1,424
Views
63
CrossRef citations to date
0
Altmetric
REVIEWS

A Review on Extracellular Matrix Mimicking Strategies for an Artificial Stem Cell Niche

&
Pages 561-595 | Received 30 Jul 2014, Accepted 08 Apr 2015, Published online: 26 Aug 2015

References

  • Williams, D. F. “To engineer is to create: The link between engineering and regeneration”, Trends Biotechnol 2006, 24, 4–8.
  • Abouna, G. M. “Organ shortage crisis: Problems and possible solutions”, Transplant Proc 2008, 40, 34–38.
  • Triffitt, J. T. “Stem cells and the philosopher's stone”, J Cell Biochem 2002, 85, 13–19.
  • Watt, F. M.; Driskell, R. R. “The therapeutic potential of stem cells”, Philosophical Transactions of the Royal Society B: Biological Sciences 2010, 365, 155–163.
  • Bongso, A.; Lee, E. H. Stem cells: Their definition, classification and sources. In Stem Cells - From Bench to Bedside; Bongso, A.; Lee, E. H., Eds.; World Scientific: Singapore, 2005.
  • Marcus, A. J.; Woodbury, D. “Fetal stem cells from extra-embryonic tissues: Do not discard”, J Cell Mol Med 2008, 12, 730–742.
  • Abdulrazzak, H.; Moschidou, D.; Jones, G.; Guillot, P. V. “Biological characteristics of stem cells from fetal, chord blood and extraembryonic tissues”, J R Soc Interface 2010, 7(Suppl 6), S689–706.
  • Takahashi, K.; Yamanaka, S. “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors”, Cell 2006, 126, 663–676.
  • Fox, I. J.; Daley, G. Q.; Goldman, S. A.; Huard, J.; Kamp, T. J.; Trucco, M. “Stem cell therapy: Use of differentiated pluripotent stem cells as replacement therapy for treating disease”, Science 2014, 345, 1247391.
  • Roobrouck, V. D.; Ulloa-Montoya, F.; Verfaillie, C. M. “Self-renewal and differentiation capacity of young and aged stem cells”, Exp Cell Res 2008, 314, 1937–1944.
  • Kingham, E.; Oreffo, R. O. “Embryonic and induced pluripotent stem cells: Understanding, creating, and exploiting the nano-niche for regenerative medicine”, ACS Nano 2013, 7, 1867–1881.
  • Jones, D. L.; Wagers, A. J. “No place like home: Anatomy and function of the stem cell niche”, Nat Rev Mol Cell Biol 2008, 9, 11–21.
  • Spradling, A.; Drummond-Barbosa, D.; Kai, T. “Stem cells find their niche”, Nature 2001, 414, 98–104.
  • Li, L.; Xie, T. “Stem cell niche: Structure and function”, Annu Rev Cell Dev Biol 2005, 21, 605–631.
  • Lane, S. W.; Williams, D. A.; Watt, F. M. “Modulating the stem cell niche for tissue regeneration”, Nat Biotech 2014, 32, 795–803.
  • Lutolf, M. P.; Gilbert, P. M.; Blau, H. M. “Designing materials to direct stem-cell fate”, Nature 2009, 462, 433–441.
  • Daley, W. P.; Peters, S. B.; Larsen, M. “Extracellular matrix dynamics in development and regenerative medicine”, J Cell Sci 2008, 121, 255–264.
  • Watt, F. M.; Huck, W. T. “Role of the extracellular matrix in regulating stem cell fate”, Nat Rev Mol Cell Biol 2013, 14, 467–473.
  • Discher, D. E.; Mooney, D. J.; Zandstra, P. W. “Growth factors, matrices, and forces combine and control stem cells”, Science 2009, 324, 1673–1677.
  • Xie, T.; Spradling, A. C. “A niche maintaining germ line stem cells in the Drosophila ovary”, Science 2000, 290, 328–330.
  • Calvi, L. M.; Adams, G. B.; Weibrecht, K. W.; Weber, J. M.; Olson, D. P.; Knight, M. C.; Martin, R. P.; Schipani, E.; Divieti, P.; Bringhurst, F. R.; Milner, L. A.; Kronenberg, H. M.; Scadden, D. T. “Osteoblastic cells regulate the haematopoietic stem cell niche”, Nature 2003, 425, 841–846.
  • Shahriyari, L.; Komarova, N. L. “Symmetric vs. asymmetric stem cell divisions: An adaptation against cancer?”, PLoS ONE 2013, 8, e76195.
  • Morrison, S. J.; Kimble, J. “Asymmetric and symmetric stem-cell divisions in development and cancer”, Nature 2006, 441, 1068–1074.
  • Hauschka, S. D.; Konigsberg, I. R. “The influence of collagen on the development of muscle clones”, Proc Natl Acad Sci U S A 1966, 55, 119–126.
  • Davies, J. A. Extracellular matrix. In eLS. Wiley: NJ, 2001.
  • Leone, D. P.; Relvas, J. B.; Campos, L. S.; Hemmi, S.; Brakebusch, C.; Fassler, R.; Ffrench-Constant, C.; Suter, U. “Regulation of neural progenitor proliferation and survival by beta1 integrins”, J Cell Sci 2005, 118, 2589–2599.
  • Campos, L. S.; Leone, D. P.; Relvas, J. B.; Brakebusch, C.; Fassler, R.; Suter, U.; French-Constant, C. “Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance”, Development 2004, 131, 3433–3444.
  • Zhu, A. J.; Haase, I.; Watt, F. M. “Signaling via beta1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro”, Proc Natl Acad Sci U S A 1999, 96, 6728–6733.
  • Lampe, K. J.; Heilshorn, S. C. “Building stem cell niches from the molecule up through engineered peptide materials”, Neurosci Lett 2012, 519, 138–146.
  • Guilak, F.; Cohen, D. M.; Estes, B. T.; Gimble, J. M.; Liedtke, W.; Chen, C. S. “Control of stem cell fate by physical interactions with the extracellular matrix”, Cell Stem Cell 2009, 5, 17–26.
  • Frantz, C.; Stewart, K. M.; Weaver, V. M. “The extracellular matrix at a glance”, J Cell Sci 2010, 123, 4195–4200.
  • Rozario, T.; DeSimone, D. W. “The extracellular matrix in development and morphogenesis: A dynamic view”, Dev Biol 2010, 341, 126–140.
  • Chen, C. W.; Tsai, Y. H.; Deng, W. P.; Shih, S. N.; Fang, C. L.; Burch, J. G.; Chen, W. H.; Lai, W. F. “Type I and II collagen regulation of chondrogenic differentiation by mesenchymal progenitor cells”, J Orthop Res 2005, 23, 446–453.
  • Salasznyk, R. M.; Williams, W. A.; Boskey, A.; Batorsky, A.; Plopper, G. E. “Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells”, J Biomed Biotechnol 2004, 2004, 24–34.
  • Singh, P.; Carraher, C.; Schwarzbauer, J. E. “Assembly of fibronectin extracellular matrix”, Annu Rev Cell Dev Biol 2010, 26, 397–419.
  • Houseman, B. T.; Mrksich, M. “The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion”, Biomaterials 2001, 22, 943–955.
  • Bentzinger, C. F.; Wang, Yu X.; von Maltzahn, J.; Soleimani, Vahab, D.; Yin, H.; Rudnicki, Michael A. “Fibronectin regulates Wnt7a signaling and satellite cell expansion”, Cell Stem Cell 2013, 12, 75–87.
  • Singh, P.; Schwarzbauer, J. E. “Fibronectin and stem cell differentiation: Lessons from chondrogenesis”, J Cell Sci 2012, 125, 1–10.
  • Schwarzbauer, J. “Basement membranes: Putting up the barriers”, Curr Biol 1999, 9, R242–244.
  • Ponce, M. L.; Nomizu, M.; Delgado, M. C.; Kuratomi, Y.; Hoffman, M. P.; Powell, S.; Yamada, Y.; Kleinman, H. K.; Malinda, K. M. “Identification of endothelial cell binding sites on the laminin gamma 1 chain”, Circ Res 1999, 84, 688–694.
  • Schaefer, L.; Schaefer, R. M. “Proteoglycans: From structural compounds to signaling molecules”, Cell Tissue Res 2010, 339, 237–246.
  • Badylak, S. F. “The extracellular matrix as a scaffold for tissue reconstruction”, Semin Cell Dev Biol 2002, 13, 377–383.
  • Mathews, S.; Mathew, S. A.; Gupta, P. K.; Bhonde, R.; Totey, S. “Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells”, J Tissue Eng Regen Med 2014, 8, 143–152.
  • Gasimli, L.; Hickey, A. M.; Yang, B.; Li, G.; Dela Rosa, M.; Nairn, A. V.; Kulik, M. J.; Dordick, J. S.; Moremen, K. W.; Dalton, S.; Linhardt, R. J. “Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages”, Biochim Biophys Acta 2014, 1840, 1993–2003.
  • Chen, X. D.; Dusevich, V.; Feng, J. Q.; Manolagas, S. C.; Jilka, R. L. “Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts”, J Bone Miner Res 2007, 22, 1943–1956.
  • Badylak, S. F.; Freytes, D. O.; Gilbert, T. W. “Extracellular matrix as a biological scaffold material: Structure and function”, Acta Biomater 2009, 5, 1–13.
  • Pei, M.; Li, J. T.; Shoukry, M.; Zhang, Y. “A review of decellularized stem cell matrix: A novel cell expansion system for cartilage tissue engineering”, Eur Cell Mater 2011, 22, 333–343.
  • Ott, H. C.; Matthiesen, T. S.; Goh, S. K.; Black, L. D.; Kren, S. M.; Netoff, T. I.; Taylor, D. A. “Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart”, Nat Med 2008, 14, 213–221.
  • Shih, Y. R.; Chen, C. N.; Tsai, S. W.; Wang, Y. J.; Lee, O. K. “Growth of mesenchymal stem cells on electrospun type I collagen nanofibers”, Stem Cells 2006, 24, 2391–2397.
  • Phipps, M. C.; Clem, W. C.; Catledge, S. A.; Xu, Y.; Hennessy, K. M.; Thomas, V.; Jablonsky, M. J.; Chowdhury, S.; Stanishevsky, A. V.; Vohra, Y. K.; Bellis, S. L. “Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite”, PLoS ONE 2011, 6, e16813.
  • Pham, Q. P.; Sharma, U.; Mikos, A. G. “Electrospinning of polymeric nanofibers for tissue engineering applications: A review”, Tissue Eng 2006, 12, 1197–1211.
  • Doshi, J.; Reneker, D. H. “Electrospinning process and applications of electrospun fibers”, J Electrostat 1995, 35, 151–160.
  • Ma, P. X.; Zhang, R. “Synthetic nano-scale fibrous extracellular matrix”, J Biomed Mater Res 1999, 46, 60–72.
  • Hartgerink, J. D.; Beniash, E.; Stupp, S. I. “Self-assembly and mineralization of peptide-amphiphile nanofibers”, Science 2001, 294, 1684–1688.
  • Vasita, R.; Katti, D. S. “Nanofibers and their applications in tissue engineering”, Int J Nanomedicine 2006, 1, 15–30.
  • Liu, T.; Teng, W. K.; Chan, B. P.; Chew, S. Y. “Photochemical crosslinked electrospun collagen nanofibers: Synthesis, characterization and neural stem cell interactions”, J Biomed Mater Res A 2010, 95, 276–282.
  • Orza, A.; Soritau, O.; Olenic, L.; Diudea, M.; Florea, A.; Rus Ciuca, D.; Mihu, C.; Casciano, D.; Biris, A. S. “Electrically conductive gold-coated collagen nanofibers for placental-derived mesenchymal stem cells enhanced differentiation and proliferation”, ACS Nano 2011, 5, 4490–4503.
  • Cheng, Y.; Ramos, D.; Lee, P.; Liang, D.; Yu, X.; Kumbar, S. G. “Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: Bone tissue engineering”, J Biomed Nanotechnol 2014, 10, 287–298.
  • Kang, B. J.; Kim, H.; Lee, S. K.; Kim, J.; Shen, Y.; Jung, S.; Kang, K. S.; Im, S. G.; Lee, S. Y.; Choi, M.; Hwang, N. S.; Cho, J. Y. “Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function”, Acta Biomater 2014.
  • Battista, S.; Guarnieri, D.; Borselli, C.; Zeppetelli, S.; Borzacchiello, A.; Mayol, L.; Gerbasio, D.; Keene, D. R.; Ambrosio, L.; Netti, P. A. “The effect of matrix composition of 3D constructs on embryonic stem cell differentiation”, Biomaterials 2005, 26, 6194–6207.
  • Antoon, R.; Yeger, H.; Loai, Y.; Islam, S.; Farhat, W. A. “Impact of bladder-derived acellular matrix, growth factors, and extracellular matrix constituents on the survival and multipotency of marrow-derived mesenchymal stem cells”, J Biomed Mater Res A 2012, 100, 72–83.
  • Jurga, M.; Dainiak, M. B.; Sarnowska, A.; Jablonska, A.; Tripathi, A.; Plieva, F. M.; Savina, I. N.; Strojek, L.; Jungvid, H.; Kumar, A.; Lukomska, B.; Domanska-Janik, K.; Forraz, N.; McGuckin, C. P. “The performance of laminin-containing cryogel scaffolds in neural tissue regeneration”, Biomaterials 2011, 32, 3423–3434.
  • Hayman, M. W.; Smith, K. H.; Cameron, N. R.; Przyborski, S. A. “Growth of human stem cell-derived neurons on solid three-dimensional polymers”, J Biochem Biophys Methods 2005, 62, 231–240.
  • Toole, B. P. “Hyaluronan: From extracellular glue to pericellular cue”, Nat Rev Cancer 2004, 4, 528–539.
  • Gerecht, S.; Burdick, J. A.; Ferreira, L. S.; Townsend, S. A.; Langer, R.; Vunjak-Novakovic, G. “Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells”, Proc Natl Acad Sci U S A 2007, 104, 11298–11303.
  • Collier, J. H.; Segura, T. “Evolving the use of peptides as components of biomaterials”, Biomaterials 2011, 32, 4198–4204.
  • Romano, N. H.; Sengupta, D.; Chung, C.; Heilshorn, S. C. “Protein-engineered biomaterials: Nanoscale mimics of the extracellular matrix”, Biochimica et biophysica acta 2011, 1810, 339–349.
  • Hwang, N. S.; Kim, M. S.; Sampattavanich, S.; Baek, J. H.; Zhang, Z.; Elisseeff, J. “Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells”, Stem Cells 2006, 24, 284–291.
  • Park, J. S.; Yang, H. N.; Jeon, S. Y.; Woo, D. G.; Na, K.; Park, K. H. “Osteogenic differentiation of human mesenchymal stem cells using RGD-modified BMP-2 coated microspheres”, Biomaterials 2010, 31, 6239–6248.
  • Sawyer, A. A.; Hennessy, K. M.; Bellis, S. L. “Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins”, Biomaterials 2005, 26, 1467–1475.
  • Kolambkar, Y. M.; Bajin, M.; Wojtowicz, A.; Hutmacher, D. W.; Garcia, A. J.; Guldberg, R. E. “Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro”, Tissue Eng Part A 2014, 20, 398–409.
  • Saha, K.; Irwin, E. F.; Kozhukh, J.; Schaffer, D. V.; Healy, K. E. “Biomimetic interfacial interpenetrating polymer networks control neural stem cell behavior”, J Biomed Mater Res A 2007, 81, 240–249.
  • Zhang, L.; Stauffer, W. R.; Jane, E. P.; Sammak, P. J.; Cui, X. T. “Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole”, Macromol Biosci 2010, 10, 1456–1464.
  • Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. “Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane”, Proc Natl Acad Sci U S A 1993, 90, 3334–3338.
  • Zhang, S.; Holmes, T. C.; DiPersio, C. M.; Hynes, R. O.; Su, X.; Rich, A. “Self-complementary oligopeptide matrices support mammalian cell attachment”, Biomaterials 1995, 16, 1385–1393.
  • Davis, M. E.; Motion, J. P.; Narmoneva, D. A.; Takahashi, T.; Hakuno, D.; Kamm, R. D.; Zhang, S.; Lee, R. T. “Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells”, Circulation 2005, 111, 442–450.
  • Kisiday, J.; Jin, M.; Kurz, B.; Hung, H.; Semino, C.; Zhang, S.; Grodzinsky, A. J. “Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair”, Proc Natl Acad Sci U S A 2002, 99, 9996–10001.
  • Gelain, F.; Bottai, D.; Vescovi, A.; Zhang, S. “Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures”, PLoS One 2006, 1, e119.
  • Liu, X.; Wang, X.; Wang, X.; Ren, H.; He, J.; Qiao, L.; Cui, F.-Z. “Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro”, Acta Biomater 2013, 9, 6798–6805.
  • Horii, A.; Wang, X.; Gelain, F.; Zhang, S. “Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration”, PLoS One 2007, 2, e190.
  • Ramachandran, S.; Tseng, Y.; Yu, Y. B. “Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus”, Biomacromolecules 2005, 6, 1316–1321.
  • Raspa, A.; Saracino, G. A. A.; Pugliese, R.; Silva, D.; Cigognini, D.; Vescovi, A.; Gelain, F. “Complementary co-assembling peptides: From in silico studies to in vivo application”, Adv Funct Mater 2014, 24, 6317–6328.
  • Justin, T. K.; William, L. M. Spatial localization of growth factors to regulate stem cell fate. In Stem Cells and Revascularization Therapies, CRC Press: Boca Raton, FL, 2011; pp. 131–164.
  • Levenstein, M. E.; Ludwig, T. E.; Xu, R. H.; Llanas, R. A.; VanDenHeuvel-Kramer, K.; Manning, D.; Thomson, J. A. “Basic fibroblast growth factor support of human embryonic stem cell self-renewal”, Stem Cells 2006, 24, 568–574.
  • Hackett, J.; Dang, T.; Tsai, E.; Cao, X. “Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation”, Materials 2010, 3, 3714–3728.
  • Huang, N. F.; Patlolla, B.; Abilez, O.; Sharma, H.; Rajadas, J.; Beygui, R. E.; Zarins, C. K.; Cooke, J. P. “A matrix micropatterning platform for cell localization and stem cell fate determination”, Acta Biomater 2010, 6, 4614–4621.
  • Folkman, J.; Moscona, A. “Role of cell shape in growth control”, Nature 1978, 273, 345–349.
  • McBeath, R.; Pirone, D. M.; Nelson, C. M.; Bhadriraju, K.; Chen, C. S. “Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment”, Dev Cell 2004, 6, 483–495.
  • Awad, H. A.; Quinn Wickham, M.; Leddy, H. A.; Gimble, J. M.; Guilak, F. “Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds”, Biomaterials 2004, 25, 3211–3222.
  • Spiegelman, B. M.; Ginty, C. A. “Fibronectin modulation of cell shape and lipogenic gene expression in 3t3-adipocytes”, Cell 1983, 35, 657–666.
  • Flemming, R. G.; Murphy, C. J.; Abrams, G. A.; Goodman, S. L.; Nealey, P. F. “Effects of synthetic micro- and nano-structured surfaces on cell behavior”, Biomaterials 1999, 20, 573–588.
  • Stevens, M. M.; George, J. H. “Exploring and engineering the cell surface interface”, Science 2005, 310, 1135–1138.
  • Holtzer, H.; Abbott, J.; Lash, J.; Holtzer, S. “The loss of phenotypic traits by differentiated cells in vitro, I. differentiation of cartilage cells”, Proc Natl Acad Sci U S A 1960, 46, 1533–1542.
  • Abbott, J.; Holtzer, H. “The loss of phenotypic traits by differentiated cells. 3. The reversible behavior of chondrocytes in primary cultures”, J Cell Biol 1966, 28, 473–487.
  • Thomas, C. H.; Collier, J. H.; Sfeir, C. S.; Healy, K. E. “Engineering gene expression and protein synthesis by modulation of nuclear shape”, Proc Natl Acad Sci U S A 2002, 99, 1972–1977.
  • Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. “Photodegradable hydrogels for dynamic tuning of physical and chemical properties”, Science 2009, 324, 59–63.
  • Kawano, T.; Sato, M.; Yabu, H.; Shimomura, M. “Honeycomb-shaped surface topography induces differentiation of human mesenchymal stem cells (hMSCs): Uniform porous polymer scaffolds prepared by the breath figure technique”, Biomaterials Science 2014, 2, 52–56.
  • Tsuruma, A.; Tanaka, M.; Yamamoto, S.; Shimomura, M. “Control of neural stem cell differentiation on honeycomb films”, Colloids Surf A Physicochem Eng Asp 2008, 313–314, 536–540.
  • Yang, Y.; Relan, N. K.; Przywara, D. A.; Schuger, L. “Embryonic mesenchymal cells share the potential for smooth muscle differentiation: myogenesis is controlled by the cell's shape”, Development 1999, 126, 3027–3033.
  • Li, H.; Wijekoon, A.; Leipzig, N. D. “3D Differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds”, PLoS ONE 2012, 7, e48824.
  • Eyckmans, J.; Lin, G. L.; Chen, C. S. “Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells”, Biol Open 2012, 1, 1058–1068.
  • Kilian, K. A.; Bugarija, B.; Lahn, B. T.; Mrksich, M. “Geometric cues for directing the differentiation of mesenchymal stem cells”, Proc Natl Acad Sci USA 2010, 107, 4872–4877.
  • Zhang, D.; Kilian, K. A. “The effect of mesenchymal stem cell shape on the maintenance of multipotency”, Biomaterials 2013, 34, 3962–3969.
  • Gao, L.; McBeath, R.; Chen, C. S. “Stem cell shape regulates a chondrogenic versus myogenic fate through rac1 and N-cadherin”, Stem Cells 2010, 28, 564–572.
  • Vogel, V.; Sheetz, M. “Local force and geometry sensing regulate cell functions”, Nat Rev Mol Cell Biol 2006, 7, 265–275.
  • Dalby, M. J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M. O.; Herzyk, P.; Wilkinson, C. D.; Oreffo, R. O. “The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder”, Nat Mater 2007, 6, 997–1003.
  • Martinez, E.; Lagunas, A.; Mills, C. A.; Rodriguez-Segui, S.; Estevez, M.; Oberhansl, S.; Comelles, J.; Samitier, J. “Stem cell differentiation by functionalized micro- and nanostructured surfaces”, Nanomedicine (Lond) 2009, 4, 65–82.
  • Chang, J. C.; Fujita, S.; Tonami, H.; Kato, K.; Iwata, H.; Hsu, S. H. “Cell orientation and regulation of cell-cell communication in human mesenchymal stem cells on different patterns of electrospun fibers”, Biomed Mater 2013, 8, 055002–055015.
  • Bayati, V.; Altomare, L.; Tanzi, M. C.; Fare, S. “Adipose-derived stem cells could sense the nano-scale cues as myogenic-differentiating factors”, J Mater Sci Mater Med 2013, 24, 2439–2447.
  • Christopherson, G. T.; Song, H.; Mao, H. Q. “The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation”, Biomaterials 2009, 30, 556–564.
  • Das, R. K.; Zouani, O. F.; Labrugère, C.; Oda, R.; Durrieu, M.-C. “Influence of nanohelical shape and periodicity on stem cell fate”, ACS Nano 2013, 7, 3351–3361.
  • Gerecht, S.; Bettinger, C. J.; Zhang, Z.; Borenstein, J. T.; Vunjak-Novakovic, G.; Langer, R. “The effect of actin disrupting agents on contact guidance of human embryonic stem cells”, Biomaterials 2007, 28, 4068–4077.
  • Kulangara, K.; Yang, Y.; Yang, J.; Leong, K. W. “Nanotopography as modulator of human mesenchymal stem cell function”, Biomaterials 2012, 33, 4998–5003.
  • Oh, S.; Brammer, K. S.; Li, Y. S.; Teng, D.; Engler, A. J.; Chien, S.; Jin, S. “Stem cell fate dictated solely by altered nanotube dimension”, Proc Natl Acad Sci U S A 2009, 106, 2130–2135.
  • Pan, F.; Zhang, M.; Wu, G.; Lai, Y.; Greber, B.; Scholer, H. R.; Chi, L. “Topographic effect on human induced pluripotent stem cells differentiation towards neuronal lineage”, Biomaterials 2013, 34, 8131–8139.
  • Li, H.; Wen, F.; Wong, Y. S.; Boey, F. Y. C.; Subbu, V. S.; Leong, D. T.; Ng, K. W.; Ng, G. K. L.; Tan, L. P. “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells”, Acta Biomater 2012, 8, 531–539.
  • Teo, B. K.; Wong, S. T.; Lim, C. K.; Kung, T. Y.; Yap, C. H.; Ramagopal, Y.; Romer, L. H.; Yim, E. K. “Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase”, ACS Nano 2013, 7, 4785–4798.
  • Nadeem, D.; Sjostrom, T.; Wilkinson, A.; Smith, C. A.; Oreffo, R. O.; Dalby, M. J.; Su, B. “Embossing of micropatterned ceramics and their cellular response”, J Biomed Mater Res A 2013, 101, 3247–3255.
  • Ahn, E. H.; Kim, Y.; Kshitiz An, S. S.; Afzal, J.; Lee, S.; Kwak, M.; Suh, K. Y.; Kim, D. H.; Levchenko, A. “Spatial control of adult stem cell fate using nanotopographic cues”, Biomaterials 2014, 35, 2401–2410.
  • Bae, D.; Moon, S. H.; Park, B. G.; Park, S. J.; Jung, T.; Kim, J. S.; Lee, K. B.; Chung, H. M. “Nanotopographical control for maintaining undifferentiated human embryonic stem cell colonies in feeder free conditions”, Biomaterials 2014, 35, 916–928.
  • Tsimbouri, P.; Gadegaard, N.; Burgess, K.; White, K.; Reynolds, P.; Herzyk, P.; Oreffo, R.; Dalby, M. J. “Nanotopographical effects on mesenchymal stem cell morphology and phenotype”, J Cell Biochem 2014, 115, 380–390.
  • Kolind, K.; Kraft, D.; Boggild, T.; Duch, M.; Lovmand, J.; Pedersen, F. S.; Bindslev, D. A.; Bunger, C. E.; Foss, M.; Besenbacher, F. “Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures”, Acta Biomater 2014, 10, 641–650.
  • Seo, C. H.; Jeong, H.; Feng, Y.; Montagne, K.; Ushida, T.; Suzuki, Y.; Furukawa, K. S. “Micropit surfaces designed for accelerating osteogenic differentiation of murine mesenchymal stem cells via enhancing focal adhesion and actin polymerization”, Biomaterials 2014, 35, 2245–2252.
  • Ozdemir, T.; Xu, L. C.; Siedlecki, C.; Brown, J. L. “Substrate curvature sensing through Myosin IIa upregulates early osteogenesis”, Integr Biol (Camb) 2013, 5, 1407–1416.
  • Li, Z.; Gong, Y.; Sun, S.; Du, Y.; Lu, D.; Liu, X.; Long, M. “Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells”, Biomaterials 2013, 34, 7616–7625.
  • Urban, J. P. “The chondrocyte: A cell under pressure”, Br J Rheumatol 1994, 33, 901–908.
  • Chen, G.; Lv, Y.; Guo, P.; Lin, C.; Zhang, X.; Yang, L.; Xu, Z. “Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment”, Curr Stem Cell Res Ther 2013, 8, 313–323.
  • Costa, P.; Almeida, F. V.; Connelly, J. T. “Biophysical signals controlling cell fate decisions: how do stem cells really feel?”, Int J Biochem Cell Biol 2012, 44, 2233–2237.
  • Yu, H.; Tay, C. Y.; Leong, W. S.; Tan, S. C. W.; Liao, K.; Tan, L. P. “Mechanical behavior of human mesenchymal stem cells during adipogenic and osteogenic differentiation”, Biochem Biophys Res Commun 2010, 393, 150–155.
  • Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. “Matrix elasticity directs stem cell lineage specification”, Cell 2006, 126, 677–689.
  • Pek, Y. S.; Wan, A. C. A.; Ying, J. Y. “The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel”, Biomaterials 2010, 31, 385–391.
  • Khatiwala, C. B.; Peyton, S. R.; Metzke, M.; Putnam, A. J. “The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation”, J Cell Physiol 2007, 211, 661–672.
  • Gilbert, P. M.; Havenstrite, K. L.; Magnusson, K. E. G.; Sacco, A.; Leonardi, N. A.; Kraft, P.; Nguyen, N. K.; Thrun, S.; Lutolf, M. P.; Blau, H. M. “Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture”, Science 2010, 329, 1078–1081.
  • Lu, D.; Luo, C.; Zhang, C.; Li, Z.; Long, M. “Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography”, Biomaterials 2014, 35, 3945–3955.
  • Winer, J. P.; Janmey, P. A.; McCormick, M. E.; Funaki, M. “Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli”, Tissue Eng Part A 2009, 15, 147–154.
  • Wingate, K.; Bonani, W.; Tan, Y.; Bryant, S. J.; Tan, W. “Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers”, Acta Biomater 2012, 8, 1440–1449.
  • Migliorini, E.; Ban, J.; Grenci, G.; Andolfi, L.; Pozzato, A.; Tormen, M.; Torre, V.; Lazzarino, M. “Nanomechanics controls neuronal precursors adhesion and differentiation”, Biotechnol Bioeng 2013, 110, 2301–2310.
  • Boonen, K. J.; Rosaria-Chak, K. Y.; Baaijens, F. P.; van der Schaft, D. W.; Post, M. J. “Essential environmental cues from the satellite cell niche: Optimizing proliferation and differentiation”, Am J Physiol Cell Physiol 2009, 296, C1338–1345.
  • Saha, K.; Keung, A. J.; Irwin, E. F.; Li, Y.; Little, L.; Schaffer, D. V.; Healy, K. E. “Substrate modulus directs neural stem cell behavior”, Biophys J 2008, 95, 4426–4438.
  • Murphy, C. M.; Matsiko, A.; Haugh, M. G.; Gleeson, J. P.; O'Brien, F. J. “Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds”, J Mech Behav Biomed Mater 2012, 11, 53–62.
  • Nii, M.; Lai, J. H.; Keeney, M.; Han, L. H.; Behn, A.; Imanbayev, G.; Yang, F. “The effects of interactive mechanical and biochemical niche signaling on osteogenic differentiation of adipose-derived stem cells using combinatorial hydrogels”, Acta Biomater 2013, 9, 5475–5483.
  • Park, J. S.; Chu, J. S.; Tsou, A. D.; Diop, R.; Tang, Z.; Wang, A.; Li, S. “The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-B”, Biomaterials 2011, 32, 3921–3930.
  • Fu, J.; Wang, Y. K.; Yang, M. T.; Desai, R. A.; Yu, X.; Liu, Z.; Chen, C. S. “Mechanical regulation of cell function with geometrically modulated elastomeric substrates”, Nat Methods 2010, 7, 733–736.
  • Trappmann, B.; Chen, C. S. “How cells sense extracellular matrix stiffness: A material's perspective”, Curr Opin Biotechnol 2013, 24, 948–953.
  • Saez, A.; Ghibaudo, M.; Buguin, A.; Silberzan, P.; Ladoux, B. “Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates”, Proc Natl Acad Sci U S A 2007, 104, 8281–8286.
  • Discher, D. E.; Janmey, P.; Wang, Y. L. “Tissue cells feel and respond to the stiffness of their substrate”, Science 2005, 310, 1139–1143.
  • Pelham, R. J., Jr.; Wang, Y. L. “Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate”, Biol Bull 1998, 194, 348–350.
  • Fischer, R. S.; Myers, K. A.; Gardel, M. L.; Waterman, C. M. “Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior”, Nat Protoc 2012, 7, 2056–2066.
  • Jacobs, C. R.; Temiyasathit, S.; Castillo, A. B. “Osteocyte mechanobiology and pericellular mechanics”, Annu Rev Biomed Eng 2010, 12, 369–400.
  • Glucksmann, A. “The role of mechanical stresses in bone formation in vitro”, J Anat 1942, 76, 231–239.
  • Angele, P.; Yoo, J. U.; Smith, C.; Mansour, J.; Jepsen, K. J.; Nerlich, M.; Johnstone, B. “Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro”, J Orthop Res 2003, 21, 451–457.
  • Saitoh, S.; Takahashi, I.; Mizoguchi, I.; Sasano, Y.; Kagayama, M.; Mitani, H. “Compressive force promotes chondrogenic differentiation and hypertrophy in midpalatal suture cartilage in growing rats”, Anat Rec 2000, 260, 392–401.
  • Lee, I. C.; Wang, J. H.; Lee, Y. T.; Young, T. H. “The differentiation of mesenchymal stem cells by mechanical stress or/and co-culture system”, Biochem Biophys Res Commun 2007, 352, 147–152.
  • Mauck, R. L.; Byers, B. A.; Yuan, X.; Tuan, R. S. “Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading”, Biomech Model Mechanobiol 2007, 6, 113–125.
  • Huang, C. Y.; Hagar, K. L.; Frost, L. E.; Sun, Y.; Cheung, H. S. “Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells”, Stem Cells 2004, 22, 313–323.
  • Altman, G. H.; Horan, R. L.; Martin, I.; Farhadi, J.; Stark, P. R.; Volloch, V.; Richmond, J. C.; Vunjak-Novakovic, G.; Kaplan, D. L. “Cell differentiation by mechanical stress”, FASEB J 2002, 16, 270–272.
  • Simmons, C. A.; Matlis, S.; Thornton, A. J.; Chen, S.; Wang, C. Y.; Mooney, D. J. “Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway”, J Biomech 2003, 36, 1087–1096.
  • Wu, Y.; Zhang, P.; Dai, Q.; Yang, X.; Fu, R.; Jiang, L.; Fang, B. “Effect of mechanical stretch on the proliferation and differentiation of BMSCs from ovariectomized rats”, Mol Cell Biochem 2013, 382, 273–282.
  • Yourek, G.; McCormick, S. M.; Mao, J. J.; Reilly, G. C. “Shear stress induces osteogenic differentiation of human mesenchymal stem cells”, Regen Med 2010, 5, 713–724.
  • Maul, T.; Chew, D.; Nieponice, A.; Vorp, D. “Mechanical stimuli differentially control stem cell behavior: Morphology, proliferation, and differentiation”, Biomech Model Mechanobiol 2011, 10, 939–953.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.