4,465
Views
128
CrossRef citations to date
0
Altmetric
Reviews

Crack Damage in Polymers and Composites: A Review

, , , &
Pages 31-69 | Received 27 May 2015, Accepted 27 Jul 2015, Published online: 07 Mar 2016

References

  • Baker, A.; Jones, R.; Callinan, R. “Damage tolerance of graphite/epoxy composites”, Composite Structures. 1985, 4, 15–44.
  • Fischer, M.; Martin, D.; Pasquier, M. Fatigue crack growth in crosslinked polymers, Macromolecular Symposia: Wiley Online Library; 1995. p. 325–36.
  • Kawaguchi, T.; Pearson, R. A. “The moisture effect on the fatigue crack growth of glass particle and fiber reinforced epoxies with strong and weak bonding conditions: Part 2”, A microscopic study on toughening mechanism. Composites science and technology. 2004, 64, 1991–2007.
  • Kawaguchi, T.; Pearson, R. A. “The moisture effect on the fatigue crack growth of glass particle and fiber reinforced epoxies with strong and weak bonding conditions: part 1”, Macroscopic fatigue crack propagation behavior. Composites science and technology. 2004, 64, 1981–9.
  • Morgan, R. J.; O'Neal, J. E. “The microscopic failure processes and their relation to the structure of amine-cured bisphenol-A-diglycidyl ether epoxies”, Journal of Materials Science. 1977, 12, 1966–80.
  • Richardson, M.; Wisheart, M. “Review of low-velocity impact properties of composite materials”, Composites Part A: Applied Science and Manufacturing. 1996, 27, 1123–31.
  • Osswald, T.; Menges, G. Failure and damage of polymers. Mater Sci Polym Eng Munich: Hanser Publishers. 2003:447–519.
  • Kinloch, A. Mechanics and mechanisms of fracture of thermosetting epoxy polymers. Epoxy Resins and Composites I: Springer; 1985. p. 45–67.
  • Maiti, S.; Geubelle, P. H. “Cohesive modeling of fatigue crack retardation in polymers: Crack closure effect”, Engineering Fracture Mechanics. 2006, 73, 22–41.
  • Ritchie, R. O. “Mechanisms of fatigue-crack propagation in ductile and brittle solids”, International Journal of Fracture. 1999, 100, 55–83.
  • Sauer, J. A.; Richardson, G. C. “Fatigue of polymers”, International Journal of Fracture. 1980, 16, 499–532.
  • Vasudeven, A.; Sadananda, K.; Louat, N. “A review of crack closure, fatigue crack threshold and related phenomena”, Materials Science and Engineering: A. 1994, 188, 1–22.
  • Ritchie, R. “Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding”, Materials Science and Engineering: A. 1988, 103, 15–28.
  • Espuche, E.; Galy, J.; Gérard, J. F.; Pascault, J. P.; Sautereau, H. “Influence of crosslink density and chain flexibility on mechanical properties of model epoxy networks”, Macromolecular symposia: Wiley Online Library; 1995. p. 107–15.
  • Pham, H. Q.; Marks, M. J. “Epoxy resins. Kirk-Othmer Encyclopedia of Chemical Technology”, John Wiley & Sons, Inc. 2004.
  • Kim, S.; Skibo, M.; Manson, J.; Hertzberg, R.; Janiszewski, J. “Tensile, impact and fatigue behavior of an amine cured epoxy resin”, Polymer Engineering & Science. 1978, 18, 1093–100.
  • Shin, S.; Jang, J. “The effect of amine/epoxy ratio on the fracture toughness of tetrafunctional epoxy resin”, Polymer bulletin. 1997, 39, 353–9.
  • Wingard, C. D.; Beatty, C. L. “Crosslinking of an epoxy with a mixed amine as a function of stoichiometry. II. Final properties via dynamic mechanical spectroscopy”, Journal of applied polymer science. 1990, 41, 2539–54.
  • Kim, N. H.; Kim, H. S. “Micro-void toughening of thermosets and its mechanism”, Journal of applied polymer science. 2005, 98, 1290–5.
  • Kinloch, A.; Taylor, A. “The mechanical properties and fracture behaviour of epoxy-inorganic micro-and nano-composites”, Journal of Materials Science. 2006, 41, 3271–97.
  • Kim, J. K.; Mai, Y. W. “High strength, high fracture toughness fibre composites with interface control”, Composite Science and Technology. 1991, 41, 333–78.
  • Trask, R. S.; Williams, H. R.; Bond, I. P. “Self-healing polymer composites: mimicking nature to enhance performance. Bioinspiration and Biomimetics. 2007, 2, 1–12.
  • Trask, R. S.; Williams, G. J.; Bond, I. P. “Bioinspired self-healing of advanced composite structures using hollow glass fibres.” Journal of Royal Society Interface. 2007, 4, 363–71.
  • Hastings, G.; Mahmud, F. “Intelligent orthopaedic materials”, Journal of Intelligent Material Systems and Structures. 1993, 4, 452–6.
  • Wohler, A. “Experiments on the strength of metals”, Engineering 1867, 4, 160–1.
  • Andrews, E. H. “Cracking and crazing in polymeric glasses”, In: Haward, R. N., editor.: Physics of glassy polymers. Applied Science London: Publishers Ltd.; 1973. p. 394–453.
  • Kambour, R. P. “A review of crazing and fracture in thermoplastics”, Journal of Polymer Science: Macromolecualr Reviews. 1973, 7, 1–154.
  • Manson, J. A.; Hertzberg, R. W. “Fatigue failure in polymers”, Critical Rreviews in Macromolecular Science. 1973, 1, 433–500.
  • Plumridge, W. J. “Review: Fatigue-crack propagation in metallic and polymeric materials”, Journal of Materials Science. 1972, 7, 939–62.
  • Rabinowitz, S.; Beardmore, P. “Craze formation and fracture in glassy polymers”, Critical Reviews in Macromolecualr Science. 1972, 1, 1–45.
  • Regel, V. R.; Tamuzh, V. P. “Fracture and fatigue of polymers and composites (survey)”, Polymer Mechanics. 1977, 13, 392–408.
  • Schultz, J. M. “Properties of Solid Polymeric Materials”, In: Schultz, J. M., editor. Treaties on Material Science and technology. Orlando, Florida Academic Press; 1977. p. 599–632.
  • Radon, J. C. “Fatigue crack growth in polymers”, International Journal of Fracture. 1980, 16, 533–52.
  • Degrieck, J.; Van Paepegem, W. “Fatigue damage modeling of fibre-reinforced composite materials: Review”, Applied Mechanics Reviews. 2001, 54, 279–300.
  • Azimi, H. R.; Pearson, R. A.; Hertzberg, R. W. “Role of crack tip shielding mechanisms in fatigue of hybrid epoxy composites containing rubber and solid glass spheres”, Journal of Applied Polymer Science. 1995, 58, 449–63.
  • Azimi, H. R.; Pearson, R. A.; Hertzberg, R. W. “Fatigue of hybrid epoxy composites: Epoxies containing rubber and hollow glass spheres”, Polymer Engineering & Science. 1996, 36, 2352–65.
  • Becu, L.; Maazouz, A.; Sautereau, H.; Gerard, J. F. “Fracture behavior of epoxy polymers modified with core-shell rubber particles”, Journal of Applied Polymer Science. 1997, 65, 2419–31.
  • Brown, E. N.; White, S. R.; Sottos, N. R. “Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite–Part II: In situ self-healing”, Composites Science and Technology. 2005, 65, 2474–80.
  • Brown, E. N.; White, S. R.; Sottos, N. R. “Fatigue crack propagation in microcapsule-toughened epoxy”, Journal of Materials Science. 2006, 41, 6266–73.
  • Jones, A. S.; Rule, J. D.; Moore, J. S.; Scottos, N. R.; White, S. R. “Life extension of self-healing polymers with rapidly growing fatigue cracks”, Journal of Royal Society Interface. 2007, 4, 395–403.
  • Karger-Kocsis, J.; Friedrich, K. “Microstructure-related fracture toughness and fatigue crack growth behaviour in toughened, anhydride-cured epoxy resins”, Composites Science and Technology. 1993, 48, 263–72.
  • Sautereau, H.; Maazouz, A.; Gerard, J. F.; Trotignon, J. P. “Fatigue behaviour of glass bead filled epoxy”, Journal of Materials Science. 1995, 30, 1715–8.
  • Kawaguchi, T.; Pearson, R. A. “The moisture effect on the fatigue crack growth of glass particle and fiber reinforced epoxies with strong and weak bonding conditions: Part 2. A microscopic study on toughening mechanism”, Composites Science and Technology. 2004, 64, 1991–2007.
  • Hayes, B. S.; Seferis, J. C. “Modification of thermosetting resins and composites through preformed polymer particles: A review”, Polymer Composites. 2001, 22, 451–67.
  • McMurray, M. K.; Amagi, S. “The effect of time and temperature on flexural creep and fatigue strength of a silica particle filled epoxy resin”, Journal of Materials Science. 1999, 34, 5927–36.
  • Davis, F. H.; Ellison, E. G. “Hydrodynamic pressure effects of viscous fluid flow in a fatigue crack”, Fatigue and Fracture of Engineering Materials and Structures. 1989 12, 527–42.
  • Elber, W. “Fatigue crack closure under cyclic tension”, Engineering of Fractur Mechanics. 1970 2, 37–45.
  • Endo, K.; Okada, T.; Komai, K.; Kiyota, M. “Fatigue crack propagation of steel in oil”, Bulletin of the Japan Society of Mechanical Engineers. 1972, 15, 1316–23.
  • Galvin, G. D.; Naylor, H. “Effect of lubricants on the fatigue of steel and other metals”, Proceeding of the Institute of Mechanical Engineers. 1965, 179, 857–75.
  • Plumbridge, W. J. “Mechano-enviornmental effects in fatigue”, Materials Science and Engineering. 1977, 27, 197–208.
  • Plumbridge, W. J.; Ross, P. J.; Parry, J. S. C. “Fatigue crack growth in liquids under pressure”, Materials Science and Engineering. 1985, 68, 219–32.
  • Polk, C.; Murphy, W.; Rowe, C. “Determining fatigue crack propagation rates in lubricating environments through the application of a fracture mechanics technique”, American Society of Lubrication Engineers Transactions. 1975, 18, 290–8.
  • Tzou, J. L.; Suresh, S.; Ritchie, R. O. “Fatigue crack propagation in oil environments: 1. Crack growth behavior in silicone and paraffin oils”, Acta Metallurgical. 1985, 33, 105–16.
  • Yi, K. S.; Cox, B. N.; Dauskardt, R. H. “Fatigue crackgrowth behavior of materials in viscous fluid environment”, Journal of Mechanics and Physics of Solids. 1999, 47, 1843–71.
  • Faltinsen, O. M. “Hydroelastic slamming”, Journal of Marine Science and Technology. 2000, 5, 49–65.
  • Caridis, P. A.; Stefanou, M. “Dynamic elastic/plastic response of hull plating subjected to hydrodynamic wave impact”, Journal of Ship Research. 1997, 41, 130–46.
  • Wang, G.; Tang, S.; Shin, Y. A. “Direct Calculation Approach for Designing a Ship-shaped FPSO's Bow Against Wave Slamming Load The Twelfth International Offshore and Polar Engineering Conference”, Kitakyushu, Japan 2002. p. 35–42.
  • McGeorge, D.; Vredeveldt, A. W. “Mode I fracture toughness of secondary bonds of a novel CFRP hull structure”, In: Williams, J. G.; Pavan, A., editors. Eur Struct Integity Soc: Elsevier; 2000. p. 83–96.
  • Boyd, S. W.; Blake, J. I. R.; Shenoi, R. A.; Kapadia, A. “Integrity of hybrid steel to composite joints for marine application”, Proceedings of the I MECH E Part M 2004. p. 235–46.
  • Buckley, W. H.; Stavovy, A. B.; Taylor, D. W. Progress in the Development of Structural Load Criteria for Extreme Waves. Proc Extreme loads response Symposium. Arlington VA: New York: Soc Naval Architects and Marine Engineers, http://www.shipstructure.org/pdf/81symp06.pdf; 1981. p. 75–88.
  • Charca, S.; Shafiq, B.; Just, F. “Repeated slamming of sandwich composite panels on water”, Journal of Sandwich Structures and Materials. 2009, 11, 409–24.
  • Charca, S.; Shafig, B. “Damage assessment due to single slamming of foam core sandwich composites”, Journal of Sandwich Structures and Materials. 2010, 12, 97–112.
  • Sharma, S.; Gibson, R.; Ayorinde, E. “fatigue of foam and honeycomb core composite sandwich structures: A tutorial”, Journal of Sandwich Structures and Materials. 2006, 8, 263–319.
  • Sutherland, L.; Soares, G. “Impact behaviour of typical marine composite laminates”, Composites: Part B. 2006, 37, 89–100.
  • Yamamoto, T.; Furukawa, H. “Relationship between molecular structure and deformation-fracture mechanism of amorphous polymers: 2. Crazing stress”, Polymer. 1995, 36, 2393–6.
  • Ishikawa, M.; Narisawa, I.; Ogawa, H. “Criterion for craze nucleation in polycarbonate”, Journal of Polymer Science: Polymer Physics Edition. 1977, 15, 1791–804.
  • Döll, W. “Application of an energy balance and an energy method to dynamic crack propagation”, International Journal of Fracture. 1976, 12, 595–605.
  • Sun, N.; Hsu, T. “Thermomechanical coupling effects on fractured solids”, International Journal of Fracture. 1996, 78, 67–87.
  • Haener, J.; Ashbaugh, N. “Three-dimensional stress distribution in a unidirectional composite”, Journal of Composite Materials. 1967, 1, 54–63.
  • Jayaraman, K.; Reifsnider, K. “Micromechanical stress analysis of continuous-fiber composites with local material property gradients. Achievement in composites in Japan and the United States”, Proceedings of the Fifth Japan-U.S Conference on Composite Materials, Tokyo, Japan. 1990:421–8.
  • Jayaraman, K.; Gao, Z.; Reifsnider, K. “Stress fields in continuous fiber composites with interphasial property gradients”, Proceedings of the American Society for Composites Sixth Technical Conference Composite Materials, Mechanics and Processing 1991. p. 759–68.
  • Nairn, J. A. “Thermoelastic analysis of residual stresses in unidirectional, high-performance composites. Polymer Composites. 1985, 6, 123–30.
  • Rohwer, K.; Ming Jiu, X. “Micromechanical curing stresses in CFRP”, Composites science and technology. 1986, 25, 169–86.
  • SOTTOS, N. The influence of interphase regions on local thermal stresses and deformations in composites (Ph. D. Thesis). 1990.
  • Bowles, D. E.; Griffin, O. “Micromechanics analysis of space simulated thermal stresses in composites. Part I: theory and unidirectional laminates”, Journal of reinforced plastics and composites. 1991, 10, 504–21.
  • Bowles, D. E.; Griffin, O. “Micromechanics analysis of space simulated thermal stresses in composites. Part II: Multidirectional laminates and failure predictions”, Journal of reinforced plastics and composites. 1991, 10, 522–39.
  • Morris, W.; Inman, R.; Cox, B. “Microscopic deformation in a heated unidirectional graphite-epoxy composite”, Journal of Materials Science. 1989, 24, 199–204.
  • Morris, W.; Cox, B.; James, M. “Microplastic surface deformation of A12219-T851”, Acta Metallurgica. 1987, 35, 1055–65.
  • Adams, D. F.“ A micromechanics analysis of the influence of the interface on the performance of polymer-matrix composites”, Journal of reinforced plastics and composites. 1987, 6, 66–88.
  • Awaja, F.; Moon, J. B.; Gilbert, M.; Zhang, S.; Kim, C. G.; Pigram, P. J. “Surface molecular degradation of selected high performance polymer composites under low earth orbit environmental conditions”, Polymer Degradation and Stability. 2011, 96, 1301–9.
  • Awaja, F.; Moonb, J. B.; Zhang, S.; Gilbert, M.; Kim, C. G.; Pigramd, P. J. “Surface molecular degradation of 3D glass polymer composite under low earth orbit simulated space environment”, Polymer Degradation and Stability 2010, 95, 987–96.
  • Shimokawa, T.; Katoh, H.; Hamaguchi, Y.; Sanbongi, S.; Mizuno, H.; Nakamura, H., et al. “Effect of Thermal Cycling on Microcracking and Strength Degradation of High-Temperature Polymer Composite Materials for Use in Next-Generation SST Structures”, Journal of Composite Materials. 2002, 36, 885–95.
  • Timmerman, J. F.; Tillman, M. S.; Hayes, B. S.; Seferis, J. C. “Matrix and fiber influences on the cryogenic microcracking of carbon fiber/epoxy composites”, Composites Part A: Applied Science and Manufacturing. 2002, 33, 323–9.
  • Hancox, N. L. “Thermal effects on polymer matrix composites: Part 1. Thermal cycling. Materials and Design. 1998, 19, 85–91.
  • Han, J-H.; Kim, C-G. “Low earth orbit space environment simulation and its effects on graphite/epoxy composites”, Composite Structures. 2006, 72, 218–26.
  • Akhtar, A.; Wong, J. Y. “FAILURE ANALYSIS OF BRITTLE FRACTURE IN NONCERAMIC INSULATORS”, Journal of Composites Technology and Research. 1987, 9, 95–100.
  • Chughtai, A. R.; Smith, D. M.; Kumosa, M. S. “Chemical analysis of a field-failed composite suspension insulator”, Composites Science and Technology. 1998, 58, 1641–7.
  • Harris, S. J.; Nobel, B.; Owen, M. J. “Metallographic investigation of the damage caused to GRP by the combined action of electrical, mechanical and chemical environments”, Journal of Materials Science. 1984, 19, 1596–604.
  • Kumosa, M.; Narayan, H. S.; Qiu, Q.; Bansal, A. “Brittle fracture of non-ceramic suspension insulators with epoxy cone end-fittings”, Composites Science and Technology. 1997, 57, 739–51.
  • Noble, B.; Harris, S. J.; Owen, M. J. “Stress corrosion cracking of GRP pultruded rods in acid environments”, Journal of Materials Science. 1983, 18, 1244–54.
  • Owen, M. J.; Harris, S. J.; Noble, B. “Failure of high voltage electrical insulators with pultruded glass fibre-reinforced plastic cores”, Composites. 1986, 17, 217–26.
  • Dai, J.; Yao, X.; Liang, X.; Yeh, H. Y. “Experimental study of microcracks in stress corrosion of fibre reinforced composites”, Polymer Testing. 2006, 25, 758–65.
  • Megel, M.; Kumosa, L.; Ely, T.; Armentrout, D.; Kumosa, M. “Initiation of stress-corrosion cracking in unidirectional glass/polymer composite materials. Composites Science and Technology”, 2001, 61, 231–46.
  • Akdemir, A.; Tarakcioglu, N.; Avci, A. “Stress corrosion crack growth in glass/polyester composites with surface crack”, Composites Part B: Engineering. 2001, 32, 123–9.
  • Hogg, P. J. “A model for stress corrosion crack growth in glass reinforced plastics”, Composites Science and Technology. 1990, 38, 23–42.
  • Kumosa, L.; Armentrout, D.; Kumosa, M. “An evaluation of the critical conditions for the initiation of stress corrosion cracking in unidirectional E-glass/polymer composites”, Composites Science and Technology. 2001, 61, 615–23.
  • Kumosa, L.; Armentrout, D.; Kumosa, M. “The effect of sandblasting on the initiation of stress corrosion cracking in unidirectional E-glass/polymer composites used in high voltage composite (non-ceramic) insulators”, Composites Science and Technology. 2002, 62, 1999–2015.
  • Kumosa, L.; Kumosa, M.; Armentrout, D. “Resistance to stress corrosion cracking of unidirectional ECR-glass/polymer composites for high voltage composite insulator applications”, Composites Part A: Applied Science and Manufacturing. 2003, 34, 1–15.
  • Tsotsis, T. K.; Lee, S. M. “Long-term thermo-oxidative aging in composite materials: Failure mechanisms”, Composites Science and Technology. 1998, 58, 355–68.
  • Olivier, L.; Ho, N. Q.; Grandidier, J. C.; Lafarie-Frenot, M. C. “Characterization by ultra-micro indentation of an oxidized epoxy polymer: Correlation with the predictions of a kinetic model of oxidation”, Polymer Degradation and Stability. 2008, 93, 489–97.
  • Colin, X.; Marais, C.; Verdu, J. “A new method for predicting the thermal oxidation of thermoset matrices: Application to an amine crosslinked epoxy”, Polymer Testing. 2001, 20, 795–803.
  • Lafarie-Frenot, M. C.; Grandidier, J. C.; Gigliotti, M.; Olivier, L.; Colin, X.; Verdu, J., et al. “Thermo-oxidation behaviour of composie materials at high temperatures: A review of research activities carried out within the COMEDI program”, Polymer Degradation and Stability. 2010, 95, 965–74.
  • Gu, X.; Michaels, C.; Drzal, P.; Jasmin, J.; Martin, D.; Nguyen, T., et al. “Probing photodegradation beneath the surface: a depth profiling study of UV-degraded polymeric coatings with microchemical imaging and nanoindentation”, Journal of Coatings Technology and Research. 2007, 4, 389–99.
  • Woo, R. S. C.; Chen, Y.; Zhu, H.; Li, J.; Kim, J-K.; Leung, C. K. Y. “Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure. Part I: Photo-degradation”, Composites Science and Technology. 2007, 67, 3448–56.
  • Kumar, B. G.; Singh, R. P.; Nakamura, T. “Degradation of Carbon Fiber-Reinforced Epoxy Composites by Ultraviolet Radiation and Condensation”, Journal of Composite Materials. 2002, 36, 2713–33.
  • Awaja, F.; Nguyen, M-T.; Zhang, S.; Arhatari, B. “The investigation of inner structural damage of UV and heat degraded polymer composites using X-ray micro CT”, Composites Part A: Applied Science and Manufacturing. 2011, 42, 408–18.
  • Iskanderova, Z.; Kleiman, J.; Gudimenko, Y.; Tennyson, R. C.; Morison, W. D. “Comparison of surface modification of polymeric materials for protection from severe oxidative environments using different ion sources”, Surface and Coatings Technology. 2000, 127, 18–23.
  • Feldman, D. “Polymer Weathering: Photo-Oxidation”, Journal of Polymers and the Environment. 2002, 10, 163–73.
  • Xiang, J.; Wang, J.; Chen, X.; Lei, J. “Formation mechanism of microvoids and microcracks of poly(vinyl chloride) under an artificial aging environment”, Journal of Applied Polymer Science. 2012, 125, 291–9.
  • Decelle, J.; Huet, N.; Bellenger, V. “Oxidation induced shrinkage for thermally aged epoxy networks”, Polymer Degradation and Stability. 2003, 81, 239–48.
  • Olivier, L.; Baudet, C.; Bertheau, D.; Grandidier, J. C.; Lafarie-Frenot, M. C. “Development of experimental, theoretical and numerical tools for studying thermo-oxidation of CFRP composites”, Composites Part A: Applied Science and Manufacturing. 2009, 40, 1008–16.
  • Lafarie-Frenot, M.; Rouquié, S.; Ho, N.; Bellenger, V. “Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling”, Composites Part A. 2006, 37, 662–71.
  • Chang, L. N.; Chow, W. S. “Accelerated Weathering on Glass Fiber/Epoxy/Organo-montmorillonite Nanocomposites”, Journal of Composite Materials. 2010, 44, 1421–34.
  • Awaja, F.; Pigram, P. J. “Surface molecular characterisation of different epoxy resin composites subjected to UV accelerated degradation using XPS and ToF-SIMS”, Polymer Degradation and Stability 2009, 94, 651–8.
  • Aditya, P. K.; Sinha, P. K. “Diffusion Coefficients of Polymeric Composites Subjected to Periodic Hygrothermal Exposure”, Journal of Reinforced Plastics and Composites. 1992, 11, 1035–47.
  • Sawpan, M. A.; Holdsworth, P. G.; Renshaw, P. “Glass transitions of hygrothermal aged pultruded glass fibre reinforced polymer rebar by dynamic mechanical thermal analysis”, Materials & Design. 2012, 42, 272–8.
  • Dag, S.; Yildirim, B.; Arslan, O.; Arman, E. “Hygrothermal fracture analysis of orthotropic materials using Jk integral”, Journal of Thermal Stresses. 2012, 35, 596–613.
  • Robert, M.; Roy, R.; Benmokrane, B. “Environmental effects on glass fibre reinforced polypropylene thermoplastic composites laminates for structural applications”, Polymer Composites. 2010, 31, 604–11.
  • Aronhime, M. T.; Neumann, S.; Marom, G. “The anisotropic diffusion of water in kevlar epoxy composites”, Journal of Materials Science. 1987, 22, 2435–6.
  • Leman, Z.; Sapuan, S. M.; Saifol, A. M.; Maleque, M. A.; Ahmad, M. M. H. M. “Moisture absorption behaviour of sugar plam fibre reinforced epoxy composites”, Materials & Design. 2008, 29, 1666–70.
  • Jana, R. N.; Bhunia, H. “Hygrothermal degradation of the composite laminates from woven carbon/SC-15 epoxy resin and woven glass/SC-15 epoxy resin”, Polymer Composites. 2008, 29, 664–9.
  • Ray, B. C. “Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites”, Journal of Colloid and Interface Science. 2006, 298, 111–7.
  • Slater, C.; Davis, C.; Strangwood, M. “Compression set of thermoplastic polyurethane under different thermal-mechanical-moisture conditions”, Polymer Degradation and Stability. 2011, 96, 2139–44.
  • Badia, J. D.; Santonja-Blasco, L.; Martinez-Felipe, A.; Ribes-Greus, A. “Hygrothermal ageing of reprocessed polylactide”, Polymer Degradation and Stability. 2012, 97, 1881–90.
  • Miller, S. G.; Roberts, G. D.; Bail, J. L.; Kohlman, L. W.; Binienda, W. K. “Effects of hygrothermal cycling on the chemical, thermal, and mechanical properties of 862/W epoxy resin”, High Performance Polymers. 2012, 24, 470–7.
  • Phua, Y. J.; Chow, W. S.; Mohd Ishak, Z. A. “The hydrolytic effect of moisture and hygrothermal aging on poly(butylene succinate)/organo-montmorillonite nanocomposites”, Polymer Degradation and Stability. 2011, 96, 1194–203.
  • Jiang, X.; Kolstein, H.; Bijlaard, F. S. K. “Moisture diffusion and hygrothermal aging in pultruded fibre reinforced polymer composites of bridge decks. Materials & Design. 2012, 37, 304–12.
  • Roy, S. “Prediction of Anomalous Hygrothermal Effects in Polymer Matrix Composites”, Journal of Reinforced Plastics and Composites. 1999, 18, 1197–207.
  • Ben Daly, H.; Ben Brahim, H.; Hfaied, N.; Harchay, M.; Boukhili, R. “Investigation of water absorption in pultruded composites containing fillers and low profile additives”, Polymer Composites. 2007, 28, 355–64.
  • Ben Daly, H.; Harchay, M.; Belhadjsalah, H.; Boukhili, R. “Experimental Characterization and Numerical Simulation of the Humidity Absorption Process in Glass Reinforced Composites Under Dissymmetric Exposure Conditions”, Polymer Composites. 2009, 30, 1825–36.
  • Eslami, S.; Taheri-Behrooz, F.; Taheri, F. “Long-term hygrothermal response of perforated GFRP plates with/without application of constant external loading”, Polymer Composites. 2012, 33, 467–75.
  • Papanicolaou, G. C.; Kosmidou, T. V.; Vatalis, A. S.; Delides, C. G. “Water absorption mechanism and some anomalous effects on the mechanical and viscoelastic behavior of an epoxy system”, Journal of Applied Polymer Science. 2006, 99, 1328–39.
  • Davies, P.; Evrard, G. “Accelerated ageing of polyurethanes for marine applications”, Polymer Degradation and Stability. 2007, 92, 1455–64.
  • Le Gac, P. Y.; Le Saux, V.; Paris, M.; Marco, Y. “Ageing mechanism and mechanical degradation behaviour of polychloroprene rubber in a marine environment: Comparison of accelerated ageing and long term exposure”, Polymer Degradation and Stability. 2012, 97, 288–96.
  • Mouritz, A. P. “Environmental durability of z-pinned carbon fibre-epoxy laminate exposed to water”, Composites Science and Technology. 2012, 72, 1568–74.
  • Visco, A. M.; Campo, N.; Cianciafara, P. “Comparison of seawater absorption properties of thermoset resins based composites”, Composites Part a-Applied Science and Manufacturing. 2011, 42, 123–30.
  • Davies, P.; Mazeas, F.; Casari, P. “Sea water aging of glass reinforced composites: Shear behaviour and damage modeling”, Journal of Composite Materials. 2001, 35, 1343–73.
  • Mouzakis, D. E.; Zoga, H.; Galiotis, C. “Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs)”, Composites Part B: Engineering. 2008, 39, 467–75.
  • Kawagoe, M.; Doi, Y.; Fuwa, N.; Yasuda, T.; Takata, K. “Effects of absorbed water on the interfacial fracture between layers of unsaturated polyester and glass”, Journal of Materials Science. 2011, 36, 5161–7.
  • Bowles, K. J.; Nowak, G. “Thermo-oxidative stability studies of celion 6000/PMR-15 unidirectional composites, PMR-15, and celion 6000 Fiber”, Journal of Composite Materials. 1988, 22, 966–85.
  • Colin, X.; Marais, C.; Verdu, J. “Kinetic modelling of the stabilizing effect of carbon fibres on thermal ageing of thermoset matrix composites”, Composites Science and Technology. 2005, 65, 117–27.
  • Pochiraju, K. V.; Tandon, G. P.; Schoeppner, G. A. “Evolution of stress and deformations in high-temperature polymer matrix composites during thermo-oxidative aging”, Mechanics of Time-Dependent Materials. 2008, 12, 45–68.
  • Gigliotti, M.; Olivier, L.; Vu, D. Q.; Grandidier, J-C.; Christine, Lafarie-Frenot M. “Local shrinkage and stress induced by thermo-oxidation in composite materials at high temperatures”, Journal of the Mechanics and Physics of Solids. 2011, 59, 696–712.
  • Vu, D. Q.; Gigliotti, M.; Lafarie-Frenot, M. C. “Experimental characterization of thermo-oxidation-induced shrinkage and damage in polymer–matrix composites”, Composites Part A: Applied Science and Manufacturing. 2012, 43, 577–86.
  • Colin, X.; Verdu, J. “Strategy for studying thermal oxidation of organic matrix composites”, Composites Science and Technology. 2005, 65, 411–9.
  • Colin, X.; Mavel, A.; Marias, C.; Verdu, J. “Interaction between cracking and oxidation in organic matrix composites”, Journal of Composite Materials. 2005, 39, 1371–89.
  • Madhukar, M. S.; Bowles, K. J.; Papadopoulos, D. S. “Thermo-oxidative stability and fiber surface modification effects on the inplane shear properties of graphite/PMR-15 composites. Journal of Composite Materials. 1997, 31, 596–618.
  • Rouquie, S.; Lafarie-Frenot, M. C.; Cinquin, J.; Colombaro, A. M. “Thermal cycling of carbon/epoxy laminates in neutral and oxidative environments”, Composites Science and Technology. 2005, 65, 403–9.
  • Lafarie-Frenot, M. C.; Rouquie, S. “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling”, Composite Science and Technology. 2004, 64, 1725–35.
  • Tandon, G. P.; Pochiraju, K. V. “Heterogeneous thermo-oxidative behaviour of multidirectional laminated composites”, Journal of Composite Materials. 2011, 45, 415–35.
  • Vu, D-Q.; Gigliotti, M.; Lafarie-Frenot, M. C. “The effect of thermo-oxidation on matrix cracking of cross-ply [0/90]S composite laminates”, Composites Part A: Applied Science and Manufacturing. 2013, 44, 114–21.
  • Kessler, S. S.; Spearing, S. M.; Atalla, M. J.; Cesnik, C. E.; Soutis, C. “Damage detection in composite materials using frequency response methods. Composites Part B: Engineering. 2002, 33, 87–95.
  • Halmshaw, R.; Honeycombe, R.; Hancock, P. Non-destructive testing: E. Arnold, London; 1991.
  • Van Tittelboom, K.; De Belie, N.; Lehmann, F.; Grosse, C. U. “Acoustic emission analysis for the quantification of autonomous crack healing in concrete”, Construction and Building Materials. 2012, 28, 333–41.
  • Santulli, C. “Matrix cracking detection by acoustic emission in polymer composites and counts/duration ratio”, E–J Non-Destructive Test. 2012, 17(11).
  • Loutas, T.; Vavouliotis, A.; Karapappas, P.; Kostopoulos, V. “Fatigue damage monitoring in carbon fiber reinforced polymers using the acousto-ultrasonics technique”, Polymer Composites. 2010, 31, 1409–17.
  • Gyekenyesi, A. L.; Baker, C.; Morscher, G. “Characterizing damage in ceramic matrix composites. Proc. SPIE 9063, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2014, p. 90631L; doi:10.1117/12.2046630.
  • Dhital, D.; Lee, J. R.; Farrar, C.; Mascarenas, D. “A review of flaws and damage in space launch vehicles: Motors and engines”, Journal of Intelligent Material Systems and Structures. 2014, 25, 524–40.
  • Abed, M. M.; Al-Maamori, M.; Amer, Z. J. A. “Compression behaviour of polymer concrete by using destructive and ultrasonic wave test at 26 KHZ”, Academic Research International. 2013; 4(2):168.
  • Schmutzler, H.; Alder, M.; Kosmann, N.; Wittich, H.; Schulte, K. “Degradation monitoring of impact damaged carbon fibre reinforced polymers under fatigue loading with pulse phase thermography”, Composites Part B: Engineering. 2014, 59, 221–9.
  • Monchalin, J. Non contact generation and detection of ultrasound with lasers. Proceedings of the 16th World Conference on Nondestructive Testing 2004.
  • Hosur, M. V.; Chowdhury, F.; Jeelani, S. “Low-velocity impact response and ultrasonic NDE of woven carbon/epoxy—Nanoclay nanocomposites”, Journal of Composite Materials. 2007, 41, 2195–212.
  • Gammon, L. M. “Polymeric composites, morphological characterisation and fracture analysis: Fluorescent, dark field, bright field and polarized light optical microscopy”, Microscopy and Microanalysis. 2004, 10, 740–1.
  • Hayes, B. S.; Gammon, L. M. Optical Microscopy of Fiber Reinforced Composites. ASM International; Materials Park, Ohio, 2010. p. 261.
  • Huang, D.; Swanson, E. A.; Lin, C. P.; Schuman, J. S.; Stinson, W. G.; Chang, W., et al. “Optical coherence tomography”, Science. 1991, 254, 1178–81.
  • Fercher, A.; Hitzenberger, C. “Optical coherence tomography”, Progress in optics. 2002, 44, 215–302.
  • Bouma, B. Handbook of optical coherence tomography: Informa Health Care; 2001.
  • Dunkers, J. P.; Phelan, F. R.; Sanders, D. P.; Everett, M. J.; Green, W. H.; Hunston, D. L., et al. “The application of optical coherence tomography to problems in polymer matrix composites”, Optics and Lasers in Engineering. 2001, 35, 135–47.
  • Bashkansky, M.; Duncan, M.; Kahn, M.; Lewis, III D.; Reintjes, J. “Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography”, Optics Letters. 1997, 22, 61–3.
  • De Boer, J. F.; Milner, T. E.; van Gemert, M. J.; Nelson, J. S. “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography”, Optics Letters. 1997, 22, 934–6.
  • De Boer, J. F.; Milner, T. E. “Review of polarization sensitive optical coherence tomography and Stokes vector determination”, Journal of biomedical optics. 2002, 7, 359–71.
  • Hitzenberger, C.; Götzinger, E.; Sticker, M.; Pircher, M.; Fercher, A. “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography”, Optics Express. 2001, 9, 780–90.
  • Stifter, D.; Burgholzer, P.; Höglinger, O.; Götzinger, E.; Hitzenberger, C. K. “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping”, Applied Physics A. 2003, 76, 947–51.
  • Sato, N.; Kurauchi, T.; Sato, S.; Kamigaito, O. “SEM observations of the initiation and propagation of cracks in a short fibre-reinforced thermoplastic composite under stress”, Journal of Materials Science Letters. 1983, 2, 188–90.
  • Purslow, D. “Fractography of fibre-reinforced thermoplastics, Part 3. Tensile, compressive and flexural failures”, Composites. 1988, 19, 358–66.
  • Stock, S. “Recent advances in X-ray microtomography applied to materials”, International Materials Reviews. 2008, 53, 129–81.
  • Parnasov, V. S.; Dobromyslov, V. A. “NDT methods, equipment, and technology for polymer composite products”, Measurements Techniques. 1997, 40, 1076–83.
  • Beier, U.; Fischer, F.; Sandler, J. K. W.; Altstädt, V.; Weimer, C.; Buchs, W. “Mechanical performance of carbon fibre-reinforced composites based on stitched preforms. Composites Part A: Applied Science and Manufacturing”, 2007, 38, 1655–63.
  • Awaja, F.; Arhatari, B. D. “X-ray Micro Computed Tomography investigation of accelerated thermal degradation of epoxy resin/glass microsphere syntactic foam”, Composites Part A: Applied Science and Manufacturing. 2009, 40, 1217–22.
  • Awaja, F.; Arhatari, B.; Wiesauer, K.; Leiss, E.; Stifter, D. “An investigation of the accelerated thermal degradation of different epoxy resin composites using X-ray microcomputed tomography and optical coherence tomography”, Polymer Degradation and Stability. 2009, 94, 1814–24.
  • Schilling, P. J.; Karedla, B. R.; Tatiparthi, A. K.; Verges, M. A.; Herrington, P. D. “X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites”, Composites Science and Technology. 2005, 65, 2071–8.
  • Tan, K. T.; Watanabe, N.; Iwahori, Y. “X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading”, Composites Part B: Engineering. 2011, 42, 874–84.
  • Liotier, P-J.; Alain, V.; Christine, D. “Characterization of 3D morphology and microcracks in composites reinforced by multi-axial multi-ply stitched preforms”, Composites Part A: Applied Science and Manufacturing. 2010, 41, 653–62.
  • Bayraktar, E.; Bessri, K.; Bathias, C. “Deformation behaviour of elastomeric matrix composites under static loading conditions”, Engineering Fracture Mechanics. 2008, 75, 2695–706.
  • Sket, F.; Seltzer, R.; Molina-Aldareguía, J. M.; Gonzalez, C.; Llorca, J. “Determination of damage micromechanisms and fracture resistance of glass fiber/epoxy cross-ply laminate by means of X-ray computed microtomography”, Composites Science and Technology. 2012, 72, 350–9.
  • Zhu, P.; Duvauchelle, P.; Peix, G.; Babot, D. “X-ray Compton backscattering techniques for process tomography: imaging and characterization of materials. Measurements Science and Technology 1996, 7, 281–6.
  • Babot, D.; Berodias, G.; Peix, G. “Detection and Sizing by X-ray Compton Scattering of Nearsurface Cracks under Weld Deposited Cladding”, NDT&E International. 1991, 24, 247–51.
  • Lawson, L. “Compton X-ray Backscatter Depth Profilometry for Aircraft Corrosion Inspection”, Materials Evaluation. 1995, 8, 936–41.
  • Niemann, W.; Zahorodny, S. “Status and Future Aspects of X-ray Backscattering Imaging”, Review of Progress in Quantitative Nondestructive Evaluation. 1998, 17, 379–85.
  • Summerscales, J. “Non-destructive testing of advanced composites: A review of recent advances”, British Journal of Non-Destructive Testing. 1990, 32, 568–77.
  • Henneke, E. G.; Jones, T. S. “Detection of damage in composite materials by vibrothermography”, In: Pipes, R. B., editor. Nondestructive evaluation andflaw criticality for composite materials: ASTM STP696, (ASTM, Philadelphia); 1979. p. 83–95.
  • Lee, Y-S.; Chung, M-J. “A study on crack detection using eigenfrequency test data”, Computers & structures. 2000, 77, 327–42.
  • Ohno, H.; Naruse, H.; Kihara, M.; Shimada, A. “Industrial applications of the BOTDR optical fiber strain sensor”, Optical fiber technology. 2001, 7, 45–64.
  • Tikka, J.; Hedman, R.; Siljander, A. “Embedded Microcontroller Based Networked Measurement and Analysis System With Strain Gages Tailored to Fatigue Crack Detection”, The Fourth International Workshop on Structural Health Monitoring, Stanford, CA 2003.
  • Kirikera, G. R.; Shinde, V.; Kang, I.; Schulz, M. J.; Shanov, V.; Datta, S., et al. “Mimicking the biological neural system using electronic logic circuits”, Smart Structures and Materials: International Society for Optics and Photonics; 2004. p. 148–57.
  • Kang, I. P.; Schulz, M. J.; Lee, J. W.; Choi, G. R.; Jung, J. Y.; Choi, J. B., et al. “A carbon nanotube smart material for structural health monitoring”, Solid State Phenomena. 2007, 120, 289–96.
  • Wernik, J. M.; Meguid, S. A. “Recent developments in multifunctional nanocomposites using carbon nanotubes”, Applied Mechanics Reviews. 2010, 63, 050801–050841.
  • Kim, K. J.; Yu, W-R.; Lee, J. S.; Gao, L.; Thostenson, E. T.; Chou, T-W., et al. “Damage characterization of 3D braided composites using carbon nanotube-based in situ sensing”, Composites Part A: Applied Science and Manufacturing. 2010, 41, 1531–7.
  • Wu, A. S.; Coppola, A. M.; Sinnott, M. J.; Chou, T-W.; Thostenson, E. T.; Byun, J-H., et al. “Sensing of damage and healing in three-dimensional braided composites with vascular channels”, Composites science and technology. 2012, 72, 1618–26.
  • Narita, F. S.; Yasuhide; Takeda, Tomo. ; Kuronuma, Yu.; “Sanada, Kazuaki Loading Rate-Dependent Fracture Properties and Electrical Resistance-Based Crack Growth Monitoring of Polycarbonate Reinforced with Carbon Nanotubes Under Tension”, Journal of Testing and Evaluation. 2015; 43–51.
  • Yun, Y-H.; Kang, I.; Gollapudi, R.; Lee, J. W.; Hurd, D., Shanov, V. N., et al. “Proc. SPIE 5763, Smart Structures and Materials 2005: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, 2005,184–195; doi:10.1117/12.600276.
  • Wu, D. Y.; Meure, S.; Solomon D. “Self-healing polymeric materials: a review of recent developments”, Progress in Polymer Science. 2008, 33, 479–522.
  • White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R., et al. “Autonomic healing of polymer composites”, Nature. 2001, 409, 794–7.
  • Yuan, Y. C.; Yin, T.; Rong, M. Z.; Zhang, M. Q. “Self healing in polymers and polymer composites. Concepts,realization and outlook: A review”, Express Polymer Letters. 2008, 2, 238–50.
  • Brown, E. N.; Geubelle, P. H.; Kessler, M. R.; Moore, J. S.; Sottos, N. R.; Sriram, S. R., et al. “Multifunctional autonomically healing composite material”, Google Patents; 2005.
  • Zako, M.; Takano, N. “Intelligent material systems using epoxy particles to repair microcracks and delamination damage in GFRP. Journal of Intelligent Material Systems and Structures”, 1999, 10, 836–41.
  • Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S.R. “Self-Healing Polymers and Composites”, Annual Review of Materials Research. 2010, 40, 179–211.
  • Blaiszik, B. J.; Sottos, N. R.; White, S. R. “Nanocapsules for self-healing materials”, Composites Science and Technology. 2008, 68, 978–86.
  • Cho, S. H.; Andersson, H. M.; White, S. R.; Sottos, N. R.; Braun, P. V. “Polydimethylsiloxane-Based Self-Healing Materials”, Advanced Materials. 2006, 18, 997–1000.
  • Kessler, M. R.; Sottos, N. R.; White, S. R. “Self-healing structural composite materials. Composites Part A: Applied Science and Manufacturing”, 2003, 34, 743–53.
  • Kessler, M. R.; White, S. R. “Self-activated healing of delamination damage in woven composites”, Composites Part A: Applied Science and Manufacturing. 2001, 32, 683–99.
  • Sandilands, G. J.; White, J. R. “Effect of aging on internal stress and fatigue fracture of poly(4-methyl pentene-1)”, Journal of Applied Polymer Science. 1985, 30, 4771–92.
  • Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R. “Self-healing materials with microvascular networks”, Nat Mater. 2007, 6, 581–5.
  • Dry, C. “Procedures developed for self-repair of polymer matrix composite materials”, Composite Structures. 1996, 35, 263–9.
  • Bleay, S. M.; Loader, C. B.; Hawyes, V. J.; Humberstone, L.; Curtis, P. T. “A smart repair system for polymer matrix composites”, Composites, Part A: Applied Science and Manufacturing. 2001, 32, 1767–76.
  • Pang, J. W. C.; Bond, I. P. “A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility”, Composites Science and Technology. 2005, 65, 1791–9.
  • Pang, J. W. C.; Bond, I. P. “Bleeding composites-damage detection and self-repair using a biomimetic approach”, Composites Part A: Applied Science and Manufacturing. 2005, 36, 183–8.
  • Bergman, S. D.; Wudl, F. “Mendable polymers. Journal of Material Chemistry”, 2008, 18, 41–62.
  • Syrett, J. A.; Becer, C. R.; Haddleton, D. M. “Self-healing and self-mendable polymers”, Polymer Chemistry 2010, 1, 978–87.
  • Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H. B.; Nutt, S. R., et al. “A thermally remendable cross-linked polymeric material”, Science. 2002, 295, 1698–702.
  • Chen, X. X.; Wudl, F.; Mal, A.; Shen, H. B.; Nutt, S. R. “New thermally remendable highly cross-linked polymeric materials”, Macromolecules. 2003, 36, 1802–7.
  • Hayes, S. A.; Zhang, W.; Branthwaite, M.; Jones, F. R. “Self-healing of damage in fiber-reinforced polymer-matrix composites”, Journal of Royal Society Interface. 2007, 4, 381–87.
  • Hayes, S. A.; Jones, F. R.; Marshiya, K.; Zhang, W. “A self-healing thermosetting composite material”, Composites A. 2007, 38, 1116–20.
  • Luo, X. F.; Ou, R. Q.; Eberly, D. E.; Singhal, A.; Viratyaporn, W.; Mather, P. T. “A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion”, ACS Applied Materials Interfaces. 2009, 1, 612–20.
  • Kalista, S. J.; Ward, T. C.; Oyetunji, Z. “Self-healing of poly(ethylene-comethacrylic acid) copolymers following projectile puncture”, Mechanics of Advanced Materials Structure. 2007, 14, 391–97.
  • Kalista, S.; Ward, T. “Thermal characteristics of the self-healing response in poly(ethylenecomethacrylic acid) copolymers”, Journal of Royal Society Interface. 2007, 4, 405–11.
  • Varley, R. J.; Zwaag, Svd. “Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration”, Acta Material. 2008, 56, 5737–50.
  • Varley, R. J.; Zwaag, Svd. “Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions”, Polymer Testing. 2008, 27, 11–9.
  • Hargou, K.; Pingkarawat, K.; Mourtiz, A. P.; Wang, C. H. “Ultrasonic activation of mendable polymer for self-healing carbon-epoxy laminates”, Composite Part B. 2012, 45, 1031–9.
  • Meure, S.; Furman, S.; Khor, S. “EMMA healing agent for mendable carbon fibre laminates. Macromolecular Materials and Engineering”, 2010, 295, 420–4.
  • Varley, R. J.; Parn, G. P. “Thermally activated healing in a mendable resin using a non woven EMAA fabric”, Composite Science and Technology. 2012, 72, 453–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.