1,769
Views
99
CrossRef citations to date
0
Altmetric
Perspective

Natural and Synthetic Polymers as Drug Carriers for Delivery of Therapeutic Proteins

, &
Pages 371-406 | Received 20 Jul 2014, Accepted 02 Dec 2014, Published online: 24 Jun 2015

References

  • Degim, I. T.; Celebi, N. “Controlled delivery of peptides and proteins”, Curr. Pharm. Des. 2007, 13, 99–117.
  • Torchilin, V. “Intracellular delivery of protein and peptide therapeutics”, Drug Discovery Today: Technologies. 2008, 5, e95-e103.
  • Oak, M.; Mandke, R.; Layek, B.; Sharma, G.; Singh, J. “Controlled-Release Systems for Biologics”. In Pharmaceutical Sciences Encyclopedia: Drug Discovery, Development, and Manufacturing; Gad, S. C., ed.; John Wiley & Sons, Inc., 2010, pp 1–22.
  • Oh, W.-K.; Kwon, O. S.; Jang, J. “Conducting polymer nanomaterials for biomedical applications: Cellular interfacing and biosensing”, Polym. Rev. 2013, 53, 407–442.
  • Francis, R.; Joy, N.; Aparna, E.; Vijayan, R. “Polymer grafted inorganic nanoparticles, preparation, properties, and applications: A review”, Polym. Rev. 2014, 54, 268–347.
  • Sinha, V. R.; Trehan, A. “Biodegradable microspheres for protein delivery”, J. Control. Release. 2003, 90, 261–280.
  • Bertrand, N.; Leroux, J. C. “The journey of a drug-carrier in the body: an anatomo-physiological perspective”, J. Control. Release. 2012, 161, 152–163.
  • George, M.; Abraham, T. E. “Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan: A review”, J. Control. Release. 2006, 114, 1–14.
  • Dang, J. M.; Leong, K. W. “Natural polymers for gene delivery and tissue engineering”, Adv. Drug Deliv. Rev. 2006, 58, 487–499.
  • Lu, R.; Yoshida, T.; Miyakoshi, T. “Oriental lacquer: A natural polymer”, Polym. Rev. 2013, 53, 153–191.
  • Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. “Polysaccharides-based nanoparticles as drug delivery systems”, Adv. Drug Deliv. Rev. 2008, 60, 1650–1662.
  • SonamChaudhary, AroraH, KholiV., KumarK., V. “Effect of physicochemical properties of biodegradable polymers on nano drug delivery”, Polym. Rev. 2013, 53, 546–567.
  • Zhang, N.; Wardwell, P. R.; Bader, R. A. “Polysaccharide-based micelles for drug delivery”, Pharmaceutics. 2013, 5, 329–352.
  • Lee, J. W.; Park, J. H.; Robinson, J. R. “Bioadhesive-based dosage forms: the next generation”, J. Pharm. Sci. 2000, 89, 850–866.
  • Smart, J. D. “The basics and underlying mechanisms of mucoadhesion”, Adv. Drug Deliv. Rev. 2005, 57, 1556–1568.
  • Chung, S. W.; Hil-lal, T. A.; Byun, Y. “Strategies for non-invasive delivery of biologics”, J. Drug Target. 2012, 20, 481–501.
  • Kean, T.; Thanou, M. “Biodegradation, biodistribution and toxicity of chitosan”, Adv. Drug Deliv. Rev. 2010, 62, 3–11.
  • Thanou, M.; Verhoef, J. C.; Junginger, H. E. “Chitosan and its derivatives as intestinal absorption enhancers”, Adv. Drug Deliv. Rev. 2001, 50, S91–101.
  • Cano-Cebrian, M. J.; Zornoza, T.; Granero, L.; Polache, A. “Intestinal absorption enhancement via the paracellular route by fatty acids, chitosans and others: A target for drug delivery”, Curr Drug Deliv. 2005, 2, 9–22.
  • Smith, J.; Wood, E.; Dornish, M. “Effect of chitosan on epithelial cell tight junctions”, Pharm. Res. 2004, 21, 43–49.
  • Bravo-Osuna, I.; Vauthier, C.; Farabollini, A.; Palmieri, G. F.; Ponchel, G. “Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles”, Biomaterials. 2007, 28, 2233–2243.
  • Sandri, G.; Bonferoni, M. C.; Rossi, S.; Ferrari, F.; Gibin, S.; Zambito, Y.; Di Colo, G.; Caramella, C. “Nanoparticles based on N-trimethylchitosan: Evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models”, Eur. J. Pharm. Biopharm. 2007, 65, 68–77.
  • Lin, Y. H.; Sonaje, K.; Lin, K. M.; Juang, J. H.; Mi, F. L.; Yang, H. W.; Sung, H. W. “Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs”, J. Control. Release. 2008, 132, 141–149.
  • Sonaje, K.; Chen, Y. J.; Chen, H. L.; Wey, S. P.; Juang, J. H.; Nguyen, H. N.; Hsu, C. W.; Lin, K. J.; Sung, H. W. “Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery”, Biomaterials. 2010, 31, 3384–3394.
  • Zhang, Y.; Wei, W.; Lv, P.; Wang, L.; Ma, G. “Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin”, Eur. J. Pharm. Biopharm. 2011, 77, 11–19.
  • Makhlof, A.; Fujimoto, S.; Tozuka, Y.; Takeuchi, H. “In vitro and in vivo evaluation of WGA-carbopol modified liposomes as carriers for oral peptide delivery”, Eur. J. Pharm. Biopharm. 2011, 77, 216–224.
  • Sonaje, K.; Lin, Y. H.; Juang, J. H.; Wey, S. P.; Chen, C. T.; Sung, H. W. “In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery”, Biomaterials. 2009, 30, 2329–2339.
  • Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W. E. “Chitosan-based delivery systems for protein therapeutics and antigens”, Adv. Drug Deliv. Rev. 2010, 62, 59–82.
  • Mi, F. L.; Wu, Y. Y.; Lin, Y. H.; Sonaje, K.; Ho, Y. C.; Chen, C. T.; Juang, J. H.; Sung, H. W. “Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation”, Bioconjug. Chem. 2008, 19, 1248–1255.
  • Yin, L.; Ding, J.; He, C.; Cui, L.; Tang, C.; Yin, C. “Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery”, Biomaterials. 2009, 30, 5691–5700.
  • Paliwal, R.; Paliwal, S. R.; Agrawal, G. P.; Vyas, S. P. “Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: In vitro and in vivo evaluation”, Int. J. Pharm. 2012, 422, 179–184.
  • Hamman, J. H.; Stander, M.; Kotze, A. F. “Effect of the degree of quaternisation of N-trimethyl chitosan chloride on absorption enhancement: In vivo evaluation in rat nasal epithelia”, Int. J. Pharm. 2002, 232, 235–242.
  • Di Colo, G.; Burgalassi, S.; Zambito, Y.; Monti, D.; Chetoni, P. “Effects of different N-trimethyl chitosans on in vitro/in vivo ofloxacin transcorneal permeation”, J. Pharm. Sci. 2004, 93, 2851–2862.
  • Lee, E.; Lee, J.; Jon, S. “A novel approach to oral delivery of insulin by conjugating with low molecular weight chitosan”, Bioconjug. Chem. 2010, 21, 1720–1723.
  • Chae, S. Y.; Jang, M. K.; Nah, J. W. “Influence of molecular weight on oral absorption of water soluble chitosans”, J. Control. Release. 2005, 102, 383–394.
  • Lee, E.; Lee, J.; Lee, I. H.; Yu, M.; Kim, H.; Chae, S. Y.; Jon, S. “Conjugated chitosan as a novel platform for oral delivery of paclitaxel”, J. Med. Chem. 2008, 51, 6442–6449.
  • Bernkop-Schnurch, A. “Thiomers: A new generation of mucoadhesive polymers”, Adv. Drug Deliv. Rev. 2005, 57, 1569–1582.
  • Dunnhaupt, S.; Barthelmes, J.; Hombach, J.; Sakloetsakun, D.; Arkhipova, V.; Bernkop-Schnurch, A. “Distribution of thiolated mucoadhesive nanoparticles on intestinal mucosa”, Int. J. Pharm. 2011, 408, 191–199.
  • Sajeesh, S.; Vauthier, C.; Gueutin, C.; Ponchel, G.; Sharma, C. P. “Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery”, Acta Biomater. 2010, 6, 3072–3080.
  • Bernkop-Schnurch, A.; Hornof, M.; Guggi, D. “Thiolated chitosans”, Eur. J. Pharm. Biopharm. 2004, 57, 9–17.
  • Foger, F.; Schmitz, T.; Bernkop-Schnurch, A. “In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan”, Biomaterials. 2006, 27, 4250–4255.
  • Bhattarai, N.; Matsen, F. A.; Zhang, M. “PEG-grafted chitosan as an injectable thermoreversible hydrogel”, Macromol. Biosci. 2005, 5, 107–111.
  • Bhattarai, N.; Ramay, H. R.; Gunn, J.; Matsen, F. A.; Zhang, M. “PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release”, J. Control. Release. 2005, 103, 609–624.
  • Yoo, H. S. “Photo-cross-linkable and thermo-responsive hydrogels containing chitosan and Pluronic for sustained release of human growth hormone (hGH)”, J. Biomater. Sci. Polym. Ed. 2007, 18, 1429–1441.
  • Van Tomme, S. R.; Hennink, W. E. “Biodegradable dextran hydrogels for protein delivery applications”, Expert Rev. Med. Devices. 2007, 4, 147–164.
  • Mehvar, R. “Dextrans for targeted and sustained delivery of therapeutic and imaging agents”, J. Control. Release. 2000, 69, 1–25.
  • Cadee, J. A.; de Groot, C. J.; Jiskoot, W.; den Otter, W.; Hennink, W. E. “Release of recombinant human interleukin-2 from dextran-based hydrogels”, J. Control. Release. 2002, 78, 1–13.
  • De Groot, C. J.; Cadee, J. A.; Koten, J. W.; Hennink, W. E.; Den Otter, W. “Therapeutic efficacy of IL-2-loaded hydrogels in a mouse tumor model”, Int. J. Cancer. 2002, 98, 134–140.
  • Sarmento, B.; Ribeiro, A.; Veiga, F.; Ferreira, D. “Development and characterization of new insulin containing polysaccharide nanoparticles”, Colloids Surf. B Biointerfaces. 2006, 53, 193–202.
  • Tanna, S.; Joan Taylor, M.; Sahota, T. S.; Sawicka, K. “Glucose-responsive UV polymerised dextran-concanavalin A acrylic derivatised mixtures for closed-loop insulin delivery”, Biomaterials. 2006, 27, 1586–1597.
  • Tanna, S.; Sahota, T. S.; Sawicka, K.; Taylor, M. J. “The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery”, Biomaterials. 2006, 27, 4498–4507.
  • Ferreira, L.; Gil, M. H.; Cabrita, A. M.; Dordick, J. S. “Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels”, Biomaterials. 2005, 26, 4707–4716.
  • Maire, M.; Chaubet, F.; Mary, P.; Blanchat, C.; Meunier, A.; Logeart-Avramoglou, D. “Bovine BMP osteoinductive potential enhanced by functionalized dextran-derived hydrogels”, Biomaterials. 2005, 26, 5085–5092.
  • Maire, M.; Logeart-Avramoglou, D.; Degat, M. C.; Chaubet, F. “Retention of transforming growth factor beta1 using functionalized dextran-based hydrogels”, Biomaterials. 2005, 26, 1771–1780.
  • Challa, R.; Ahuja, A.; Ali, J.; Khar, R. K. “Cyclodextrins in drug delivery: An updated review”, AAPS PharmSciTech. 2005, 6, E329–357.
  • Kanwar, J. R.; Long, B. M.; Kanwar, R. K. “The use of cyclodextrins nanoparticles for oral delivery”, Curr. Med. Chem. 2011, 18, 2079–2085.
  • Li, J.; Yang, C.; Li, H.; Wang, X.; Goh, S. H.; Ding, J. L.; Wang, D. Y.; Leong, K. W. “Cationic supramolecules composed of multiple oligoethylenimine-grafted β-cyclodextrins threaded on a polymer chain for efficient gene delivery”, Adv. Mater. 2006, 18, 2969–2974.
  • Brewster, M. E.; Loftsson, T. “Cyclodextrins as pharmaceutical solubilizers”, Adv. Drug Deliv. Rev. 2007, 59, 645–666.
  • Irie, T.; Uekama, K. “Cyclodextrins in peptide and protein delivery”, Adv. Drug Deliv. Rev. 1999, 36, 101–123.
  • Jerry, N.; Anitha, Y.; Sharma, C. P.; Sony, P. “In vivo absorption studies of insulin from an oral delivery system”, Drug Deliv. 2001, 8, 19–23.
  • Li, J.; Li, X.; Ni, X.; Wang, X.; Li, H.; Leong, K. W. “Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery”, Biomaterials. 2006, 27, 4132–4140.
  • Jessel, N.; Oulad-Abdelghani, M.; Meyer, F.; Lavalle, P.; Haikel, Y.; Schaaf, P.; Voegel, J. C. “Multiple and time-scheduled in situ DNA delivery mediated by beta-cyclodextrin embedded in a polyelectrolyte multilayer”, Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8618–8621.
  • Li, J.; Loh, X. J. “Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery”, Adv. Drug Deliv. Rev. 2008, 60, 1000–1017.
  • Gombotz, W. R.; Wee, S. F. “Protein release from alginate matrices”, Adv. Drug Deliv. Rev. 2012, 64, 194–205.
  • Woitiski, C. B.; Sarmento, B.; Carvalho, R. A.; Neufeld, R. J.; Veiga, F. “Facilitated nanoscale delivery of insulin across intestinal membrane models”, Int. J. Pharm. 2011, 412, 123–131.
  • Gu, F.; Amsden, B.; Neufeld, R. “Sustained delivery of vascular endothelial growth factor with alginate beads”, J. Control. Release. 2004, 96, 463–472.
  • Chen, S. C.; Wu, Y. C.; Mi, F. L.; Lin, Y. H.; Yu, L. C.; Sung, H. W. “A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery”, J. Control. Release. 2004, 96, 285–300.
  • Keshaw, H.; Forbes, A.; Day, R. M. “Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass”, Biomaterials. 2005, 26, 4171–4179.
  • Dai, C.; Wang, B.; Zhao, H.; Li, B.; Wang, J. “Preparation and characterization of liposomes-in-alginate (LIA) for protein delivery system”, Colloids Surf. B Biointerfaces. 2006, 47, 205–210.
  • Ruvinov, E.; Leor, J.; Cohen, S. “The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model”, Biomaterials. 2010, 31, 4573–4582.
  • Liu, L.; Fishman, M. L.; Hicks, K. B.; Kende, M. “Interaction of various pectin formulations with porcine colonic tissues”, Biomaterials. 2005, 26, 5907–5916.
  • Thirawong, N.; Nunthanid, J.; Puttipipatkhachorn, S.; Sriamornsak, P. “Mucoadhesive properties of various pectins on gastrointestinal mucosa: an in vitro evaluation using texture analyzer”, Eur. J. Pharm. Biopharm. 2007, 67, 132–140.
  • Liu, L.; Fishman, M. L.; Hicks, K. B. “Pectin in controlled drug delivery: A review”, Cellulose. 2007, 14, 15–24.
  • Watts, P.; Smith, A. “PecSys: In situ gelling system for optimised nasal drug delivery”, Expert Opin. Drug Deliv. 2009, 6, 543–552.
  • Morris, G. A.; Kök, S. M.; Harding, S. E.; Adams, G. G. “Polysaccharide drug delivery systems based on pectin and chitosan”, Biotechnol. Genet. Eng. Rev. 2010, 27, 257–284.
  • Liu, L.; Fishman, M. L.; Kost, J.; Hicks, K. B. “Pectin-based systems for colon-specific drug delivery via oral route”, Biomaterials. 2003, 24, 3333–3343.
  • Sriamornsak, P. “Application of pectin in oral drug delivery”, Expert Opin. Drug Deliv. 2011, 8, 1009–1023.
  • Munarin, F.; Tanzi, M. C.; Petrini, P. “Advances in biomedical applications of pectin gels”, Int. J. Biol. Macromol. 2012, 51, 681–689.
  • Maiti, S.; Ray, S.; Mandal, B.; Sarkar, S.; Sa, B. “Carboxymethyl xanthan microparticles as a carrier for protein delivery”, J. Microencapsul. 2007, 24, 743–756.
  • Shah, S. N.; Asghar, S.; Choudhry, M. A.; Akash, M. S. H.; ur Rehman, N.; Baksh, S. “Formulation and evaluation of natural gum-based sustained release matrix tablets of flurbiprofen using response surface methodology”, Drug Dev. Ind. Pharm. 2009, 35, 1470–1478.
  • Akash, M. S. H.; Iqbal, F.; Raza, M.; Rehman, K.; Ahmed, S.; Shahzad, Y.; Shah, S. “Characterization of ethylcellulose and hydroxypropyl methylcellulose microspheres for controlled release of Flurbiprofen”, J. Pharm. Drug Deliv. Res. 2013, 2, doi:10.4172/2325-9604.1000113.
  • Akash, M. S. H.; Khan, I.; Shah, S.; Asghar, S.; Massud, A.; Qadir, M.; Akbar, A. “Sustained release hydrophilic matrices based on xanthan gum and hydroxypropyl methylcellulose: Development, optimization, in vitro and in vivo evaluation”, J. App. Pharm. 2010, 4, 89–103.
  • Badwaik, H. R.; Giri, T. K.; Nakhate, K. T.; Kashyap, P.; Tripathi, D. K. “Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system”, Curr. Drug Deliv. 2013, 10, 587–600.
  • Maiti, S.; Ray, S.; Sa, B. “Controlled delivery of bovine serum albumin from carboxymethyl xanthan microparticles”, Pharm. Dev. Technol. 2009, 14, 165–172.
  • Maiti, S.; Ray, S.; Sa, B. “Effect of formulation variables on entrapment efficiency and release characteristics of bovine serum albumin from carboxymethyl xanthan microparticles”, Polym. Adv. Technol. 2008, 19, 922–927.
  • Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A. “Protein-based nanocarriers as promising drug and gene delivery systems”, J. Control. Release. 2012, 161, 38–49.
  • Kaul, G.; Amiji, M. “Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery”, Pharm. Res. 2002, 19, 1061–1067.
  • Kaul, G.; Amiji, M. “Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies”, Pharm. Res. 2005, 22, 951–961.
  • Romberg, B.; Hennink, W. E.; Storm, G. “Sheddable coatings for long-circulating nanoparticles”, Pharm. Res. 2008, 25, 55–71.
  • Winkler, S.; Kaplan, D. L. “Molecular biology of spider silk”, J. Biotechnol. 2000, 74, 85–93.
  • Wenk, E.; Merkle, H. P.; Meinel, L. “Silk fibroin as a vehicle for drug delivery applications”, J. Control. Release. 2011, 150, 128–141.
  • Massodi, I.; Bidwell, G. L., 3rd; Raucher, D. “Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery”, J. Control. Release. 2005, 108, 396–408.
  • Numata, K.; Hamasaki, J.; Subramanian, B.; Kaplan, D. L. “Gene delivery mediated by recombinant silk proteins containing cationic and cell binding motifs”, J. Control. Release. 2010, 146, 136–143.
  • Numata, K.; Kaplan, D. L. “Silk-based delivery systems of bioactive molecules”, Adv. Drug Deliv. Rev. 2010, 62, 1497–1508.
  • Numata, K.; Subramanian, B.; Currie, H. A.; Kaplan, D. L. “Bioengineered silk protein-based gene delivery systems”, Biomaterials. 2009, 30, 5775–5784.
  • Numata, K.; Kaplan, D. L. “Silk-based gene carriers with cell membrane destabilizing peptides”, Biomacromolecules. 2010, 11, 3189–3195.
  • Akash, M. S. H.; Rehman, K.; Chen, S. “IL-1Ra and its delivery strategies: Inserting the association in perspective”, Pharm. Res. 2013, 30, 2951–2966.
  • Martino, M.; Tamburro, A. M. “Chemical synthesis of cross-linked poly(KGGVG), an elastin-like biopolymer”, Biopolymers. 2001, 59, 29–37.
  • Martino, M.; Coviello, A.; Tamburro, A. M. “Synthesis and structural characterization of poly(LGGVG), an elastin-like polypeptide”, Int. J. Biol. Macromol. 2000, 27, 59–64.
  • Spezzacatena, C.; Perri, T.; Guantieri, V.; Sandberg, L. B.; Mitts, T. F.; Tamburro, A. M. “Classical synthesis of and structural studies on a biologically active heptapeptide and a nonapeptide of bovine elastin”, Eur. J. Org. Chem. 2002, 2002, 95–103.
  • Chow, D.; Nunalee, M. L.; Lim, D. W.; Simnick, A. J.; Chilkoti, A. “Peptide-based biopolymers in biomedicine and biotechnology”, Mater. Sci. Eng. R. Rep. 2008, 62, 125–155.
  • Betre, H.; Liu, W.; Zalutsky, M. R.; Chilkoti, A.; Kraus, V. B.; Setton, L. A. “A thermally responsive biopolymer for intra-articular drug delivery”, J. Control. Release. 2006, 115, 175–182.
  • Shamji, M. F.; Betre, H.; Kraus, V. B.; Chen, J.; Chilkoti, A.; Pichika, R.; Masuda, K.; Setton, L. A. “Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: Sustained release of a local antiinflammatory therapeutic”, Arthritis Rheum. 2007, 56, 3650–3661.
  • Kim, D. H.; Smith, J. T.; Chilkoti, A.; Reichert, W. M. “The effect of covalently immobilized rhIL-1ra-ELP fusion protein on the inflammatory profile of LPS-stimulated human monocytes”, Biomaterials. 2007, 28, 3369–3377.
  • Christensen, T.; Amiram, M.; Dagher, S.; Trabbic-Carlson, K.; Shamji, M. F.; Setton, L. A.; Chilkoti, A. “Fusion order controls expression level and activity of elastin-like polypeptide fusion proteins”, Protein Sci. 2009, 18, 1377–1387.
  • Klouda, L.; Mikos, A. G. “Thermoresponsive hydrogels in biomedical applications”, Eur. J. Pharm. Biopharm. 2008, 68, 34–45.
  • Yang, H.; Kao, W. J. “Thermoresponsive gelatin/monomethoxy poly(ethylene glycol)-poly(D,L-lactide) hydrogels: Formulation, characterization, and antibacterial drug delivery”, Pharm. Res. 2006, 23, 205–214.
  • Joly-Duhamel, C.; Hellio, D.; Djabourov, M. “All gelatin networks: 1. Biodiversity and physical chemistry”, Langmuir. 2002, 18, 7208–7217.
  • Gil, E. S.; Frankowski, D. J.; Spontak, R. J.; Hudson, S. M. “Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels”, Biomacromolecules. 2005, 6, 3079–3087.
  • Ohya, S.; Matsuda, T. “Poly (N-isopropylacrylamide)(PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: Molecular and formulation parameters vs. cell proliferation potential”, J. Biomater. Sci. Polym. Ed. 2005, 16, 809–827.
  • Magadala, P.; Amiji, M. “Epidermal growth factor receptor-targeted gelatin-based engineered nanocarriers for DNA delivery and transfection in human pancreatic cancer cells”, AAPS J. 2008, 10, 565–576.
  • Elzoghby, A. O. “Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research”, J. Control. Release. 2013, 172, 1075–1091.
  • Xu, J.; Singh, A.; Amiji, M. M. “Redox-responsive targeted gelatin nanoparticles for delivery of combination wt-p53 expressing plasmid DNA and gemcitabine in the treatment of pancreatic cancer”, BMC Cancer. 2014, 14, 75.
  • Lee, C. H.; Singla, A.; Lee, Y. “Biomedical applications of collagen”, Int. J. Pharm. 2001, 221, 1–22.
  • Maeda, M.; Kadota, K.; Kajihara, M.; Sano, A.; Fujioka, K. “Sustained release of human growth hormone (hGH) from collagen film and evaluation of effect on wound healing in db/db mice”, J. Control. Release. 2001, 77, 261–272.
  • Jahanshahi, M.; Babaei, Z. “Protein nanoparticle: A unique system as drug delivery vehicles”, Afr. J. Biotechnol. 2008, 7, 4926–4934.
  • Kratz, F. “Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles”, J. Control. Release. 2008, 132, 171–183.
  • Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A. “Albumin-based nanoparticles as potential controlled release drug delivery systems”, J. Control. Release. 2012, 157, 168–182.
  • Elsadek, B.; Kratz, F. “Impact of albumin on drug delivery: New applications on the horizon”, J. Control. Release. 2012, 157, 4–28.
  • Yu, S.; Yao, P.; Jiang, M.; Zhang, G. “Nanogels prepared by self-assembly of oppositely charged globular proteins”, Biopolymers. 2006, 83, 148–158.
  • Dreis, S.; Rothweiler, F.; Michaelis, M.; Cinatl, J., Jr.; Kreuter, J.; Langer, K. “Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles”, Int. J. Pharm. 2007, 341, 207–214.
  • Minko, T. “Drug targeting to the colon with lectins and neoglycoconjugates”, Adv. Drug Deliv. Rev. 2004, 56, 491–509.
  • Lehr, C. M. “Lectin-mediated drug delivery: The second generation of bioadhesives”, J. Control. Release. 2000, 65, 19–29.
  • Gabor, F.; Schwarzbauer, A.; Wirth, M. “Lectin-mediated drug delivery: Binding and uptake of BSA-WGA conjugates using the Caco-2 model”, Int. J. Pharm. 2002, 237, 227–239.
  • Harris, J. M.; Chess, R. B. “Effect of pegylation on pharmaceuticals”, Nat. Rev. Drug Discov. 2003, 2, 214–221.
  • Fishburn, C. S. “The pharmacology of PEGylation: Balancing PD with PK to generate novel therapeutics”, J. Pharm. Sci. 2008, 97, 4167–4183.
  • Bansal, R.; Post, E.; Proost, J. H.; de Jager-Krikken, A.; Poelstra, K.; Prakash, J. “PEGylation improves pharmacokinetic profile, liver uptake and efficacy of Interferon gamma in liver fibrosis”, J. Control. Release. 2011, 154, 233–240.
  • Palm, T.; Esfandiary, R.; Gandhi, R. “The effect of PEGylation on the stability of small therapeutic proteins”, Pharm. Dev. Technol. 2011, 16, 441–448.
  • Pfister, D.; Morbidelli, M. “Process for protein PEGylation”, J Control Release. 2014, 180C, 134–149.
  • Calceti, P.; Salmaso, S.; Walker, G.; Bernkop-Schnurch, A. “Development and in vivo evaluation of an oral insulin-PEG delivery system”, Eur. J. Pharm. Sci. 2004, 22, 315–323.
  • Hinds, K. D.; Campbell, K. M.; Holland, K. M.; Lewis, D. H.; Piche, C. A.; Schmidt, P. G. “PEGylated insulin in PLGA microparticles: In vivo and in vitro analysis”, J. Control. Release. 2005, 104, 447–460.
  • Dou, H.; Zhang, M.; Zhang, Y.; Yin, C. “Synthesis and purification of mono-PEGylated insulin”, Chem. Biol. Drug Des. 2007, 69, 132–138.
  • Gehrig, S. M.; van der Poel, C.; Hoeflich, A.; Naim, T.; Lynch, G. S.; Metzger, F. “Therapeutic potential of PEGylated insulin-like growth factor I for skeletal muscle disease evaluated in two murine models of muscular dystrophy”, Growth Horm. IGF Res. 2012, 22, 69–75.
  • Freitas Dda, S.; Spencer, P. J.; Vassao, R. C.; Abrahao-Neto, J. “Biochemical and biopharmaceutical properties of PEGylated uricase”, Int. J. Pharm. 2010, 387, 215–222.
  • Batra, J.; Robinson, J.; Mehner, C.; Hockla, A.; Miller, E.; Radisky, D. C.; Radisky, E. S. “PEGylation extends circulation half-life while preserving in vitro and in vivo activity of tissue inhibitor of metalloproteinases-1 (TIMP-1)”, PLoS One. 2012, 7, e50028.
  • da Silva Freitas, D.; Mero, A.; Pasut, G. “Chemical and enzymatic site specific PEGylation of hGH”, Bioconjug. Chem. 2013, 24, 456–463.
  • Qiu, H.; Boudanova, E.; Park, A.; Bird, J. J.; Honey, D. M.; Zarazinski, C.; Greene, B.; Kingsbury, J. S.; Boucher, S.; Pollock, J.; McPherson, J. M.; Pan, C. Q. “Site-specific PEGylation of human thyroid stimulating hormone to prolong duration of action”, Bioconjug. Chem. 2013, 24, 408–418.
  • Xue, X.; Li, D.; Yu, J.; Ma, G.; Su, Z.; Hu, T. “Phenyl linker-induced dense PEG conformation improves the efficacy of C-terminally monoPEGylated staphylokinase”, Biomacromolecules. 2013, 14, 331–341.
  • Lee, S.; Youn, Y. S.; Lee, S. H.; Byun, Y.; Lee, K. C. “PEGylated glucagon-like peptide-1 displays preserved effects on insulin release in isolated pancreatic islets and improved biological activity in db/db mice”, Diabetologia. 2006, 49, 1608–1611.
  • Lee, S. H.; Lee, S.; Youn, Y. S.; Na, D. H.; Chae, S. Y.; Byun, Y.; Lee, K. C. “Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like peptide-1”, Bioconjug. Chem. 2005, 16, 377–382.
  • Youn, Y. S.; Chae, S. Y.; Lee, S.; Jeon, J. E.; Shin, H. G.; Lee, K. C. “Evaluation of therapeutic potentials of site-specific PEGylated glucagon-like peptide-1 isomers as a type 2 anti-diabetic treatment: Insulinotropic activity, glucose-stabilizing capability, and proteolytic stability”, Biochem. Pharmacol. 2007, 73, 84–93.
  • Youn, Y. S.; Jeon, J. E.; Chae, S. Y.; Lee, S.; Lee, K. C. “PEGylation improves the hypoglycaemic efficacy of intranasally administered glucagon-like peptide-1 in type 2 diabetic db/db mice”, Diabetes Obes. Metab. 2008, 10, 343–346.
  • Chae, S. Y.; Jin, C. H.; Shin, H. J.; Youn, Y. S.; Lee, S.; Lee, K. C. “Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery”, Bioconjug. Chem. 2008, 19, 334–341.
  • Gong, N.; Ma, A. N.; Zhang, L. J.; Luo, X. S.; Zhang, Y. H.; Xu, M.; Wang, Y. X. “Site-specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity”, Br. J. Pharmacol. 2011, 163, 399–412.
  • Gong, C.; Qi, T.; Wei, X.; Qu, Y.; Wu, Q.; Luo, F.; Qian, Z. “Thermosensitive polymeric hydrogels as drug delivery systems”, Curr. Med. Chem. 2013, 20, 79–94.
  • Riley, T.; Stolnik, S.; Heald, C.; Xiong, C.; Garnett, M.; Illum, L.; Davis, S.; Purkiss, S.; Barlow, R.; Gellert, P. “Physicochemical evaluation of nanoparticles assembled from poly (lactic acid)-poly (ethylene glycol)(PLA-PEG) block copolymers as drug delivery vehicles”, Langmuir. 2001, 17, 3168–3174.
  • Vila, A.; Sanchez, A.; Evora, C.; Soriano, I.; Vila Jato, J. L.; Alonso, M. J. “PEG-PLA nanoparticles as carriers for nasal vaccine delivery”, J Aerosol Med. 2004, 17, 174–185.
  • Vila, A.; Sanchez, A.; Pérez, C.; Alonso, M. J. “PLA‐PEG nanospheres: New carriers for transmucosal delivery of proteins and plasmid DNA”, Polym. Adv. Technol. 2002, 13, 851–858.
  • Vila, A.; Sanchez, A.; Evora, C.; Soriano, I.; McCallion, O.; Alonso, M. J. “PLA-PEG particles as nasal protein carriers: The influence of the particle size”, Int. J. Pharm. 2005, 292, 43–52.
  • Mondrinos, M. J.; Dembzynski, R.; Lu, L.; Byrapogu, V. K.; Wootton, D. M.; Lelkes, P. I.; Zhou, J. “Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering”, Biomaterials. 2006, 27, 4399–4408.
  • Seregin, V. V.; Coffer, J. L. “Biomineralization of calcium disilicide in porous polycaprolactone scaffolds”, Biomaterials. 2006, 27, 4745–4754.
  • Chen, D.; Bei, J.; Wang, S. “Polycaprolactone microparticles and their biodegradation”, Polym. Degrad. Stab. 2000, 67, 455–459.
  • Moon, H. T.; Lee, Y. K.; Han, J. K.; Byun, Y. “Improved blood compatibility by sustained release of heparin-deoxycholic acid conjugates in a PCL-PEG multiblock copolymer matrix”, J. Biomater. Sci. Polym. Ed. 2002, 13, 817–828.
  • Huang, M. H.; Li, S.; Hutmacher, D. W.; Schantz, J. T.; Vacanti, C. A.; Braud, C.; Vert, M. “Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of epsilon-caprolactone in the presence of poly(ethylene glycol)”, J. Biomed. Mater. Res. A. 2004, 69, 417–427.
  • Hwang, M. J.; Suh, J. M.; Bae, Y. H.; Kim, S. W.; Jeong, B. “Caprolactonic poloxamer analog: PEG-PCL-PEG”, Biomacromolecules. 2005, 6, 885–890.
  • Gong, C. Y.; Wu, Q. J.; Dong, P. W.; Shi, S.; Fu, S. Z.; Guo, G.; Hu, H. Z.; Zhao, X.; Wei, Y. Q.; Qian, Z. Y. “Acute toxicity evaluation of biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PEG-PCL-PEG hydrogel”, J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91, 26–36.
  • Gong, C. Y.; Dong, P. W.; Shi, S.; Fu, S. Z.; Yang, J. L.; Guo, G.; Zhao, X.; Wei, Y. Q.; Qian, Z. Y. “Thermosensitive PEG-PCL-PEG hydrogel controlled drug delivery system: sol-gel-sol transition and in vitro drug release study”, J. Pharm. Sci. 2009, 98, 3707–3717.
  • Gong, C.; Shi, S.; Dong, P.; Kan, B.; Gou, M.; Wang, X.; Li, X.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. “Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel”, Int. J. Pharm. 2009, 365, 89–99.
  • Gong, C.; Qian, Z.; Liu, C.; Huang, M.; Gu, Y.; Wen, Y.; Kan, B.; Wang, K.; Dai, M.; Li, X. “A thermosensitive hydrogel based on biodegradable amphiphilic poly (ethylene glycol)–polycaprolactone–poly (ethylene glycol) block copolymers”, Smart Mater. struct. 2007, 16, 927–933.
  • Huynh, D. P.; Nguyen, M. K.; Pi, B. S.; Kim, M. S.; Chae, S. Y.; Lee, K. C.; Kim, B. S.; Kim, S. W.; Lee, D. S. “Functionalized injectable hydrogels for controlled insulin delivery”, Biomaterials. 2008, 29, 2527–2534.
  • Gong, C. Y.; Shi, S.; Peng, X. Y.; Kan, B.; Yang, L.; Huang, M. J.; Luo, F.; Zhao, X.; Wei, Y. Q.; Qian, Z. Y. “Biodegradable thermosensitive injectable PEG-PCL-PEG hydrogel for bFGF antigen delivery to improve humoral immunity”, Growth Factors. 2009, 27, 377–383.
  • Wu, Q. J.; Zhu, X. C.; Xiao, X.; Wang, P.; Xiong da, K.; Gong, C. Y.; Wang, Y. S.; Yang, L.; Wei, Y. Q. “A novel vaccine delivery system: Biodegradable nanoparticles in thermosensitive hydrogel”, Growth Factors. 2011, 29, 290–297.
  • Shi, H.-s.; Gong, C.-y.; Zhang, H.-l.; Wang, Y.-s.; Zhang, J.; Luo, Z.-c.; Qian, Z.-y.; Wei, Y.-q.; Yang, L. “Novel vaccine adjuvant LPS-Hydrogel for truncated basic fibroblast growth factor to induce antitumor immunity”, Carbohydr. Polym. 2012, 89, 1101–1109.
  • Yang, Y. Y.; Chung, T. S.; Ng, N. P. “Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method”, Biomaterials. 2001, 22, 231–241.
  • Makadia, H. K.; Siegel, S. J. “Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier”, Polymers (Basel). 2011, 3, 1377–1397.
  • Diwan, M.; Park, T. G. “Stabilization of recombinant interferon-alpha by pegylation for encapsulation in PLGA microspheres”, Int. J. Pharm. 2003, 252, 111–122.
  • Zheng, C. H.; Liang, W. Q.; Yu, H. Y.; Chen, H. L. “Evaluation of different methods to determine the loading of proteins in PLGA microspheres”, Pharmazie. 2004, 59, 232–233.
  • Bouissou, C.; Rouse, J. J.; Price, R.; van der Walle, C. F. “The influence of surfactant on PLGA microsphere glass transition and water sorption: Remodeling the surface morphology to attenuate the burst release”, Pharm. Res. 2006, 23, 1295–1305.
  • Kang, J.; Schwendeman, S. P. “Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(D,L-lactide-co-glycolide) implants”, Biomaterials. 2002, 23, 239–245.
  • Zheng, C. H.; Gao, J. Q.; Zhang, Y. P.; Liang, W. Q. “A protein delivery system: biodegradable alginate-chitosan-poly(lactic-co-glycolic acid) composite microspheres”, Biochem. Biophys. Res. Commun. 2004, 323, 1321–1327.
  • Li, Y.; Pei, Y.; Zhang, X.; Gu, Z.; Zhou, Z.; Yuan, W.; Zhou, J.; Zhu, J.; Gao, X. “PEGylated PLGA nanoparticles as protein carriers: Synthesis, preparation and biodistribution in rats”, J. Control. Release. 2001, 71, 203–211.
  • Cheng, J.; Teply, B. A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F. X.; Levy-Nissenbaum, E.; Radovic-Moreno, A. F.; Langer, R.; Farokhzad, O. C. “Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery”, Biomaterials. 2007, 28, 869–876.
  • Ghahremankhani, A. A.; Dorkoosh, F.; Dinarvand, R. “PLGA-PEG-PLGA tri-block copolymers as an in-situ gel forming system for calcitonin delivery”, Polym. Bull. 2007, 59, 637–646.
  • Jeong, B.; Bae, Y. H.; Kim, S. W. “In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof”, J. Biomed. Mater. Res. 2000, 50, 171–177.
  • Jeong, B.; Bae, Y. H.; Kim, S. W. “Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers”, J. Control. Release. 2000, 63, 155–163.
  • Jeong, B.; Choi, Y. K.; Bae, Y. H.; Zentner, G.; Kim, S. W. “New biodegradable polymers for injectable drug delivery systems”, J. Control. Release. 1999, 62, 109–114.
  • Jeong, B.; Kim, S. W.; Bae, Y. H. “Thermosensitive sol-gel reversible hydrogels”, Adv. Drug Deliv. Rev. 2002, 54, 37–51.
  • Yoo, H. S.; Park, T. G. “Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer”, J. Control. Release. 2001, 70, 63–70.
  • Zentner, G. M.; Rathi, R.; Shih, C.; McRea, J. C.; Seo, M. H.; Oh, H.; Rhee, B. G.; Mestecky, J.; Moldoveanu, Z.; Morgan, M.; Weitman, S. “Biodegradable block copolymers for delivery of proteins and water-insoluble drugs”, J. Control. Release. 2001, 72, 203–215.
  • Kim, Y. J.; Choi, S.; Koh, J. J.; Lee, M.; Ko, K. S.; Kim, S. W. “Controlled release of insulin from injectable biodegradable triblock copolymer”, Pharm. Res. 2001, 18, 548–550.
  • Lee, P. Y.; Li, Z.; Huang, L. “Thermosensitive hydrogel as a Tgf-beta1 gene delivery vehicle enhances diabetic wound healing”, Pharm. Res. 2003, 20, 1995–2000.
  • Chang, C. W.; Choi, D.; Kim, W. J.; Yockman, J. W.; Christensen, L. V.; Kim, Y. H.; Kim, S. W. “Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle”, J. Control. Release. 2007, 118, 245–253.
  • Yin, X.; Hoffman, A. S.; Stayton, P. S. “Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH”, Biomacromolecules. 2006, 7, 1381–1385.
  • Coughlan, D. C.; Quilty, F. P.; Corrigan, O. I. “Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels”, J. Control. Release. 2004, 98, 97–114.
  • Liu, Y. Y.; Shao, Y. H.; Lu, J. “Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels”, Biomaterials. 2006, 27, 4016–4024.
  • Nakayama, M.; Okano, T.; Miyazaki, T.; Kohori, F.; Sakai, K.; Yokoyama, M. “Molecular design of biodegradable polymeric micelles for temperature-responsive drug release”, J. Control. Release. 2006, 115, 46–56.
  • Uludag, H.; Norrie, B.; Kousinioris, N.; Gao, T. “Engineering temperature-sensitive poly(N-isopropylacrylamide) polymers as carriers of therapeutic proteins”, Biotechnol. Bioeng. 2001, 73, 510–521.
  • Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W. “Biodegradable block copolymers as injectable drug-delivery systems”, Nature. 1997, 388, 860–862.
  • Bromberg, L.; Levin, G. “Poly(amino acid)-b-poly(N,N-diethylacrylamide)-b-poly(amino acid) conjugates of well-defined structure”, Bioconjug. Chem. 1998, 9, 40–49.
  • Shubhra, Q. T.; Tóth, J.; Gyenis, J.; Feczkó, T. “Poloxamers for surface modification of hydrophobic drug carriers and their effects on drug delivery”, Polym. Rev. 2014, 54, 112–138.
  • Moulay, S. “Dopa/catechol-tethered polymers: Bioadhesives and biomimetic adhesive materials”, Polym. Rev. 2014, 54, 436–513.
  • Ahn, J. S.; Suh, J. M.; Lee, M.; Jeong, B. “Slow eroding biodegradable multiblock poloxamer copolymers”, Polym. Int. 2005, 54, 842–847.
  • Yu, L.; Zhang, Z.; Zhang, H.; Ding, J. “Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water”, Biomacromolecules. 2010, 11, 2169–2178.
  • Ward, M. A.; Georgiou, T. K. “Thermoresponsive polymers for biomedical applications”, Polymers. 2011, 3, 1215–1242.
  • Moreno, E.; Schwartz, J.; Larraneta, E.; Nguewa, P. A.; Sanmartin, C.; Agueros, M.; Irache, J. M.; Espuelas, S. “Thermosensitive hydrogels of poly(methyl vinyl ether-co-maleic anhydride) - Pluronic→ F127 copolymers for controlled protein release”, Int. J. Pharm. 2014, 459, 1–9.
  • Sosnik, A.; Cohn, D. “Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers”, Biomaterials. 2004, 25, 2851–2858.
  • Cheaburu, C. N.; Ciocoiu, O.-N.; Staikos, G.; Vasile, C. “Thermoresponsive sodium alginate-g-poly(N-isopropylacrylamide) copolymers III. Solution properties”, J. Appl. Polym. Sci. 2013, 127, 3340–3348.
  • Kabanov, A. V.; Alakhov, V. Y. “Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers”, Crit. Rev. Ther. Drug Carrier Syst. 2002, 19, 1–72.
  • Sosnik, A.; Sefton, M. V. “Semi-synthetic collagen/poloxamine matrices for tissue engineering”, Biomaterials. 2005, 26, 7425–7435.
  • Akash, M. S. H.; Rehman, K.; Sun, H.; Chen, S. “Assessment of release kinetics, stability and polymer interaction of poloxamer 407-based thermosensitive gel of interleukin-1 receptor antagonist”, Pharm. Dev. Technol. 2014, 19, 278–284.
  • Akash, M. S. H.; Rehman, K.; Li, N.; Gao, J.-Q.; Sun, H.; Chen, S. “Sustained delivery of IL-1Ra from pluronic F127-based thermosensitive gel prolongs its therapeutic potentials”, Pharm. Res. 2012, 29, 3475–3485.
  • Batrakova, E. V.; Li, S.; Li, Y.; Alakhov, V. Y.; Elmquist, W. F.; Kabanov, A. V. “Distribution kinetics of a micelle-forming block copolymer Pluronic P85”, J. Control. Release. 2004, 100, 389–397.
  • Akash, M. S. H.; Rehman, K.; Chen, S. “Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus”, J. Cell. Biochem. 2013, 114, 525–531.
  • Akash, M. S. H.; Shen, Q.; Rehman, K.; Chen, S. “Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus”, J. Pharm. Sci. 2012, 101, 1647–1658.
  • Akash, M. S. H.; Rehman, K.; Chen, S. “Effects of coffee on type 2 diabetes mellitus”, Nutrition. 2014, 30, 755–763.
  • Akash, M. S. H.; Rehman, K.; Chen, S. “Spice plant Allium cepa: dietary supplement for treatment of type 2 diabetes mellitus”, Nutrition. 2014, 30, 1128–1137.
  • Ehses, J. A.; Lacraz, G.; Giroix, M. H.; Schmidlin, F.; Coulaud, J.; Kassis, N.; Irminger, J. C.; Kergoat, M.; Portha, B.; Homo-Delarche, F.; Donath, M. Y. “IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat”, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 13998–14003.
  • Akash, M. S. H.; Rehman, K.; Sun, H.; Chen, S. “Interleukin-1 receptor antagonist improves normoglycemia and insulin sensitivity in diabetic Goto-Kakizaki-rats”, Eur. J. Pharmacol. 2013, 701, 87–95.
  • Akash, M. S. H.; Rehman, K.; Sun, H.; Chen, S. “Sustained delivery of IL-1Ra from PF127-gel reduces hyperglycemia in diabetic GK-rats”, PLoS One. 2013, 8, e55925.
  • Akash, M. S. H.; Rehman, K.; Chen, S. “Pluronic F127-based thermosensitive gels for delivery of therapeutic proteins and peptides”, Polym. Rev. 2014, 54, 573–597.
  • Wang, P. L.; Johnston, T. P. “Sustained-release interleukin-2 following intramuscular injection in rats”, Int. J. Pharm. 1995, 113, 73–81.
  • Liu, Y.; Lu, W. L.; Wang, J. C.; Zhang, X.; Zhang, H.; Wang, X. Q.; Zhou, T. Y.; Zhang, Q. “Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic F127 hydrogel for subcutaneous administration: In vitro and in vivo characterization”, J. Control. Release. 2007, 117, 387–395.
  • Barichello, J. M.; Morishita, M.; Takayama, K.; Nagai, T. “Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats”, Int. J. Pharm. 1999, 184, 189–198.
  • Wang, Y.; Gao, J.-Q.; Li, F.; Sang-Hon, R.; Liang, W.-Q. “Triblock copolymer Pluronic→ F127 sustains insulin release and reduces initial burst of microspheres: In vitro and in vivo study”, Colloid. Polym. Sci. 2006, 285, 233–238.
  • Nasir, F.; Iqbal, Z.; Khan, A.; Khan, J. A.; Khan, A.; Khuda, F.; Zakir, S.; Yousaf, N.; Khan, I.; Shah, Y.; Khan, M. I.; Shahbaz, N. “Development and evaluation of pluronic- and methylcellulose-based thermoreversible drug delivery system for insulin”, Drug Dev. Ind. Pharm. 2014, 40, 1503–1508.
  • Barichello, J. M.; Morishita, M.; Takayama, K.; Chiba, Y.; Tokiwa, S.; Nagai, T. “Enhanced rectal absorption of insulin-loaded Pluronic F-127 gels containing unsaturated fatty acids”, Int. J. Pharm. 1999, 183, 125–132.
  • Morishita, M.; Barichello, J. M.; Takayama, K.; Chiba, Y.; Tokiwa, S.; Nagai, T. “Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin”, Int. J. Pharm. 2001, 212, 289–293.
  • Das, N.; Madan, P.; Lin, S. “Development and in vitro evaluation of insulin-loaded buccal Pluronic F-127 gels”, Pharm. Dev. Technol. 2010, 15, 192–208.
  • Das, N.; Madan, P.; Lin, S. “Statistical optimization of insulin-loaded Pluronic F-127 gels for buccal delivery of basal insulin”, Pharm. Dev. Technol. 2012, 17, 363–374.
  • Pillai, O.; Panchagnula, R. “Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers”, J. Control. Release. 2003, 89, 127–140.
  • Wenzel, J. G.; Balaji, K. S.; Koushik, K.; Navarre, C.; Duran, S. H.; Rahe, C. H.; Kompella, U. B. “Pluronic F127 gel formulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle”, J. Control. Release. 2002, 85, 51–59.
  • Choi, J. S.; Yoo, H. S. “Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties”, J. Biomed. Mater. Res. A. 2010, 95, 564–573.
  • Katakam, M.; Ravis, W. R.; Banga, A. K. “Controlled release of human growth hormone in rats following parenteral administration of poloxamer gels”, J. Control. Release 1997, 49, 21–26.
  • Katakam, M.; Ravis, W. R.; Golden, D. L.; Banga, A. K. “Controlled release of human growth hormone following subcutaneous administration in dogs”, Int. J. Pharm. 1997, 152, 53–58.
  • Chung, H. J.; Lee, Y.; Park, T. G. “Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery”, J. Control. Release. 2008, 127, 22–30.
  • Kim, M. R.; Park, T. G. “Temperature-responsive and degradable hyaluronic acid/Pluronic composite hydrogels for controlled release of human growth hormone”, J. Control. Release. 2002, 80, 69–77.
  • Strappe, P. M.; Hampton, D. W.; Cachon-Gonzalez, B.; Fawcett, J. W.; Lever, A. “Delivery of a lentiviral vector in a Pluronic F127 gel to cells of the central nervous system”, Eur. J. Pharm. Biopharm. 2005, 61, 126–133.
  • Lemieux, P.; Guerin, N.; Paradis, G.; Proulx, R.; Chistyakova, L.; Kabanov, A.; Alakhov, V. “A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle”, Gene Ther. 2000, 7, 986–991.
  • Chun, K. W.; Lee, J. B.; Kim, S. H.; Park, T. G. “Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels”, Biomaterials. 2005, 26, 3319–3326.
  • Kustiawan, I.; Derksen, N. I.; Rispens, T. “Preventing adsorption of immunoglobulin G to solid surfaces using poloxamer 407 eliminates artifactual stimulation of neutrophils”, J. Immunol. Methods. 2013, 392, 49–56.
  • Todoroff, J.; Ucakar, B.; Inglese, M.; Vandermarliere, S.; Fillee, C.; Renauld, J. C.; Huygen, K.; Vanbever, R. “Targeting the deep lungs, Poloxamer 407 and a CpG oligonucleotide optimize immune responses to Mycobacterium tuberculosis antigen 85A following pulmonary delivery”, Eur. J. Pharm. Biopharm. 2013, 84, 40–48.
  • Westerink, M. A.; Smithson, S. L.; Srivastava, N.; Blonder, J.; Coeshott, C.; Rosenthal, G. J. “ProJuvant (Pluronic F127/chitosan) enhances the immune response to intranasally administered tetanus toxoid”, Vaccine. 2001, 20, 711–723.
  • Kang, M. L.; Jiang, H. L.; Kang, S. G.; Guo, D. D.; Lee, D. Y.; Cho, C. S.; Yoo, H. S. “Pluronic F127 enhances the effect as an adjuvant of chitosan microspheres in the intranasal delivery of Bordetella bronchiseptica antigens containing dermonecrotoxin”, Vaccine. 2007, 25, 4602–4610.
  • Coeshott, C. M.; Smithson, S. L.; Verderber, E.; Samaniego, A.; Blonder, J. M.; Rosenthal, G. J.; Westerink, M. A. “Pluronic F127-based systemic vaccine delivery systems”, Vaccine. 2004, 22, 2396–2405.
  • Pisal, S. S.; Paradkar, A. R.; Mahadik, K. R.; Kadam, S. S. “Pluronic gels for nasal delivery of Vitamin B12. Part I: Preformulation study”, Int. J. Pharm. 2004, 270, 37–45.
  • Lee, S. Y.; Tae, G. “Formulation and in vitro characterization of an in situ gelable, photo-polymerizable Pluronic hydrogel suitable for injection”, J. Control. Release. 2007, 119, 313–319.
  • Lee, S. Y.; Tae, G.; Kim, Y. H. “Thermal gellation and photo-polymerization of di-acrylated Pluronic F 127”, J. Biomater. Sci. Polym. Ed. 2007, 18, 1335–1353.
  • Niu, G.; Du, F.; Song, L.; Zhang, H.; Yang, J.; Cao, H.; Zheng, Y.; Yang, Z.; Wang, G.; Yang, H.; Zhu, S. “Synthesis and characterization of reactive poloxamer 407s for biomedical applications”, J. Control. Release. 2009, 138, 49–56.
  • Hsu, S. H.; Leu, Y. L.; Hu, J. W.; Fang, J. Y. “Physicochemical characterization and drug release of thermosensitive hydrogels composed of a hyaluronic acid/pluronic f127 graft”, Chem. Pharm. Bull. 2009, 57, 453–458.
  • Cohn, D.; Lando, G.; Sosnik, A.; Garty, S.; Levi, A. “PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers”, Biomaterials. 2006, 27, 1718–1727.
  • Liu, Y.; Zhu, Y. Y.; Wei, G.; Lu, W. Y. “Effect of carrageenan on poloxamer-based in situ gel for vaginal use: Improved in vitro and in vivo sustained-release properties”, Eur. J. Pharm. Sci. 2009, 37, 306–312.
  • Kavimandan, N. J.; Losi, E.; Peppas, N. A. “Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates”, Biomaterials. 2006, 27, 3846–3854.
  • Chalasani, K. B.; Russell-Jones, G. J.; Jain, A. K.; Diwan, P. V.; Jain, S. K. “Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles”, J. Control. Release. 2007, 122, 141–150.
  • Frandsen, J. L.; Ghandehari, H. “Recombinant protein-based polymers for advanced drug delivery”, Chem. Soc. Rev. 2012, 41, 2696–2706.
  • Meyer, D. E.; Chilkoti, A. “Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system”, Biomacromolecules. 2002, 3, 357–367.
  • Johnson, J. A.; Lu, Y. Y.; Van Deventer, J. A.; Tirrell, D. A. “Residue-specific incorporation of non-canonical amino acids into proteins: Recent developments and applications”, Curr. Opin. Chem. Biol. 2010, 14, 774–780.
  • Haider, M.; Megeed, Z.; Ghandehari, H. “Genetically engineered polymers: status and prospects for controlled release”, J. Control. Release. 2004, 95, 1–26.
  • Kaufmann, D.; Weberskirch, R. “Efficient synthesis of protein-drug conjugates using a functionalizable recombinant elastin-mimetic polypeptide”, Macromol. Biosci. 2006, 6, 952–958.
  • Chen, Y.; Yuan, L.; Zhou, L.; Zhang, Z. H.; Cao, W.; Wu, Q. “Effect of cell-penetrating peptide-coated nanostructured lipid carriers on the oral absorption of tripterine”, Int. J. Nanomedicine. 2012, 7, 4581–4591.
  • Khafagy el, S.; Morishita, M. “Oral biodrug delivery using cell-penetrating peptide”, Adv. Drug Deliv. Rev. 2012, 64, 531–539.
  • Koren, E.; Torchilin, V. P. “Cell-penetrating peptides: Breaking through to the other side”, Trends Mol. Med. 2012, 18, 385–393.
  • Kamei, N.; Morishita, M.; Chiba, H.; Kavimandan, N. J.; Peppas, N. A.; Takayama, K. “Complexation hydrogels for intestinal delivery of interferon beta and calcitonin”, J. Control. Release. 2009, 134, 98–102.
  • Kamei, N.; Morishita, M.; Eda, Y.; Ida, N.; Nishio, R.; Takayama, K. “Usefulness of cell-penetrating peptides to improve intestinal insulin absorption”, J. Control. Release. 2008, 132, 21–25.
  • Kamei, N.; Morishita, M.; Takayama, K. “Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides”, J. Control. Release. 2009, 136, 179–186.
  • Khafagy el, S.; Morishita, M.; Kamei, N.; Eda, Y.; Ikeno, Y.; Takayama, K. “Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins”, Int. J. Pharm. 2009, 381, 49–55.
  • Trehin, R.; Merkle, H. P. “Chances and pitfalls of cell penetrating peptides for cellular drug delivery”, Eur. J. Pharm. Biopharm. 2004, 58, 209–223.
  • Zorko, M.; Langel, U. “Cell-penetrating peptides: Mechanism and kinetics of cargo delivery”, Adv. Drug Deliv. Rev. 2005, 57, 529–545.
  • Liang, J. F.; Yang, V. C. “Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency”, Biochem. Biophys. Res. Commun. 2005, 335, 734–738.
  • Torchilin, V. P.; Levchenko, T. S.; Rammohan, R.; Volodina, N.; Papahadjopoulos-Sternberg, B.; D'Souza, G. G. “Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes”, Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 1972–1977.
  • Kleemann, E.; Neu, M.; Jekel, N.; Fink, L.; Schmehl, T.; Gessler, T.; Seeger, W.; Kissel, T. “Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI”, J. Control. Release. 2005, 109, 299–316.
  • Morishita, M.; Kamei, N.; Ehara, J.; Isowa, K.; Takayama, K. “A novel approach using functional peptides for efficient intestinal absorption of insulin”, J. Control. Release. 2007, 118, 177–184.
  • Widera, A.; Kim, K. J.; Crandall, E. D.; Shen, W. C. “Transcytosis of GCSF-transferrin across rat alveolar epithelial cell monolayers”, Pharm. Res. 2003, 20, 1231–1238.
  • Xia, C. Q.; Wang, J.; Shen, W. C. “Hypoglycemic effect of insulin-transferrin conjugate in streptozotocin-induced diabetic rats”, J. Pharmacol. Exp. Ther. 2000, 295, 594–600.
  • Amet, N.; Wang, W.; Shen, W. C. “Human growth hormone-transferrin fusion protein for oral delivery in hypophysectomized rats”, J. Control. Release. 2010, 141, 177–182.
  • Haider, M.; Leung, V.; Ferrari, F.; Crissman, J.; Powell, J.; Cappello, J.; Ghandehari, H. “Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: Biosynthesis and characterization”, Mol. Pharm. 2005, 2, 139–150.
  • Gustafson, J. A.; Ghandehari, H. “Silk-elastinlike protein polymers for matrix-mediated cancer gene therapy”, Adv. Drug Deliv. Rev. 2010, 62, 1509–1523.
  • Gustafson, J. A.; Price, R. A.; Greish, K.; Cappello, J.; Ghandehari, H. “Silk-elastin-like hydrogel improves the safety of adenovirus-mediated gene-directed enzyme-prodrug therapy”, Mol. Pharm. 2010, 7, 1050–1056.
  • Hwang, D.; Moolchandani, V.; Dandu, R.; Haider, M.; Cappello, J.; Ghandehari, H. “Influence of polymer structure and biodegradation on DNA release from silk-elastinlike protein polymer hydrogels”, Int. J. Pharm. 2009, 368, 215–219.
  • Gustafson, J.; Greish, K.; Frandsen, J.; Cappello, J.; Ghandehari, H. “Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: from molecular definition to controlled gene expression”, J. Control. Release. 2009, 140, 256–261.
  • Greish, K.; Frandsen, J.; Scharff, S.; Gustafson, J.; Cappello, J.; Li, D.; O'Malley, B. W., Jr.; Ghandehari, H. “Silk-elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors”, J. Gene Med. 2010, 12, 572–579.
  • Dinerman, A. A.; Cappello, J.; Ghandehari, H.; Hoag, S. W. “Solute diffusion in genetically engineered silk-elastinlike protein polymer hydrogels”, J. Control. Release. 2002, 82, 277–287.
  • Dinerman, A. A.; Cappello, J.; El-Sayed, M.; Hoag, S. W.; Ghandehari, H. “Influence of solute charge and hydrophobicity on partitioning and diffusion in a genetically engineered silk-elastin-like protein polymer hydrogel”, Macromol. Biosci. 2010, 10, 1235–1247.
  • Tae, G.; Choi, W.; Kim, J. Y.; “Temperature-sensitive nano-carriers”, Google Patents, 2009.
  • Alconcel, S. N.; Baas, A. S.; Maynard, H. D. “FDA-approved poly (ethylene glycol)–protein conjugate drugs”, Polym. Chem. 2011, 2, 1442–1448.
  • Domb, A. J.; Kumar, N. Biodegradable Polymers in Clinical Use and Clinical Development; Wiley: NJ, 2011.
  • Vega-Villa, K. R.; Takemoto, J. K.; Yanez, J. A.; Remsberg, C. M.; Forrest, M. L.; Davies, N. M. “Clinical toxicities of nanocarrier systems”, Adv Drug Deliv Rev. 2008, 60, 929–938.
  • Linkov, I.; Satterstrom, F. K.; Corey, L. M. “Nanotoxicology and nanomedicine: Making hard decisions”, Nanomedicine. 2008, 4, 167–171.
  • Aillon, K. L.; Xie, Y.; El-Gendy, N.; Berkland, C. J.; Forrest, M. L. “Effects of nanomaterial physicochemical properties on in vivo toxicity”, Adv. Drug Deliv. Rev. 2009, 61, 457–466.
  • Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. “Understanding biophysicochemical interactions at the nano-bio interface”, Nat. Mater. 2009, 8, 543–557.
  • Garnett, M. C.; Kallinteri, P. “Nanomedicines and nanotoxicology: Some physiological principles”, Occup. Med. 2006, 56, 307–311.
  • Narayanan, D.; Gopikrishna, J.; Nair, S. V.; Menon, D. In Proteins and Carbohydrates as Polymeric Nanodrug Delivery Systems: Formulation, Properties, and Toxicological Evaluation; Springer: NY, 2013, pp. 241–267.
  • Green, M. R.; Manikhas, G. M.; Orlov, S.; Afanasyev, B.; Makhson, A. M.; Bhar, P.; Hawkins, M. J. “Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer”, Ann. Oncol. 2006, 17, 1263–1268.
  • Mayer, A.; Vadon, M.; Rinner, B.; Novak, A.; Wintersteiger, R.; Frohlich, E. “The role of nanoparticle size in hemocompatibility”, Toxicology. 2009, 258, 139–147.
  • Chou, T. C.; Fu, E.; Wu, C. J.; Yeh, J. H. “Chitosan enhances platelet adhesion and aggregation”, Biochem. Biophys. Res. Commun. 2003, 302, 480–483.
  • Lee, D.-W.; Powers, K.; Baney, R. “Physicochemical properties and blood compatibility of acylated chitosan nanoparticles”, Carbohydr. Polym. 2004, 58, 371–377.
  • Prego, C.; Torres, D.; Fernandez-Megia, E.; Novoa-Carballal, R.; Quinoa, E.; Alonso, M. J. “Chitosan-PEG nanocapsules as new carriers for oral peptide delivery: Effect of chitosan pegylation degree”, J. Control. Release. 2006, 111, 299–308.
  • Sagnella, S.; Mai-Ngam, K. “Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials”, Colloids Surf. B Biointerfaces. 2005, 42, 147–155.
  • Mao, C.; Qiu, Y.; Sang, H.; Mei, H.; Zhu, A.; Shen, J.; Lin, S. “Various approaches to modify biomaterial surfaces for improving hemocompatibility”, Adv. Colloid. Interface Sci. 2004, 110, 5–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.