Macromol. Rapid Commun. 2008, 29, 751–756.
  • Ci, T.; Li, T.; Chen, L.; Chang, G.; Yu, L.; Ding, J. “Effects of “mature micelle” formation of Pluronic P123 on equilibrium between lactone and carboxylate forms of 10-hydrocamptothecin in water”, Polym. Chem. 2013, 4, 3245–3255.
  • Zhang, W.; Shi, Y.; Chen, Y.; Hao, J.; Sha, X.; Fang, X. “The potential of Pluronic polymeric micelles encapsulated with paclitaxel for the treatment of melanoma using subcutaneous and pulmonary metastatic mice models”, Biomaterials. 2011, 32, 5934–5944.
  • Guo, D.D.; Hong, S.H.; Jiang, H.L.; Kim, J.H.; Minai-Tehrani, A.; Kim, J.E.; Shin, J.Y.; Jiang, T.; Kim, Y.K.; Choi, Y.J.; Cho, C.S.; Cho, M.H. “Synergistic effects of Akt1 shRNA and paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer thermosensitive hydrogel on breast cancer”, Biomaterials. 2012, 33, 2272–2281.
  • Park, S.C.; Oh, S.H.; Lee, J.H. “Fabrication and characterization of nerve growth factor-immobilized asymmetrically porous PDOCL/Pluronic F127 nerve guide conduit”, Tissue Eng. Regen. Med. 2011, 8, 192–199.
  • Price, R.; Gustafson, J.; Greish, K.; Cappello, J.; McGill, L.; Ghandehari, H. “Comparison of silk-elastinlike protein polymer hydrogel and poloxamer in matrix-mediated gene delivery”, Int. J. Pharm. 2012, 427, 97–104.
  • Bae, W.K.; Lee, J.H.; Lee, S.J.; Park, M.S.; Hwang, J.E.; Shim, H.J.; Cho, S.H.; Guo, D.D.; Cho, C.S.; Park, I.K.; Chung, I.J. “Enhanced anti-cancer effect of 5-fluorouracil loaded into thermo-responsive conjugated linoleic acid-incorporated poloxamer hydrogel on metastatic colon cancer models”, J. Nanosci. Nanotechnol. 2011, 11, 1425–1428.
  • Oh, S.H.; Kim, I.G.; Lee, J.Y.; Lee, J.Y.; Lee, J.H. “Bioactive porous beads as an injectable urethral bulking agent: Their in vitro evaluation on smooth muscle cell differentiation”, Tissue Eng. Part A. 2011, 17, 655–664.
  • Lippens, E.; Vertenten, G.; Gironès, J.; Declercq, H.; Saunders, J.; Luyten, J.; Duchateau, L.; Schacht, E.; Vlaminck, L.; Gasthuys, F.; Cornelissen, M. “Evaluation of bone regeneration with an injectable, in situ polymerizable Pluronic® F127 hydrogel derivative combined with autologous mesenchymal stem cells in a goat tibia defect model”, Tissue Eng. Part A. 2010, 16, 617–627.
  • Liu, Z.; Liu, D.; Wang, L.; Zhang, J.; Zhang, N. “Docetaxel-loaded Pluronic P123 polymeric micelles: Iin vitro and in vivo evaluation”, Int. J. Mol. Sci. 2011, 12, 1684–1696.
  • Lee, S.Y.; Lee, Y.H.; Kim, J.E.; Park, T.G.; Ahn, C.H. “A novel pH-sensitive PEG-PPG-PEG copolymer displaying a closed-loop sol-gel-sol transition”, J. Mater. Chem. 2009, 19, 8198–8201.
  • Joo, M.K.; Park, M.H.; Choi, B.G.; Jeong, B. “Reverse thermogelling biodegradable polymer aqueous solutions”, J. Mater. Chem. 2009, 19, 5891–5905.
  • Zhang Y.; Zhu W.; Wang B.; Ding J. “A novel microgel and associated post-fabrication encapsulation technique of proteins”, J. Control. Release. 2005, 105, 260–68.
  • Ci, T.; Chen, L.; Li, T.; Chang, G.; Yu, L.; Ding, J. “Effects of amphiphilic block copolymers on the equilibrium lactone fractions of camptothecin analogues at different pHs”, Biomater. Sci. 2013, 1, 1235–1243.
  • Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. “Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery”, J. Control. Release. 2002, 82, 189–212.
  • Lee, S.H.; Lee, J.E.; Baek, W.Y.; Lim, J.O. “Regional delivery of vancomycin using Pluronic F-127 to inhibit methicillin resistant Staphylococcus aureus (MRSA) growth in chronic otitis media in vitro and in vivo”, J. Control. Release. 2004, 96, 1–7.
  • LaFollette, T.A.; Walker, L.M. “Structural and mechanical hysteresis at the order-order transition of block copolymer micellar crystals”, Polymers. 2011, 3, 281–298.
  • Cohn, D.; Sosnik, A.; Levy, A. “Improved reverse thermo-responsive polymeric systems”, Biomaterials. 2003, 24, 3707–3714.
  • Fu, S.; Guo, G.; Wang, X.; Zhou, L.; Liu, T.; Dong, P.; Luo, F.; Gu, Y.; Shi, X.; Zhao, X.; Wei, Y.; Qian, Z. “Preparation and characterization of n-hydroxyapatite/PCL-Pluronic-PCL nanocomposites for tissue engineering”, J. Nanosci. Nanotechnol. 2010, 10, 711–718.
  • Chung, H.J.; Lee, Y.; Park, T.G. “Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery”, J. Control. Release. 2008, 127, 22–30.
  • Barreiro-Iglesias, R.; Bromberg, L.; Temchenko, M.; Hatton, T.A.; Alvarez-Lorenzo, C.; Concheiro, A. “Pluronic-g-poly(acrylic acid) copolymers as novel excipients for site specific, sustained release tablets”, Eur. J. Pharm. Sci. 2005, 26, 374–385.
  • Ma, W.D.; Xu, H.; Nie, S.F.; Pan, W.S. “Temperature-responsive, Pluronic-g-poly(acrylic acid) copolymers in situ gels for ophthalmic drug delivery: Rheology, in vitro drug release, and in vivo resident property”, Drug Dev. Ind. Pharm. 2008, 34, 258–266.
  • Wang, Y.; Hao, J.; Li, Y.; Zhang, Z.; Sha, X.; Han, L.; Fang, X. “Poly(caprolactone)-modified Pluronic P105 micelles for reversal of paclitaxcel-resistance in SKOV-3 tumors”, Biomaterials. 2012, 33, 4741–4751.
  • Lee, J.H.; Kim, J.H.; Oh, S.H.; Kim, S.J.; Hah, Y.S.; Park, B.W.; Kim, D.R.; Rho, G. J.; Maeng, G.H.; Jeon, R.H.; Lee, H.C.; Kim, J.R.; Kim, G.C.; Kim, U.K.; Byun, J.H. “Tissue-engineered bone formation using periosteal-derived cells and polydioxanone/Pluronic F127 scaffold with pre-seeded adipose tissue-derived CD146 positive endothelial-like cells”, Biomaterials. 2011, 32, 5033–5045.
  • Shachaf, Y.; Gonen-Wadmany, M.; Seliktar, D. “The biocompatibility of Pluronic®F127 fibrinogen-based hydrogels”, Biomaterials. 2010, 31, 2836–2847.
  • Xuan, J. J.; Balakrishnan, P.; Oh, D.H.; Yeo, W.H.; Park, S.M.; Yong, C.S.; Choi, H.G. “Rheological characterization and in vivo evaluation of thermosensitive poloxamer-based hydrogel for intramuscular injection of piroxicam”, Int. J. Pharm. 2010, 395, 317–323.
  • Liu, Y.; Lu, W.L.; Wang, J.C.; Zhang, X.; Zhang, H.; Wang, X.Q.; Zhou, T.Y.; Zhang, Q. “Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic® F127 hydrogel for subcutaneous administration: Iin vitro and in vivo characterization”, J. Control. Release. 2007, 117, 387–395.
  • Sun, C.; Chen, L.; Xu, F.; Zhu, P.; Luan, J.; Mao, C.; Shen, J. “Hemocompatible and antibiofouling PU-F127 nanospheres platform for application to glucose detection in whole blood”, J. Mater. Chem. B. 2013, 1, 801–809.
  • Guo, D.D.; Xu, C.X.; Quan, J.S.; Song, C.K.; Jin, H.; Kim, D.D.; Choi, Y.J.; Cho, M.H.; Cho, C.S. “Synergistic anti-tumor activity of paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer thermosensitive hydrogel in vitro and in vivo”, Biomaterials. 2009, 30, 4777–4785.
  • Lippens, E.; Swennen, I.; Gironès, J.; Declercq, H.; Vertenten, G.; Vlaminck, L.; Gasthuys, F.; Schacht, E.; Cornelissen, R. “Cell survival and proliferation after encapsulation in a chemically modified Pluronic F127 hydrogel”, J. Biomater. Appl. 2011, 15, 1–12.
  • Huang, J.; Wang, S.; Wei, C.; Xua, Y.; Wanga, Y.; Jin, J.; Teng, G. “In vivo differentiation of adipose-derived stem cells in an injectable poloxamer-octapeptide hybrid hydrogel”, Tissue Cell. 2011, 43, 344–349.
  • Wang, Y.; Zhao, L.; Hantash, B.M. “Support of human adipose-derived mesenchymal stem cell multipotency by a poloxamer-octapeptide hybrid hydrogel”, Biomaterials. 2010, 31, 5122–5130.
  • Yoon, J.J.; Chung, H.J.; Park, T.G. “Photo-crosslinkable and biodegradable Pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor”, J. Biomed. Mater. Res. A. 2007, 83, 597–605.
  • Jung, H.H.; Park, K.D.; Han, D.K. “Preparation of TGF-β1-conjugated biodegradable Pluronic F127 hydrogel and its application with adipose-derived stem cells”, J. Control. Release. 2010, 147, 84–91.
  • Li, Z.; Ning, W.; Wang, J.; Choi, A.; Lee, P.Y.; Tyagi, P.; Huang, L. “Controlled gene delivery system based on thermosensitive biodegradable hydrogel”, Pharm. Res. 2003, 20, 884–888.
  • Lee, P.Y.; Li, Z.; Huang, L. “Thermosensitive hydrogel as a Tgf-β1 gene delivery vehicle enhances diabetic wound healing”, Pharm. Res. 2003, 20, 1995–2000.
  • Arakeri, G.; Brennan, P.A. “Dose-dependent sustained local release of dexamethasone from biodegradable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers in the possible prevention of TMJ re-ankylosis (Arakeri's TMJ release technique)”, Med. Hypotheses. 2012, 78, 682–686.
  • Gao, Y.; Ren, F.; Ding, B.; Sun, N.; Liu, X.; Ding, X.; Gao, S. “A thermo-sensitive PLGA-PEG-PLGA hydrogel for sustained release of docetaxel”, J. Drug Target. 2011, 19, 516–527.
  • Qiao, M.; Chen, D.; Hao, T.; Zhao, X.; Hu, H.; Ma, X. “Injectable thermosensitive PLGA-PEG-PLGA triblock copolymers-based hydrogels as carriers for interleukin-2”, Pharmazie. 2008, 63, 27–30.
  • Li, K.; Yu, L.; Liu, X.; Chen, C.; Chen, Q.; Ding, J. “A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel”, Biomaterials. 2013, 34, 2834–2842.
  • Yu, L.; Li, K.; Liu, X.; Chen, C.; Bao, Y.; Ci, T.; Chen, Q.; Ding, J. “In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel”. J. Pharm. Sci. 2013, 102, 4140–4149.
  • Yu, L.; Chang, G.T.; Zhang, H.; Ding, J.D. “Injectable block copolymer hydrogels for sustain release of a PEGylated drug”, Int. J. Pharm. 2008, 348, 95–106.
  • Sandker, M.J.; Petit, A.; Redout, E.M.; Siebelt, M.; Müller, B.; Bruin, P.M.; Vermonden, R.T.; Hennink, W.E. “Weinans Harrie In situ forming acyl-capped PCLA–PEG–PCLA triblock copolymer based hydrogels”, Biomaterials. 2013, 34, 8002–8011.
  • Kang, Y.M.; Kim, G.H.; Kim, J.I.; Kim, D.Y.; Lee, B.N.; Yoon, S.M.; Kim, J.H.; Kim, M.S. “In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly-(ethyleneglycol)-b-polycaprolactone diblock copolymer”, Biomaterials. 2011, 32, 4556–4564.
  • Huynh, D.P.; Im, G.J.; Chae, S.Y.; Lee, K.C.; Lee, D.S. “Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel”, J. Control. Release. 2009, 137, 20–24.
  • Hiemstra, C.; Zhong, Z.; Van Tomme, S.R.; Van Steenbergen, M.J.; Jacobs, J.J.; Otter, W.D.; Hennink, W.E.; Feijen, J. “In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels”, J. Control. Release. 2007, 119, 320–327.
  • Tang, S.; Zhao, J.; Xu, S.; Li, J.; Teng, Y.; Quan, D.; Guo, X. “Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-F127-PTMC11 hydrogels”, Biomed. Mater. 2012, 7, 015008.
  • Zhang, J.; Liang, Y.; Li, N.; Li, X.; Hu, R.; Xing, J.; Deng, L.; Hu, F.; Dong, A. “Thermosensitive hydrogel based on poly(ether-ester anhydride) nanoparticle as drug delivery system: Preparation, characterization and biocompatibility”, Colloids Surf. B Biointerfaces. 2012, 96, 56–61.
  • Shikanov, A.; Ezra, A.; Domb, A.J. “Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel-effect of additives”, J. Control. Release. 2005, 105, 52–67.
  • Lee, P.Y.; Cobain, E.; Huard, J.; Huang, L. “Thermosensitive hydrogel PEG-PLGA-PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound”, Mol. Ther. 2007, 15, 1189–1194.
  • Yu L.; Xu W.; Shen W.; Cao L.; Liu Y.; Li Z.; Ding J. “Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection”, Acta. Biomater. 2014, 10, 1251–1258.
  • Zhang, Z.; Lai, Y.; Yu, L.; Ding, J. “Effects of immobilizing sites of RGD peptides in amphiphilic block copolymers on efficacy of cell adhesion”, Biomaterials. 2010, 31, 7873–7882.
  • Zhang, Z.; Ni, J.; Chen, L.; Yu, L.; Xu, J.; Ding, J. “Encapsulation of cell-adhesive RGD peptides into a polymeric physical hydrogel to prevent postoperative tissue adhesion”, J. Biomed. Mater. Res. B. Appl. Biomater. 2012, 100B, 1599–1609.
  • Yu, L.; Hu, H.; Chen, L.; Bao, X.; Li, Y.; Chen, L.; Xu, G.; Ye, X.; Ding, J. “Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms”, Biomaterials. 2014, 2, 1100–1109.
  • Pratoomsoot, C.; Tanioka, H.; Hori, K.; Kawasaki, S.; Kinoshita, S.; Tighe, P.J.; Dua, H.; Shakesheff, K.M.; Rose, F.R. “A thermoreversible hydrogel as a biosynthetic bandage for corneal wound repair”, Biomaterials. 2008, 29, 272–281.
  • Kim, M.H.; Hong, H.N.; Hong, J.P.; Park, C.J.; Kwon, S.W.; Kim, S.H.; Kang, G.S.; Kim, M.J. “The effect of VEGF on the myogenic differentiation of adipose tissue derived stem cells within thermosensitive hydrogel matrices”, Biomaterials. 2010, 31, 1213–1218.
  • Kim, M.S.; Kim, S.K.; Kim, S.H.; Hyun, H.; Khang, G.; Lee, H.B. “In vivo osteogenic differentiation of rat bone marrow stromal cells in thermosensitive MPEG-PCL diblock copolymer gels”, Tissue Eng. 2006, 12, 2863–2873.
  • Ahn, H.H.; Kim, K.S.; Lee, J.H.; Lee, J.Y.; Kim, B.S.; Lee, I.W.; Chun, H.J.; Kim, J.H.; Lee, H.B.; Kim, M.S. “In vivo osteogenic differentiation of human adipose-derived stem cells in an injectable in situ-forming gel scaffold”, Tissue Eng. Part A. 2009, 15, 1821–1832.
  • Rath, S.N.; Pryymachuk, G.; Bleiziffer, O.A.; Lam, C.X.; Arkudas, A.; Ho, S.T.; Beier, J.P.; Horch, R.E.; Hutmacher, D.W.; Kneser, U. “Hyaluronan-based heparin-incorporated hydrogels for generation of axially vascularized bioartificial bone tissues: Iin vitro and in vivo evaluation in a PLDLLA-TCP-PCL-composite system”, J. Mater. Sci. Mater. Med. 2011, 22, 1279–1291.
  • Fu, S.; Ni, P.; Wang, B.; Chu, B.; Zheng, L.; Luo, F.; Luo, J.; Qian, Z. “Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration”, Biomaterials. 2012, 33, 4801–4809.
  • Wang, J.; Yao, K.; Wang, C.; Tang, C.; Jiang, X. “Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety”, J. Mater. Chem. B. 2013, 1, 2324–2332.
  • Fu, S.; Ni, P.; Wang, B.; Chu, B.; Zheng, L.; Luo, F.; Luo, J.; Qian, Z. “Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration”, Biomaterials. 2012, 33, 4801–4809.
  • Zhang, Z.; Ni, J.; Chen, L.; Yu, L.; Xu, J.; Ding, J. “Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion”, Biomaterials. 2011, 32, 4725–4736.
  • Jain, R.; Shah, N.H.; Malick, A.W.; Rhodes, C.T. “Controlled drug delivery by biodegradable poly (ester) devices: Different preparative approaches”, Drug Dev. Ind. Pharm. 1998, 24, 703–727.
  • Zou, P.; Suo, J.; Nie, L.; Feng, S. “Temperature-responsive biodegradable star-shaped block copolymers for vaginal gels”, J. Mater. Chem. 2012, 22, 6316–6326.
  • Tang, Y.; Singh, J. “Biodegradable and biocompatible thermosensitive polymer based injectable implant for controlled release of protein”, Int. J. Pharm. 2009, 365, 34–43.
  • Jeong, B.; Bae, Y.H.; Kim, S.W. “Biodegradable block copolymers as injectable drug- delivery systems”, Nature, 1997, 388, 860–862.
  • Jeong, B.; Bae, Y.H.; Kim, S.W. “Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers”, J. Control. Release. 2000, 63, 155–163.
  • Yu, L.; Zhang, Z.; Zhang, H.; Ding, J. “Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel”, Biomacromolecules. 2009, 10, 1547–1553.
  • Yu, L.; Zhang, Z.; Zhang, H.; Ding, J. “Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water”, Biomacromolecules. 2010, 11, 2169–2178.
  • Yu, L.; Zhang, Z.; Ding, J. “Influence of LA and GA Sequence in the PLGA Block on the Properties of Thermogelling PLGA-PEG-PLGA Block Copolymers”, Biomacromolecules. 2011, 12, 1290–1297.
  • Yu, L.; Ci, T.; Zhou, S.; Zeng, W.; Ding, J. “The thermogelling PLGA–PEG–PLGA block copolymer as a sustained release matrix of doxorubicin”, Biomater. Sci. 2013, 1, 411–420.
  • Pan, Z.; Ding, J. “Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine”, Interface Focus 2012, 2, 366–377.
  • Sugihara, S.; Kanaoka, S.; Aoshima, S. “Double thermosensitive diblock copolymers of vinyl ethers with pendant oxyethylene groups: Unique physical gelation”, Macromolecules. 2005, 38, 1919–1927.
  • Shim, W.S.; Yoo, J.S.; Bae, Y.H.; Lee, D.S. “Novel injectable pH and temperature sensitive block copolymer hydrogels”, Biomacromolecules. 2005, 6, 2930–2934.
  • Jeong, B.; Bae, Y.H.; Kim, S.W. “Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers”, Colloids Surf. B. 1999, 16, 185–193.
  • Duan, Y.; Zhang, Y.; Gong, T.; Zhang, Z. “Synthesis and characterization of MeO-PEG-PLGA-PEG-OMe copolymers as drug carriers and their degradation behavior in vitro”, J. Mater. Sci. Mater. Med. 2007, 18, 2067–2073.
  • Lin, G.; Cosimbescu, L.; Karin, N.J.; Tarasevich, B.J. “Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: Preparation, characterization and in vitro release behavior”, Biomed. Mater. 2012, 7, 024107.
  • Chang, G.; Li, C.; Lu, W.; Ding, J. “N-Boc-histidine-capped PLGA-PEG-PLGA as a smart polymer for drug delivery sensitive to tumor extracellular pH”, Macromol. Biosci. 2010, 10, 1248–1256.
  • Yu, L.; Zhang, H.; Ding, J.A. “Subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions”, Angew. Chem. Int. Ed. 2006, 45, 2232–2235.
  • Yu, L.; Chang, G.; Zhang, H.; Ding, J. “Temperature-induced spontaneous sol-gel transitions of poly (D,L-lactic acid-co-glycolic acid)-b-poly (ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water”, J. Polym. Sci. A Polym. Chem. 2007, 45, 1122–1133.
  • Duan, Y.; Xu, J.; Lin, Y.; Yu, H.; Gong, T.; Li, Y.; Zhang, Z. “A preliminary study on MeO-PEG-PLGA-PEG-OMe nanoparticles as intravenous carriers”, J. Biomed. Mater. Res. A. 2008, 87, 515–523.
  • Chang, G.; Yu, L.; Yang, Z.; Ding, J. “A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water”, Polymer. 2009, 50, 6111–6120.
  • Kim, M.S.; Seo, K.S.; Hyun, H.; Kim, S.K.; Khang, G.; Lee, H.B. “Sustained release of bovine serum albumin using implantable wafers prepared by MPEG-PLGA diblock copolymers”, Int. J. Pharm. 2005, 304, 165–177.
  • Hyun, H.; Kim, M.S.; Jeong, S.C.; Kim, Y.H.; Lee, S.Y.; Khang, G.; Lee, H.B. “Preparation of diblock copolymers consisting of methoxy poly (ethyleneglycol) and poly (ϵ-caprolactone)/poly (L-lactide) and their degradation property”, Polym. Eng. Sci. 2006, 46, 1242–1249.
  • Yoon, S.J.; Kim, S.H.; Ha, H.J.; Ko, Y.K.; So, J.W.; Kim, M.S.; Yang, Y.I.; Khang, G.; Rhee, J.M.; Lee, H.B. “Reduction of inflammatory reaction of poly (D,L-lactic-co-glycolic acid) using demineralized bone particle”. Tissue Eng. Part A. 2008, 14, 539–547.
  • Kim, I.Y.; Yoo, M.K.; Kim, B.C.; Park, I.Y.; Lee, H.C.; Cho, C.S. “Thermogelling behaviors of poly (caprolactone-b-ethylene glycol-b-caprolactone) triblock copolymer in the presence of hyaluronic acid”, J. Polym. Sci. A Polym. Chem. 2008, 46, 3629–3637.
  • Tsitsilianis, C. “Responsive reversible hydrogels from associative “smart” macromolecules”, Soft Matter. 2010, 6, 2372–2388.
  • Zhang, Y.; Guo, S.; Lu, C.; Liu, L.; Li, Z.; Gu, J. “Poly (ϵ-caprolactone)-b-poly (ethylene glycol)-b-poly (ϵ-caprolactone) triblock copolymers: Synthesis and self-assembly in aqueous solutions”, J. Polym. Sci. A Polym. Chem. 2007, 45, 605–613.
  • Lee, S.H.; Oh, J.M.; Son, J.S.; Lee, J.W.; Kim, B.S.; Khang, G.; Han, D.K.; Kim, J.H.; Lee, H.B.; Kim, M.S. “Controlled preparation of poly (ethylene glycol) and poly (l-lactide) block copolymers in the presence of a monomer activator”, J. Polym. Sci. A Polym. Chem. 2009, 47, 5917–5922.
  • Gong, C.Y.; Dong, P.W.; Shi, S.S.Z., Fu.S. Z.; Yang, J.L.; Guo, G.; Zhao, X.; Wei, Y.Q.; Qian, Z.Y. “Thermosensitive PEG-PCL-PEG hydrogel controlled drug delivery system: Sol-gel-sol transition and in vitro drug release study”, J. Pharm. Sci. 2009, 98, 3707–3717.
  • Gong, C.; Shi, S.; Dong, P.; Kan, B.; Gou, M.; Wang, X.; Li, X.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. “Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel”, Int. J. Pharm. 2009, 365, 89–99.
  • Bae, S.J.; Joo, M.K.; Jeong, Y.; Kim, S.W.; Lee, W.K.; Sohn, Y.S.; Jeong. B. “Gelation behavior of poly (ethylene glycol) and polycaprolactone triblock and multiblock copolymer aqueous solutions”, Macromolecules. 2006, 39, 4873–4879.
  • Kim, M.S.; Seo, K.S.; Khang, G.; Lee, H.B. “Ring-opening polymerization of ϵ-caprolactone by poly (ethyleneglycol) via activated monomer mechanism”, Macromol. Rapid. Comm. 2005, 26, 643–648.
  • Kim, M.S.; Seo, K.S.; Khang, G.; Cho, S.H.; Lee, H.B. “Preparation of poly (ethylene glycol)-b-poly (caprolactone) copolymers and their applications as thermo-sensitive materials”, J. Biomed. Mater. Res. 2004, 70,154–158.
  • Kim, M.S.; Seo, K.S.; Khang, G.; Cho, S.H.; Lee, H.B. “Preparation of methoxy poly (ethylene glycol)/polyester diblock copolymers and examination of the gel-to-sol transition”, J. Polym. Sci. A Polym. Chem. 2004, 42, 5784–5793.
  • Hyun, H.; Lee, J.W.; Cho, J.S.; Kim, M.S.; Khang, G.; Lee, H.B. “Synthesis and characterization of amphiphilic linear and star-shaped block copolymers via activated monomer mechanism and aggregation behavior in aqueous solution”, J. Polym. Sci. A Polym. Chem. 2008, 46, 2084–2096.
  • Kim, M.S.; Hyun, H.; Seo, K.S.; Cho, Y.H.; Khang, G.; Lee, H.B. “Preparation and characterization of MPEG-PCL diblock copolymers with thermo-responsive sol-gel-sol behavior”, J. Polym. Sci. A Polym. Chem. 2006, 44, 5413–5423.
  • Hyun, H.; Kim, Y.H.; Song, I.B.; Lee, J.W.; Kim, M.S.; Khang, G.; Park, K.; Lee, H.B. “In vitro and in vivo release of albumin using biodegradable MPEG-PCL diblock copolymer as an in situ gel forming carrier”, Biomacromolecules. 2007, 8, 1093–1100.
  • Kim, M.S.; Hyun, H.; Cho, Y.H.; Seo, K.S.; Jang, W.Y.; Kim, S.K.; Khang, G.; Lee, H.B. “Preparation of methoxy poly (ethyleneglycol)-block-poly (caprolactone) via activated monomer mechanism and examination of micellar characterization”, Polym. Bull. 2005, 55, 149–156.
  • He, C.; Sun, J.; Zhao, T.; Hong, Z.; Zhuang, X.; Chen, X.; Jing, X. “Formation of a unique crystal morphology for the poly (ethylene glycol)-poly (epsilon-caprolactone) diblock copolymer”, Biomacromolecules. 2006, 7, 252–258.
  • Kim, J.I.; Lee, S. H,; Kang, H.J.; Kwon, D.Y.; Kim, D.Y.; Kang, W.S.; Kim, J.H.; Kim, M.S. “Examination of phase transition behavior of ion group functionalized MPEG-b-PCL diblock copolymers”, Soft Matter. 2011, 7, 8650–8656.
  • Kwon, J.S.; Yoon, S.M.; Kwon, D.Y.; Kim, D.Y.; Tai, G.Z.; Jin, L.M.; Song, B.; Lee, B.; Kim J.H.; Han, D.K.; Min, B.H.; Kim, M.S. “Injectable in situ-forming hydrogel for cartilage tissue engineering”, J. Mater. Chem. B. 2013, 1, 3314–3321.
  • Kim, D.Y.; Kim, Y.Y.; Lee, H.B.; Moon, S.Y.; Ku, S.Y.; Kim, M.S. “In vivo osteogenic differentiation of human embryoid bodies in an injectable in situ-forming hydrogel”, Materials. 2013, 6, 2978–2988.
  • Seo, H.W.; Kim, D.Y.; Kwon, D.Y.; Kwon, J.S.; Jin, L.M.; Lee, B.; Kim, J.H.; Min, B.H.; Kim, M.S. “Injectable intratumoral hydrogel as 5-fluorouracil drug depot”, Biomaterials. 2013, 34, 2748–2757.
  • Lee, J.Y.; Kim, K.S.; Kang, Y.M.; Kim, E.S.; Hwang, S.J.; Lee, H.B.; Min, B.H.; Kim, J.H.; Kim, M.S. “In vivo efficacy on subcutaneous tumor growth of ptx-loaded injectable in situ gel”, Int. J. Pharm. 2010, 392, 51–56.
  • Yu, L.; Sheng, W.; Yang, D.; Ding, J. “Design of molecular parameters to achieve block copolymers with a powder form at dry state and a temperature-induced sol-gel transition in water without unexpected gelling prior to heating”, Macromol. Res. 2013, 21, 207–215.
  • Kang, Y.M.; Lee, S.H.; Lee, J.Y.; Son, J.S.; Kim, B.S.; Lee, B.; Chun, H.J.; Min, B.H.; Kim, J.H.; Kim, M.S. “A biodegradable, injectable, gel system based on MPEG-b-(PCL-ran-PLLA) diblock copolymers with an adjustable therapeutic window”, Biomaterials. 2010, 31, 2453–2460.
  • Jiang, Z.; Deng, X.; Hao, J. “Thermogelling hydrogels of poly (ϵ-caprolactone-co-D,L-lactide)-poly (ethylene glycol)-poly (ϵ-caprolactone-co-D,L-lactide) and poly (ϵ-caprolactone-co-L-lactide)-poly (ethylene glycol)-poly (ϵ-caprolactone-co-L-lactide) aqueous solutions”, J. Polym. Sci. A Polym. Chem. 2007, 45, 4091–4099.
  • Kim, J.I.; Kim, D.Y.; Kwon, D.Y.; Kang, H.J.; Kim, J.H.; Min, B.H.; Kim, M.S. “An injectable biodegradable temperature-responsive gel with an adjustable persistence window”, Biomaterials. 2012, 33, 2823–2834.
  • Kim, M.S.; Hyun, H.; Khang, G.; Lee, H.B. “Preparation of thermosensitive diblock copolymers consisting of MPEG and polyesters”, Macromolecules. 2006, 39, 3099–3102.
  • Kim, S.Y.; Kim, H.J.; Lee, K.E.; Han, S.S.; Sohn, Y.S.; Jeong, B. “Reverse thermal gelling PEG-PTMC diblock copolymer aqueous solution”, Macromolecules. 2007, 40, 5519–5525.
  • Hyun, H.; Kim, Y.H.; Lee, J.W.; Lee, C.R.; Kim, M.S.; Khang, G.; Lee, H.B. “Polymeric nano-micelles using polyethylene glycol and polytrimethylene carbonate block copolymers as a drug carrier”, Colloids Surf. A. 2008, 313,131–135.
  • Cho, J.S.; Kim, B.S.; Hyun, H.; Youn, J.Y.; Kim, M.S.; Ko, J.H.; Park, Y.H.; Khang, G.; Lee, H.B. “Precise preparation of four-arm poly (ethylene glycol)-b-poly (trimethylene carbonate) star block copolymer via activated monomer mechanism”, Polymer. 2008, 49, 1777–1782.
  • Kim, M.S.; Hyun, H.; Kim, B.S.; Khang, G.; Lee, H.B. “Polymeric nano-micelles as drug carrier using polyethylene glycol and polytrimethylene carbonate linear and star-shaped block copolymer”, Curr. Appl. Phys. 2008, 8, 646–650.
  • Kim, B.S.; Oh, J.M.; Cho, J.S.; Lee, B.; Khang, G.; Lee, H.B.; Kim, M.S. “Comparison of micelles formed by amphiphilic poly (ethylene glycol)-b-poly (trimethylene carbonate) star block copolymers”, J. Appl. Polym. Sci. 2009, 111, 1706–1712.
  • Choi, B.G.; Sohn, Y.S.; Jeong, B. “Closed-loop sol-gel transition of PEG-PEC aqueous solution”, J. Phys. Chem. B. 2007, 111, 7715–7718.
  • Lee, J.; Joo, M.K.; Oh, H.; Sohn, Y.S.; Jeong, B. “Injectable gel: Poly (ethylene glycol)-sebacic acid polyester”, Polymer. 2006, 47, 3760–3766.
  • Potta, T.; Chun, C.; Song, S.C. “Injectable, dual cross-linkable polyphosphazene blend hydrogels”, Biomaterials. 2010, 31, 8107–8120.
  • Ahn, S.; Ahn, S.W.; Song, S.C. “Thermosensitive amphiphilic polyphosphazenes and their interaction with ionic surfactants”, Colloids Surf. B. 2008, 330, 184–192.
  • Kang, G.D.; Cheon, S.H.; Khang, G.; Song, S.C. “Thermosensitive poly (organophosphazene) hydrogels for a controlled drug delivery”, Eur. J. Pharm. Biopharm. 2006, 63, 340–346.
  • Chun, C.; Lim, H.J.; Hong, K.Y.; Park, K.H.; Song, S.C. “The use of injectable, thermosensitive poly (organophosphazene)-RGD cell osteogenic differentiation”, Biomaterials. 2009, 30, 6295–6308.
  • Park, M.R.; Chun, C.; Ahn, S.W.; Ki, M.H.; Cho, C.S.; Song, S.C. “Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery”, Biomaterials. 2010, 31, 1349–1359.
  • Kang, G.D.; Cheon, S.H.; Song, S.C. “Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels”, Int. J. Pharm. 2006, 319, 29–36.
  • Al-Abd, A.M.; Hong, K.Y.; Song, S.C.; Kuh, H.J. “Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice”, J. Control. Release. 2010, 142, 101–107.
  • Cho, J.K.; Hong, K.Y.; Park, J.W.; Yang, H.K.; Song, S.C. “Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly (organophosphazene) hydrogel.” J. Drug Target. 2011, 19, 270–280.
  • Cho, J.K.; Park, J.W.; Song, S.C. “Injectable and biodegradable poly (organophosphazene) gel containing silibinin: Its physicochemical properties and anticancer activity”, J. Pharm. Sci. 2012, 101, 2382–2391.
  • Chun, C.; Lee, S.M.; Kim, S.Y.; Yang, H.K.; Song, S.C. “Thermosensitive poly (organophosphazene)-paclitaxel conjugate gels for antitumor applications”, Biomaterials. 2009, 30, 2349–2360.
  • Cho, J.K.; Chun, C.; Kuh, H.J.; Song, S.C. “Injectable poly (organophosphazene)-camptothecin conjugate hydrogels: Synthesis, characterization, and antitumor activities”, Eur. J. Pharm. Biopharm. 2012, 81, 582–590.
  • Park, M.R.; Chun, C.; Cho, C.S.; Song, S.C. “Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel”, J. Control. Release. 2010, 147, 359–367.
  • Kim, J.I.; Chun, C.; Kim, B.; Hong, J.M.; Cho, J.K.; Lee. S.H.; Song, S.C. “Thermosensitive/magnetic poly (organo-phosphazene) hydrogel as a long-term magnetic resonance contrast platform”, Biomaterials. 2012, 33, 218–224.
  • Chun, C.; Lee, S.M.; Kim, C.W.; Hong, K.Y.; Kim, S.Y.; Yang, H.K.; Song, S.C. “Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics”, Biomaterials. 2009, 30, 4752–4762.
  • Verret, V.; Wassef, M.; Pelage, J.P.; Ghegediban, S.H.; Jouneau, L.; Moine, L.; Labarre, D.; Golzarian, J.; Schwartz-Cornil, I.; Laurent, A. “Influence of degradation on inflammatory profile of polyphosphazene coated PMMA and trisacryl gelatin microspheres in a sheep uterine artery embolization model”, Biomaterials. 2011, 32, 339–351.
  • Wei, H.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. “Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers”, Prog. Polym. Sci. 2009, 34, 893–910.
  • Tiktopulo, E.I.; Uversky, V.N.; Lushchik, V.B.; Klenin, S.I.; Bychova, V.E.; Ptitsyn, O.B. “‘‘Domain’’ coil-globule transition in homopolymers”, Macromolecules. 1995, 28, 7519–7524.
  • Conova, L.; Vernengo, J.; Jin, Y.; Himes, B.T.; Neuhuber, B.; Fischer, I.; Lowman, A.; Vernengo, J.; Jin, Y.; Himes, B.T.; Neuhuber, B.; Fischer, I.; Lowman, A. “A pilot study of poly (N-isopropylacrylamide)-g-polyethylene glycol and poly (N-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord”, J. Neurosurg. Spine. 2011, 15, 594–604.
  • Quan, Z.; Zhu, K.; Knudsen, K.; Nyström D.B.; Lund, R. “Tailoring the amphiphilicity and self-assembly of thermosensitive polymers: End-capped PEG–PNIPAAM block copolymers”, Soft Matter. 2013, 9, 10768–10778.
  • Wang, T.; Zhang, L.L.; He, X.J. “Preparation and characterization of a novel hybrid hydrogel composed of bombyx mori fibroin and poly (N-isopropylacrylamide)”, J. Nano Mat. 2013, 2013, 832710.
  • Li, J.; He, W.D.; He, N.; Han, S.C.; Sun, X.L.; Li, L.Y.; Zhang, B.Y. “Synthesis of PEG-PNIPAM-PLys hetero-arm star polymer and its variation of thermo-responsibility after the formation of polyelectrolyte complex micelles with PAA”, J. Polym. Sci. A Polym. Chem. 2009, 47, 1450–1462.
  • Masci, G.; De Santis, S.; Cametti, C. “Dielectric properties of micellar aggregates due to the self-assembly of thermoresponsive diblock copolymers”, J. Phys. Chem. B. 2011, 115, 2196–2204.
  • Turturro, S.B.; Guthrie, M.J.; Appel, A.A.; Drapala, P.W.; Brey, E.M.; Pérez-Luna, V.H.; Mieler, W.F.; Kang-Mieler, J.J. “The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function”, Biomaterials. 2011, 32, 3620–3626.
  • Zhang, J.; Qian, Z.; Gu, Y. “In vivo anti-tumor efficacy of docetaxel-loaded thermally responsive nanohydrogel”, Nanotechnology. 2009, 20, 325102.
  • Zhang, J.; Chen, H.; Xu, L.; Gu, Y. “The targeted behavior of thermally responsive nanohydrogel evaluated by NIR system in mouse model”, J. Control. Release. 2008, 131, 34–40.
  • Li, Z.; Guo, X.; Palmer, A.F.; Das, H.; Guan, J. “High-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel”, Acta Biomater. 2012, 8, 3586–3595.
  • Chung, E.H.; Gilbert, M.; Virdi, A.S.; Sena, K.; Sumner, D.R.; Healy, K.E. “Biomimetic artificial ECMs stimulate bone regeneration”, J. Biomed. Mater. Res. A. 2006, 79, 815–826.
  • Liao, H.T.; Chen, C.T.; Chen, J.P. “Osteogenic differentiation and ectopic bone formation of canine bone marrow-derived mesenchymal stem cells in injectable thermo-responsive polymer hydrogel”, Tissue Eng. Part C Methods. 2011, 17, 1139–1149.
  • Jiang, B.; Larson, J.C.; Drapala, P.W.H., Pérez-Luna, V.H.; Kang-Mieler, J.J.; Brey, E.M. “Investigation of lysine acrylate containing poly(N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds”, J. Biomed. Mater. Res. B. Appl. Biomater. 2012, 100, 668–676.
  • Cui, Z.; Lee, B.H.; Pauken, C.; Vernon, B.L. “Degradation, cytotoxicity, and biocompatibility of NIPAAm-based thermosensitive, injectable, and bioresorbable polymer hydrogels”, J. Biomed. Mater. Res. A. 2011, 98, 159–166.
  • Takagi, S.; Ohno, M.; Ohashi, K.; Utoh, R.; Tatsumi, K.; Okano, T. “Cell shape regulation based on hepatocyte sheet engineering technologies”, Cell Transplant. 2012, 21, 411–220.
  • Harimoto, M.; Yamato, M.; Hirose, M.; Takahashi, C.; Isoi, Y.; Kikuchi, A.; Okano, T. “Novel approach for achieving double-layered cell sheets co-culture: Overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes”, J. Biomed. Mater. Res. 2002, 62, 464–770.
  • Kushida, A.; Yamato, M.; Kikuchi, A.; Okano, T. “Two-dimensional manipulation of differentiated madin-darby canine kidney (MDCK) cell sheets: The noninvasive harvest from temperature-responsive culture dishes and transfer to other surfaces”, J. Biomed. Mater. Res. 2001, 54, 37–46.
  • Tang, Z.; Akiyama, Y.; Itoga, K.; Kobayashi, J.; Yamato, M.; Okano, T. “Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device”, Biomaterials. 2012, 33, 7405–7411.
  • Harada, I.; Yanagisawa, S.; Iwasaki, K.; Cho, C.S.; Akaike, T. “Local mechanical stimulation of mardin-darby canine kidney cell sheets on temperature-responsive hydrogel”, Int. J. Mol. Sci. 2012, 13, 1095–1108.
  • Yang, L.; Cheng, F.; Liu, T.; Lu, J.R.; Song, K.; Jiang, L.; Wu, S.; Guo, W. “Comparison of mesenchymal stem cells released from poly(N-isopropylacrylamide) copolymer film and by trypsinization”, Biomed. Mater. 2012, 7, 035003.
  • Kim, S.J.; Kim, W.I.; Yamato, M.; Okano, T.; Kikuchi, A.; Kwon, O.H. “Successive grafting of PHEMA and PIPAAm onto cell culture surface enables rapid cell sheet recovery”, Tissue Eng. Regen. Med. 2013, 10, 139–145.
  • Vukelja, S.J.; Anthony, S.P.; Arseneau, J.C.; Berman, B.S.; Cunningham, C.C.; Nemunaitis, J.J.; Samlowski, W.E.; Fowers, K.D. “Phase 1 study of escalating-dose OncoGel (ReGel/paclitaxel) depot injection, a controlled-release formulation of paclitaxel, for local management of superficial solid tumor lesions”, Anticancer Drugs. 2007, 18, 283–289.
  • DuVall, G.A.; Tarabar, D.; Seidel, R.H.; Elstad, N.L.; Fowers, K.D. “Phase 2: A dose-escalation study of OncoGel (ReGel/paclitaxel), a controlled-release formulation of paclitaxel, as adjunctive local therapy to external-beam radiation in patients with inoperable esophageal cancer”, Anticancer Drugs. 2009, 20, 89–95.
  • Lidar, Z.; Mardor, Y.; Jonas, T.; Pfeffer, R.; Faibel, M.; Nass, D.; Hadani, M.; Ram, Z. “Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: A phase I/II clinical study”, J. Neurosurg. 2004, 100, 472–479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.