983
Views
44
CrossRef citations to date
0
Altmetric
Reviews

Marine Biopolymer-Based Nanomaterials as a Novel Platform for Theranostic Applications

, , , , & ORCID Icon

References

  • Nitta, S. K.; Numata, K. “Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering”, Int. J. Mol. Sci. 2013, 14, 1629–1654.
  • Manivasagan, P.; Oh, J. “Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications”, Int. J. Biol. Macromolec. 2016, 82, 315–327.
  • Guo, L.; Yan, D. D.; Yang, D.; Li, Y.; Wang, X.; Zalewski, O.; Yan, B.; Lu, W. “Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles”, ACS Nano 2014, 8, 5670–5681.
  • Sundar, S.; Kundu, J.; Kundu, S. C. “Biopolymeric nanoparticles”, Sci. Technol. Adv. Mater. 2010, 11, 1–13.
  • Wang, S.; Dai, Z.; Ke, H.; Qu, E.; Qi, X.; Zhang, K.; Wang, J. “Contrast ultrasound-guided photothermal therapy using gold nanoshelled microcapsules in breast cancer”, Eur. J. Radiol. 2014, 83, 117–122.
  • Liu, X.; Huang, N.; Li, H.; Wang, H.; Jin, Q.; Ji, J. “Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy”, ACS Appl. Mater. Interfaces 2014, 6, 5657–5668.
  • Dickerson, E. B.; Dreaden, E. C.; Huang, X.; El-Sayed, I. H.; Chu, H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice”, Cancer Lett. 2008, 269, 57–66.
  • Wang, C.-H.; Chang, C.-W.; Peng, C.-A. “Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment”, J. Nanopart. Res. 2011, 13, 2749–2758.
  • Patra, C. R.; Bhattacharya, R.; Mukhopadhyay, D.; Mukherjee, P. “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer”, Adv. Drug Deliv. Rev. 2010, 62, 346–361.
  • Lima-Tenório, M. K.; Pineda, E. A. G.; Ahmad, N. M.; Fessi, H.; Elaissari, A. “Magnetic nanoparticles: In vivo cancer diagnosis and therapy”, Int. J. Pharm. 2015, 493, 313–327.
  • Kemp, J. A.; Shim, M. S.; Heo, C. Y.; Kwon, Y. J. ““Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy”, Adv. Drug Deliv. Rev. 2016, 98, 3–18.
  • Yang, Y.; Yu, C. “Advances in silica based nanoparticles for targeted cancer therapy”, Nanomedicine: NBM. 2016, 12, 317–332.
  • Aider, M. “Chitosan application for active bio-based films production and potential in the food industry: A review”, LWT-Food Sci. Technol. 2010, 43, 837–842.
  • Lira, M.; Santos-Magalhães, N.; Nicolas, V.; Marsaud, V.; Silva, M.; Ponchel, G.; Vauthier, C. “Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles”, Eur. J. Pharm. Biopharm. 2011, 79, 162–170.
  • Holtkamp, A. D.; Kelly, S.; Ulber, R.; Lang, S. “Fucoidans and fucoidanases: Focus on techniques for molecular structure elucidation and modification of marine polysaccharides”, Appl. Microbiol. Biotechnol. 2009, 82, 1–11.
  • Fitton, J. H.; Irhimeh, M.; Falk, N. “Macroalgal fucoidan extracts: A new opportunity for marine cosmetics”, Cosmet. Toiletries 2007, 122, 55–64.
  • Lirdprapamongkol, K.; Warisnoicharoen, W.; Soisuwan, S.; Svasti, J. “Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles”, Am. J. Appl. Sci. 2010, 7, 1038–1042.
  • Li, B.; Lu, F.; Wei, X.; Zhao, R. “Fucoidan: Structure and bioactivity”, Molecules 2008, 13, 1671–1695.
  • Salyers, A.; Vercellotti, J.; West, S.; Wilkins, T. “Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon”, Appl. Environ. Microbiol. 1977, 33, 319–322.
  • Morya, V.; Kim, J.; Kim, E.-K. “Algal fucoidan: Structural and size-dependent bioactivities and their perspectives”, Appl. Microbiol. Biotechnol. 2012, 93, 71–82.
  • Choi, J.-i.; Kim, H.-J. “Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity”, Carbohydr. Polym. 2013, 97, 358–362.
  • Byun, E.-H.; Kim, J.-H.; Sung, N.-Y.; Choi, J.-i.; Lim, S.-T.; Kim, K.-H.; Yook, H.-S.; Byun, M.-W.; Lee, J.-W. “Effects of gamma irradiation on the physical and structural properties of β-glucan”, Radiat. Phys. Chem. 2008, 77, 781–786.
  • Choi, J.-i.; Kim, H.-J.; Lee, J.-W. “Structural feature and antioxidant activity of low molecular weight laminarin degraded by gamma irradiation”, Food Chem. 2011, 129, 520–523.
  • Venkatesan, J.; Anil, S.; Kim, S.-K.; Shim, M. S. “Seaweed polysaccharide-based nanoparticles: Preparation and applications for drug delivery”, Polymers 2016, 8, 1–25.
  • Li, P.; Dai, Y.-N.; Zhang, J.-P.; Wang, A.-Q.; Wei, Q. “Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine”, Int. J. Biomed. Sci. 2008, 4, 221–228.
  • Yang, S.-J.; Lin, F.-H.; Tsai, H.-M.; Lin, C.-F.; Chin, H.-C.; Wong, J.-M.; Shieh, M.-J. “Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms”, Biomaterials 2011, 32, 2174–2182.
  • Hari, P.; Chandy, T.; Sharma, C. P. “Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin”, J. Microencapsul. 1996, 13, 319–329.
  • Nandini, V. V.; Venkatesh, K. V.; Nair, K. C. “Alginate impressions: A practical perspective”, J. Conserv. Dent. 2008, 11, 37–41.
  • Campo, V. L.; Kawano, D. F.; Silva Jr, D. B. d.; Carvalho, I. “Carrageenans: Biological properties, chemical modifications and structural analysis: A review”, Carbohydr. Polym. 2009, 77, 167–180.
  • Lascombes, C.; Agoda-Tandjawa, G.; Boulenguer, P.; Le Garnec, C.; Gilles, M.; Mauduit, S.; Barey, P.; Langendorff, V. “Starch-carrageenan interactions in aqueous media: Role of each polysaccharide chemical and macromolecular characteristics”, Food Hydrocoll. 2017, 66, 176–189.
  • Oladzadabbasabadi, N.; Ebadi, S.; Mohammadi Nafchi, A.; Karim, A. A.; Kiahosseini, S. R. “Functional properties of dually modified sago starch/κ-carrageenan films: An alternative to gelatin in pharmaceutical capsules”, Carbohydr. Polym. 2017, 160, 43–51.
  • Narayanan, K. B.; Han, S. S. “Highly selective and quantitative colorimetric detection of mercury (II) ions by carrageenan-functionalized Ag/AgCl nanoparticles”, Carbohydr. Polym. 2017, 160, 90–96.
  • Kalsoom Khan, A.; Saba, A. U.; Nawazish, S.; Akhtar, F.; Rashid, R.; Mir, S.; Nasir, B.; Iqbal, F.; Afzal, S.; Pervaiz, F. “Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles”, Oxid. Med. Cell. Longev. 2017, 2017, 1–13.
  • McHugh, D. J. A guide to the seaweed industry. FAO fisheries technical paper No. 441. Romme: FAO 2003, pp. 61–72.
  • Venkatpurwar, V.; Shiras, A.; Pokharkar, V. “Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: In vitro cytotoxicity study”, Int. J. Pharm. 2011, 409, 314–320.
  • Zhang, Q.; Yu, P.; Li, Z.; Zhang, H.; Xu, Z.; Li, P. “Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis”, J. Appl. Phycol. 2003, 15, 305–310.
  • Kwon, M.-J.; Nam, T.-J. “Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines”, Life Sci. 2006, 79, 1956–1962.
  • Rodrigues, S.; da Costa, A. M. R.; Grenha, A. “Chitosan/carrageenan nanoparticles: Effect of cross-linking with tripolyphosphate and charge ratios”, Carbohydr. Polym. 2012, 89, 282–289.
  • Zhao, T.; Zhang, Q.; Qi, H.; Zhang, H.; Niu, X.; Xu, Z.; Li, Z. “Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight”, Int. J. Biol. Macromolec. 2006, 38, 45–50.
  • Ishihara, K.; Oyamada, C.; Matsushima, R.; Murata, M.; Muraoka, T. “Inhibitory effect of porphyran, prepared from dried ”Nori“, on contact hypersensitivity in mice”, Biosci. Biotechnol. Biochem. 2005, 69, 1824–1830.
  • Kas, H. S. “Chitosan: properties, preparations and application to microparticulate systems”, J. Microencapsul. 1997, 14, 689–711.
  • Berscht, P. C.; Nies, B.; Liebendörfer, A.; Kreuter, J. “Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics”, Biomaterials 1994, 15, 593–600.
  • Agnihotri, S. A.; Mallikarjuna, N. N.; Aminabhavi, T. M. “Recent advances on chitosan-based micro-and nanoparticles in drug delivery”, J. Control. Release 2004, 100, 5–28.
  • Du, J.; Zhang, S.; Sun, R.; Zhang, L. F.; Xiong, C. D.; Peng, Y. X. “Novel polyelectrolyte carboxymethyl konjac glucomannan–chitosan nanoparticles for drug delivery. II. Release of albumin in vitro”, J. Biomed. Mater. Res. B Appl. Biomater. 2005, 72, 299–304.
  • Sun, Y.; Wan, A. “Preparation of nanoparticles composed of chitosan and its derivatives as delivery systems for macromolecules”, J. Appl. Polym. Sci. 2007, 105, 552–561.
  • Tiyaboonchai, W. “Chitosan nanoparticles: A promising system for drug delivery”, Naresuan University J. 2003, 11, 51–66.
  • Chen, S.-C.; Wu, Y.-C.; Mi, F.-L.; Lin, Y.-H.; Yu, L.-C.; Sung, H.-W. “A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery”, J. Control. Release 2004, 96, 285–300.
  • Lin, Y.; Chen, Q.; Luo, H. “Preparation and characterization of N-(2-carboxybenzyl) chitosan as a potential pH-sensitive hydrogel for drug delivery”, Carbohydr. Res. 2007, 342, 87–95.
  • Mi, F.-L.; Shyu, S.-S.; Chen, C.-T.; Lai, J.-Y. “Adsorption of indomethacin onto chemically modified chitosan beads”, Polymer 2002, 43, 757–765.
  • Zheng, Y.; Yang, W.; Wang, C.; Hu, J.; Fu, S.; Dong, L.; Wu, L.; Shen, X. “Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: Preparation, characterization and the use for 5-fluorouracil delivery”, Eur. J. Pharm. Biopharm. 2007, 67, 621–631.
  • Kumar, M. R.; Muzzarelli, R. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. “Chitosan chemistry and pharmaceutical perspectives”, Chem. Rev. 2004, 104, 6017–6084.
  • Lee, K. Y.; Ha, W. S.; Park, W. H. “Blood compatibility and biodegradability of partially N-acylated chitosan derivatives”, Biomaterials 1995, 16, 1211–1216.
  • Richardson, S. W.; Kolbe, H. J.; Duncan, R. “Potential of low molecular mass chitosan as a DNA delivery system: Biocompatibility, body distribution and ability to complex and protect DNA”, Int. J. Pharm. 1999, 178, 231–243.
  • Manivasagan, P.; Bharathiraja, S.; Bui, N. Q.; Lim, I. G.; Junghwan, O. “Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel agents for drug delivery and photoacoustic imaging of cancer cells”, Int. J. Pharm. 2016, 511, 367–379.
  • Sinha, V.; Kumria, R. “Polysaccharides in colon-specific drug delivery”, Int. J. Pharm. 2001, 224, 19–38.
  • Wen, Y.; Oh, J. K. “Recent strategies to develop polysaccharide‐based nanomaterials for biomedical applications”, Macromol. Rapid Commun. 2014, 35, 1819–1832.
  • Danila, D.; Johnson, E.; Kee, P. “CT imaging of myocardial scars with collagen-targeting gold nanoparticles”, Nanomedicine: NBM. 2013, 9, 1067–1076.
  • Zhao, P.; Li, N.; Astruc, D. “State of the art in gold nanoparticle synthesis”, Coord. Chem. Rev. 2013, 257, 638–665.
  • Lee, K. W.; Jeong, D.; Na, K. “Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment”, Carbohydr. Polym. 2013, 94, 850–856.
  • Manivasagan, P.; Bharathiraja, S.; Bui, N. Q.; Jang, B.; Oh, Y.-O.; Lim, I. G.; Oh, J. “Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging”, Int. J. Biol. Macromolec. 2016, 91, 578–588.
  • Leung, T. C.-Y.; Wong, C. K.; Xie, Y. “Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan”, Mater. Chem. Phys. 2010, 121, 402–405.
  • Kimura, R.; Rokkaku, T.; Takeda, S.; Senba, M.; Mori, N. “Cytotoxic effects of fucoidan nanoparticles against osteosarcoma”, Mar. Drugs 2013, 11, 4267–4278.
  • Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. “Alginate/chitosan nanoparticles are effective for oral insulin delivery”, Pharm. Res. 2007, 24, 2198–2206.
  • Tiyaboonchai, W.; Woiszwillo, J.; Sims, R. C.; Middaugh, C. R. “Insulin containing polyethylenimine–dextran sulfate nanoparticles”, Int. J. Pharm. 2003, 255, 139–151.
  • Joye, I. J.; McClements, D. J. “Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application”, Curr. Opin. Colloid Interface Sci. 2014, 19, 417–427.
  • Sarei, F.; Dounighi, N. M.; Zolfagharian, H.; Khaki, P.; Bidhendi, S. M. “Alginate nanoparticles as a promising adjuvant and vaccine delivery system”, Indian J. Pharm. Sci. 2013, 75, 442–449.
  • Zhang, C.; Wang, W.; Liu, T.; Wu, Y.; Guo, H.; Wang, P.; Tian, Q.; Wang, Y.; Yuan, Z. “Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy”, Biomaterials 2012, 33, 2187–2196.
  • Guo, H.; Lai, Q.; Wang, W.; Wu, Y.; Zhang, C.; Liu, Y.; Yuan, Z. “Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy”, Int. J. Pharm. 2013, 451, 1–11.
  • Pinheiro, A. C.; Bourbon, A. I.; Quintas, M. A.; Coimbra, M. A.; Vicente, A. A. “Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound”, Innov. Food Sci. Emerg. Technol. 2012, 16, 227–232.
  • Pinheiro, A. C.; Bourbon, A. I.;Medeiros, B. G.d.S.; da Silva, L. H.; da Silva, M. C.; Carneiro-da-Cunha, M. G.; Coimbra, M. A.; Vicente, A. A. “Interactions between κ-carrageenan and chitosan in nanolayered coatings: Structural and transport properties”, Carbohydr. Polym. 2012, 87, 1081–1090.
  • Bulmer, C.; Margaritis, A.; Xenocostas, A. “Encapsulation and controlled release of recombinant human erythropoietin from chitosan-carrageenan nanoparticles”, Curr. Drug Deliv. 2012, 9, 527–537.
  • Elsupikhe, R. F.; Shameli, K.; Ahmad, M. B. “Sonochemical method for the synthesis of silver nanoparticles in κ-carrageenan from silver salt at different concentrations”, Res. Chem. Intermed. 2015, 41, 8515–8525.
  • Rhim, J.-W.; Wang, L.-F. “Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles”, Appl. Clay Sci. 2014, 97–98, 174–181.
  • Bhatia, S.; Namdeo, A.; Nanda, S. “Factors effecting the gelling and emulsifying properties of a natural polymer”, Systematic Rev. Pharm. 2010, 1, 86–92.
  • Bhatia, S.; Rathee, P.; Sharma, K.; Chaugule, B.; Kar, N.; Bera, T. “Immuno-modulation effect of sulphated polysaccharide (porphyran) from Porphyra vietnamensis”, Int. J. Biol. Macromolec. 2013, 57, 50–56.
  • Takahashi, K.; Hirano, Y.; Araki, S.; Hattori, M. “Emulsifying ability of porphyran prepared from dried nori, Porphyra yezoensis, a red alga”, J. Agric. Food Chem. 2000, 48, 2721–2725.
  • Vieira, D. B.; Carmona-Ribeiro, A. M. “Cationic nanoparticles for delivery of amphotericin B: preparation, characterization and activity in vitro”, J. Nanobiotechnology 2008, 6, 1–13.
  • Bhatia, S.; Kumar, V.; Sharma, K.; Nagpal, K.; Bera, T. “Significance of algal polymer in designing amphotericin B nanoparticles”, Scientific World J. 2014, 2014, 1–21.
  • Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.; Tamura, H. “Biomedical applications of chitin and chitosan based nanomaterials: A short review”, Carbohydr. Polym. 2010, 82, 227–232.
  • George, M.; Abraham, T. E. “Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan: A review”, J. Control. Release 2006, 114, 1–14.
  • Nagpal, K.; Singh, S. K.; Mishra, D. N. “Chitosan nanoparticles: A promising system in novel drug delivery”, Chem. Pharm. Bull. 2010, 58, 1423–1430.
  • Chen, M.-C.; Mi, F.-L.; Liao, Z.-X.; Hsiao, C.-W.; Sonaje, K.; Chung, M.-F.; Hsu, L.-W.; Sung, H.-W. “Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules”, Adv. Drug Deliv. Rev. 2013, 65, 865–879.
  • Ohya, Y.; Cai, R.; Nishizawa, H.; Hara, K.; Ouchi, T. “Preparation of PEG-grafted chitosan nanoparticles as peptide drug carriers”, STP Pharma Sci. 2000, 10, 77–82.
  • Yamamoto, H.; Takeuchi, H.; Hino, T.; Kawashima, Y. “Mucoadhesive liposomes: Physicochemical properties and release behavior of water-soluble drugs from chitosan-coated liposomes”, STP Pharma Sci. 2000, 10, 63–68.
  • Boca, S. C.; Potara, M.; Gabudean, A.-M.; Juhem, A.; Baldeck, P. L.; Astilean, S. “Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy”, Cancer Lett. 2011, 311, 131–140.
  • Manivasagan, P.; Quang Bui, N.; Bharathiraja, S.; Santha Moorthy, M.; Oh, Y.-O.; Song, K.; Seo, H.; Yoon, M.; Oh, J. “Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer”, Sci. Rep. 2017, 7, 43593.
  • Termsarasab, U.; Cho, H.-J.; Kim, D. H.; Chong, S.; Chung, S.-J.; Shim, C.-K.; Moon, H. T.; Kim, D.-D. “Chitosan oligosaccharide–arachidic acid-based nanoparticles for anti-cancer drug delivery”, Int. J. Pharm. 2013, 441, 373–380.
  • Chae, S. Y.; Son, S.; Lee, M.; Jang, M.-K.; Nah, J.-W. “Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier”, J. Control. Release 2005, 109, 330–344.
  • Hu, F.-Q.; Zhao, M.-D.; Yuan, H.; ; Du, Y.-Z.; Zeng, S. “A novel chitosan oligosaccharide–stearic acid micelles for gene delivery: Properties and in vitro transfection studies”, Int. J. Pharm. 2006, 315, 158–166.
  • Bae, K. H.; Park, M.; Do, M. J.; Lee, N.; Ryu, J. H.; Kim, G. W.; Kim, C.; Park, T. G.; Hyeon, T. “Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia”, ACS Nano 2012, 6, 5266–5273.
  • Charan, S.; Sanjiv, K.; Singh, N.; Chien, F.-C.; Chen, Y.-F.; Nergui, N. N.; Huang, S.-H.; Kuo, C. W.; Lee, T.-C.; Chen, P. “Development of chitosan oligosaccharide-modified gold nanorods for in vivo targeted delivery and noninvasive imaging by NIR irradiation”, Bioconjugate Chem. 2012, 23, 2173–2182.
  • Hezinger, A.; Teßmar, J.; Göpferich, A. “Polymer coating of quantum dots–a powerful tool toward diagnostics and sensorics”, Eur. J. Pharm. Biopharm. 2008, 68, 138–152.
  • Nam, J.; Won, N.; Bang, J.; Jin, H.; Park, J.; Jung, S.; Jung, S.; Park, Y.; Kim, S. “Surface engineering of inorganic nanoparticles for imaging and therapy”, Adv. Drug Deliv. Rev. 2013, 65, 622–648.
  • Shibu, E. S.; Hamada, M.; Murase, N.; Biju, V. “Nanomaterials formulations for photothermal and photodynamic therapy of cancer”, J. Photochem. Photobiol. C: Photochem. Rev. 2013, 15, 53–72.
  • Jia, F.; Liu, X.; Li, L.; Mallapragada, S.; Narasimhan, B.; Wang, Q. “Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents”, J. Control. Release 2013, 172, 1020–1034.
  • Kim, D.; Jon, S. “Gold nanoparticles in image-guided cancer therapy”, Inorg. Chim. Acta 2012, 393, 154–164.
  • Minati, L.; Antonini, V.; Dalla Serra, M.; Speranza, G. “Multifunctional branched gold–carbon nanotube hybrid for cell imaging and drug delivery”, Langmuir 2012, 28, 15900–15906.
  • Bao, Z.; Liu, X.; Liu, Y.; Liu, H.; Zhao, K. “Near-infrared light-responsive inorganic nanomaterials for photothermal therapy”, Asian J. Pharm. Sci. 2016, 11, 349–364.
  • Austin, L. A.; Mackey, M. A.; Dreaden, E. C.; El-Sayed, M. A. “The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery”, Arch. Toxicol. 2014, 88, 1391–1417.
  • Faraday, M. “The Bakerian lecture: Experimental relations of gold (and other metals) to light”, Phil. Trans. Royal Soc. London 1857, 147, 145–181.
  • Turkevich, J.; Stevenson, P. C.; Hillier, J. “A study of the nucleation and growth processes in the synthesis of colloidal gold”, Disc. Faraday Soc. 1951, 11, 55-75.
  • Frens, G. “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions”, Nature 1973, 241, 20–22.
  • Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system”, J. Chem. Soc. Chem. Commun. 1994, 801–802.
  • Perrault, S. D.; Chan, W. C. “Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50−200 nm”, J. Am. Chem. Soc. 2009, 131, 17042–17043.
  • Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. “Plasmonic photothermal therapy (PPTT) using gold nanoparticles”, Lasers Med. Sci. 2008, 23, 217–228.
  • Khan, M. S.; Vishakante, G. D.; Siddaramaiah, H. “Gold nanoparticles: A paradigm shift in biomedical applications”, Adv. Colloid Interface Sci. 2013, 199, 44–58.
  • Jana, N. R.; Gearheart, L.; Murphy, C. J. “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template”, Adv. Mater. 2001, 13, 1389–1393.
  • Nikoobakht, B.; El-Sayed, M. A. “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method”, Chem. Mater. 2003, 15, 1957–1962.
  • Ali, M. R.; Snyder, B.; El-Sayed, M. A. “Synthesis and optical properties of small Au nanorods using a seedless growth technique”, Langmuir 2012, 28, 9807–9815.
  • Jana, N. R.; Gearheart, L.; Murphy, C. J. “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods”, J. Phys. Chem. B 2001, 105, 4065–4067.
  • Guo, R.; Zhang, L.; Qian, H.; Li, R.; Jiang, X.; Liu, B. “Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy”, Langmuir 2010, 26, 5428–5434.
  • Oldenburg, S.; Averitt, R.; Westcott, S.; Halas, N. “Nanoengineering of optical resonances”, Chem. Phys. Lett. 1998, 288, 243–247.
  • Stöber, W.; Fink, A.; Bohn, E. “Controlled growth of monodisperse silica spheres in the micron size range”, J. Colloid and Interface Sci. 1968, 26, 62–69.
  • Chatterjee, K.; Sarkar, S.; Rao, K. J.; Paria, S. “Core/shell nanoparticles in biomedical applications”, Adv. Colloid Interface Sci. 2014, 209, 8–39.
  • Miranda, A.; Malheiro, E.; Eaton, P.; Carvalho, P. A.; de Castro, B.; Pereira, E. “Synthesis of gold nanocubes in aqueous solution with remarkable shape-selectivity”, J. Porphyr. Phthalocyanines 2011, 15, 441–448.
  • Lee, D.; Yoon, S. “Gold nanocube–nanosphere dimers: Preparation, plasmon coupling, and surface-enhanced Raman scattering”, J. Phys. Chem. C 2015, 119, 7873–7882.
  • Oh, J.-H.; Sa, Y. J.; Joo, S. H.; Lee, J.-S. “Assembling gold nanocubes into a nanoporous gold material”, Notes 2012, 33, 1777–1780.
  • Ren, J.; Tilley, R. D. “Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes”, J. Am. Chem. Soc. 2007, 129, 3287–3291.
  • Sun, Y.; Xia, Y. “Shape-controlled synthesis of gold and silver nanoparticles”, Science 2002, 298, 2176–2179.
  • Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z.-Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X. “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents”, Nano Lett. 2005, 5, 473–477.
  • Austin, L. A.; Kang, B.; El-Sayed, M. A. “Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: A review”, Nano Today 2015, 10, 542–558.
  • Moon, G. D.; Choi, S.-W.; Cai, X.; Li, W.; Cho, E. C.; Jeong, U.; Wang, L. V.; Xia, Y. “A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release”, J. Am. Chem. Soc. 2011, 133, 4762–4765.
  • Chen, J.; Yang, M.; Zhang, Q.; Cho, E. C.; Cobley, C. M.; Kim, C.; Glaus, C.; Wang, L. V.; Welch, M. J.; Xia, Y. “Gold nanocages: A novel class of multifunctional nanomaterials for theranostic applications”, Adv. Funct. Mater. 2010, 20, 3684–3694.
  • Xia, Y.; Li, W.; Cobley, C. M.; Chen, J.; Xia, X.; Zhang, Q.; Yang, M.; Cho, E. C.; Brown, P. K. “Gold nanocages: From synthesis to theranostic applications”, Acc. Chem. Res. 2011, 44, 914–924.
  • Farkhani, S. M.; Valizadeh, A.; Karami, H.; Mohammadi, S.; Sohrabi, N.; Badrzadeh, F. “Cell penetrating peptides: Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules”, Peptides 2014, 57, 78–94.
  • Potara, M.; Gabudean, A.-M.; Astilean, S. “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles”, J. Mater. Chem. 2011, 21, 3625–3633.
  • Shang, L.; Dong, S.; Nienhaus, G. U. “Ultra-small fluorescent metal nanoclusters: synthesis and biological applications”, Nano Today 2011, 6, 401–418.
  • Zheng, K.; Yuan, X.; Goswami, N.; Zhang, Q.; Xie, J. “Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters”, RSC Adv. 2014, 4, 60581–60596.
  • Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. “Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles”, Adv. Mater. 2010, 22, 2729–2742.
  • Xu, C.; Sun, S. “Monodisperse magnetic nanoparticles for biomedical applications”, Polym. Int. 2007, 56, 821–826.
  • Fan, Z.; Shelton, M.; Singh, A. K.; Senapati, D.; Khan, S. A.; Ray, P. C. “Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells”, ACS Nano 2012, 6, 1065–1073.
  • Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. “Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications”, Chem. Rev. 2008, 108, 2064–2110.
  • Jiang, W.; Yang, H.-C.; Yang, S.-Y.; Horng, H.-E.; Hung, J.; Chen, Y.; Hong, C.-Y. “Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible”, J. Magn. Magn. Mater. 2004, 283, 210–214.
  • Da Costa, G.; De Grave, E.; De Bakker, P.; Vandenberghe, R. E. “Synthesis and characterization of some iron oxides by sol-gel method”, J. Solid State Chem. 1994, 113, 405–412.
  • Deng, Y.; Wang, L.; Yang, W.; Fu, S.; Elaıssari, A. “Preparation of magnetic polymeric particles via inverse microemulsion polymerization process”, J. Magn. Magn. Mater. 2003, 257, 69–78.
  • Mukh-Qasem, R. A.; Gedanken, A. “Sonochemical synthesis of stable hydrosol of Fe 3 O 4 nanoparticles”, J. Colloid Interface Sci. 2005, 284, 489–494.
  • Chen, D.; Xu, R. “Hydrothermal synthesis and characterization of nanocrystalline Fe 3 O 4 powders”, Mater. Res. Bull. 1998, 33, 1015–1021.
  • Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. “Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process”, J. Am. Chem. Soc. 2001, 123, 12798–12801.
  • Basak, S.; Chen, D.-R.; Biswas, P. “Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: Modified scaling law”, Chem. Eng. Sci. 2007, 62, 1263–1268.
  • Veintemillas-Verdaguer, S.; Morales, M.; Serna, C. “Continuous production of γ-Fe 2 O 3 ultrafine powders by laser pyrolysis”, Mater. Lett. 1998, 35, 227–231.
  • Mai, W. X.; Meng, H. “Mesoporous silica nanoparticles: A multifunctional nano therapeutic system”, Integr. Biol. 2013, 5, 19–28.
  • Tang, F.; Li, L.; Chen, D. “Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery”, Adv. Mater. 2012, 24, 1504–1534.
  • Kwon, S.; Singh, R. K.; Perez, R. A.; Neel, E. A. A.; Kim, H.-W.; Chrzanowski, W. “Silica-based mesoporous nanoparticles for controlled drug delivery”, J. Tissue Eng. 2013, 4, 1–18.
  • Piao, Y.; Burns, A.; Kim, J.; Wiesner, U.; Hyeon, T. “Designed fabrication of silica‐based nanostructured particle systems for nanomedicine applications”, Adv. Funct. Mater. 2008, 18, 3745–3758.
  • Couleaud, P.; Morosini, V.; Frochot, C.; Richeter, S.; Raehm, L.; Durand, J.-O. “Silica-based nanoparticles for photodynamic therapy applications”, Nanoscale 2010, 2, 1083–1095.
  • Brevet, D.; Gary-Bobo, M.; Raehm, L.; Richeter, S.; Hocine, O.; Amro, K.; Loock, B.; Couleaud, P.; Frochot, C.; Morère, A. “Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy”, Chem. Commun. 2009, 1475–1477.
  • Asefa, T.; Tao, Z. “Biocompatibility of mesoporous silica nanoparticles”, Chem. Res. Toxicol. 2012, 25, 2265–2284.
  • Feng, Y.; Panwar, N.; Tng, D. J. H.; Tjin, S. C.; Wang, K.; Yong, K.-T. “The application of mesoporous silica nanoparticle family in cancer theranostics”, Coord. Chem. Rev. 2016, 319, 86–109.
  • Goel, S.; Chen, F.; Cai, W. “Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics”, Small 2014, 10, 631–645.
  • Dobson, K. D.; Visoly‐Fisher, I.; Hodes, G.; Cahen, D. “Stabilizing CdTe/CdS solar cells with Cu‐containing contacts to p‐CdTe”, Adv. Mater. 2001, 13, 1495–1499.
  • Ghezelbash, A.; Korgel, B. A. “Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism”, Langmuir 2005, 21, 9451–9456.
  • Lu, Q.; Gao, F.; Zhao, D. “One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process”, Nano Lett. 2002, 2, 725–728.
  • Ni, Y.; Liu, H.; Wang, F.; Yin, G.; Hong, J.; Ma, X.; Xu, Z. “Self-assembly of CuS nanoparticles to solid, hollow, spherical and tubular structures in a simple aqueous-phase reaction”, Appl. Phys. A Mater. Sci. Process. 2004, 79, 2007–2011.
  • Thongtem, T.; Phuruangrat, A.; Thongtem, S. “Characterization of copper sulfide nanostructured spheres and nanotubes synthesized by microwave-assisted solvothermal method”, Mater. Lett. 2010, 64, 136–139.
  • Xu, H.; Wang, W.; Zhu, W. “Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route”, Mater. Lett. 2006, 60, 2203–2206.
  • Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. “A chelator-free multifunctional [64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy”, J. Am. Chem. Soc. 2010, 132, 15351–15358.
  • Wang, C.; Cheng, L.; Liu, Z. “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy”, Biomaterials 2011, 32, 1110–1120.
  • Cheng, L.; Yang, K.; Zhang, S.; Shao, M.; Lee, S.; Liu, Z. “Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles”, Nano Res. 2010, 3, 722–732.
  • Mai, H.-X.; Zhang, Y.-W.; Sun, L.-D.; Yan, C.-H. “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er core and core/shell-structured nanocrystals”, J Phys. Chem. C 2007, 111, 13721–13729.
  • Hao, S.; Chen, G.; Yang, C. “Sensing using rare-earth-doped upconversion nanoparticles”, Theranostics 2013, 3, 331–345.
  • Li, Z.; Zhang, Y. “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence”, Nanotechnology 2008, 19, 345606.
  • Yi, G.; Sun, B.; Yang, F.; Chen, D.; Zhou, Y.; Cheng, J. “Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: Ytterbium and erbium codoped lanthanum molybdate”, Chem. Mater. 2002, 14, 2910–2914.
  • Fan, X.; Pi, D.; Wang, F.; Qiu, J.; Wang, M. “Hydrothermal synthesis and luminescence behavior of lanthanide-doped GdF/sub 3/nanoparticles”, IEEE Trans. Nanotechnol. 2006, 5, 123–128.
  • Liu, C.; Wang, H.; Li, X.; Chen, D. “Monodisperse, size-tunable and highly efficient β-NaYF 4: Yb, Er (Tm) up-conversion luminescent nanospheres: Controllable synthesis and their surface modifications”, J. Mater. Chem. 2009, 19, 3546–3553.
  • Gullotti, E.; Yeo, Y. “Extracellularly activated nanocarriers: A new paradigm of tumor targeted drug delivery”, Mol. Pharm. 2009, 6, 1041–1051.
  • Kumar, M. “Nano and microparticles as controlled drug delivery devices”, J. Pharm. Pharm. Sci 2000, 3, 234–258.
  • Huang, Y.-C.; Li, R.-Y. “Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery”, Mar. Drugs 2014, 12, 4379–4398.
  • Huang, Y. C.; Lam, U. I. “Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system”, J. Chin. Chem. Soc. 2011, 58, 779–785.
  • Wu, S.-J.; Don, T.-M.; Lin, C.-W.; Mi, F.-L. “Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier”, Mar. Drugs 2014, 12, 5677–5697.
  • Motwani, S. K.; Chopra, S.; Talegaonkar, S.; Kohli, K.; Ahmad, F. J.; Khar, R. K. “Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation”, Eur. J. Pharm. Biopharm. 2008, 68, 513–525.
  • Das, R. K.; Kasoju, N.; Bora, U. “Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells”, Nanomedicine: NBM. 2010, 6, 153–160.
  • Li, P.; Wang, Y.; Peng, Z.; She, F.; Kong, L. “Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends”, Carbohydr. Polym. 2011, 85, 698–704.
  • Li, L.; Chen, D.; Zhang, Y.; Deng, Z.; Ren, X.; Meng, X.; Tang, F.; Ren, J.; Zhang, L. “Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system”, Nanotechnology 2007, 18, 405102–405106.
  • Grenha, A.; Gomes, M. E.; Rodrigues, M.; Santo, V. E.; Mano, J. F.; Neves, N. M.; Reis, R. L. “Development of new chitosan/carrageenan nanoparticles for drug delivery applications”, J. Biomed. Mater. Res. A 2010, 92, 1265–1272.
  • Wu, Y.; Yang, W.; Wang, C.; Hu, J.; Fu, S. “Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate”, Int. J. Pharm. 2005, 295, 235-245.
  • Chopra, S.; Mahdi, S.; Kaur, J.; Iqbal, Z.; Talegaonkar, S.; Ahmad, F. J. “Advances and potential applications of chitosan derivatives as mucoadhesive biomaterials in modern drug delivery”, J. Pharm. Pharmacol. 2006, 58, 1021–1032.
  • Cui, F.; Qian, F.; Zhao, Z.; Yin, L.; Tang, C.; Yin, C. “Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly (methyl methacrylate) nanoparticles”, Biomacromolecules 2009, 10, 1253–1258.
  • Saremi, S.; Dinarvand, R.; Kebriaeezadeh, A.; Ostad, S. N.; Atyabi, F. “Enhanced oral delivery of docetaxel using thiolated chitosan nanoparticles: Preparation, in vitro and in vivo studies”, BioMed Res. Int. 2013, 2013, 1–8.
  • Saboktakin, M. R.; Tabatabaie, R. M.; Maharramov, A.; Ramazanov, M. A. “Synthesis and in vitro evaluation of carboxymethyl starch–chitosan nanoparticles as drug delivery system to the colon”, Int. J. Biol. Macromolec. 2011, 48, 381–385.
  • Arulmozhi, V.; Pandian, K.; Mirunalini, S. “Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB)”, Colloids Surf. B 2013, 110, 313-320.
  • Kim, J.-Y.; Choi, W. I.; Kim, M.; Tae, G. “Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT”, J. Control. Release 2013, 171, 113–121.
  • Mondal, S.; Dumur, F.; Barbarat, B.; Grauby, O.; Gigmes, D.; Olive, D.; Bertrand, M. P.; Nechab, M. “Photoactivated cyclization of aryl-containing enediynes coated gold nanoparticles: Enhancement of the DNA cleavage ability of enediynes”, Colloids Surf. B. 2013, 112, 513–520.
  • Muddineti, O. S.; Ghosh, B.; Biswas, S. “Current trends in using polymer coated gold nanoparticles for cancer therapy”, Int. J. Pharm. 2015, 484, 252–267.
  • Jabeen, F.; Najam-ul-Haq, M.; Javeed, R.; Huck, C. W.; Bonn, G. K. “Au-nanomaterials as a superior choice for near-infrared photothermal therapy”, Molecules 2014, 19, 20580–20593.
  • Huang, H.-C.; Barua, S.; Sharma, G.; Dey, S.K.; Rege, K. “Inorganic nanoparticles for cancer imaging and therapy”, J. Control. Release 2011, 155, 344–357.
  • Choi, W. I.; Kim, J.-Y.; Kang, C.; Byeon, C. C.; Kim, Y. H.; Tae, G. “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers”, ACS Nano 2011, 5, 1995–2003.
  • Song, X.; Wu, H.; Li, S.; Wang, Y.; Ma, X.; Tan, M. “Ultrasmall chitosan–genipin nanocarriers fabricated from reverse microemulsion process for tumor photothermal therapy in mice”, Biomacromolecules 2015, 16, 2080–2090.
  • Wang, X.; Liu, H.; Chen, D.; Meng, X.; Liu, T.; Fu, C.; Hao, N.; Zhang, Y.; Wu, X.; Ren, J. “Multifunctional Fe3O4@ P (St/MAA)@ Chitosan@ Au core/shell nanoparticles for dual imaging and photothermal therapy”, ACS Appl. Mater. Interfaces 2013, 5, 4966–4971.
  • Zhang, G.; Sun, X.; Jasinski, J.; Patel, D.; Gobin, A. M. “Gold/chitosan nanocomposites with specific near infrared absorption for photothermal therapy applications”, J. Nanomater. 2012, 2012, 1–9.
  • Duan, R.; Zhou, Z.; Su, G.; Liu, L.; Guan, M.; Du, B.; Zhang, Q. “Chitosan‐coated gold nanorods for cancer therapy combining chemical and photothermal effects”, Macromol. Biosci. 2014, 14, 1160–1169.
  • Dolmans, D. E.; Fukumura, D.; Jain, R. K. “Photodynamic therapy for cancer”, Nat. Rev. Cancer 2003, 3, 380–387.
  • Ryu, J. H.; Koo, H.; Sun, I.-C.; Yuk, S. H.; Choi, K.; Kim, K.; Kwon, I. C. “Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy”, Adv. Drug Deliv. Rev. 2012, 64, 1447–1458.
  • Detty, M. R.; Gibson, S. L.; Wagner, S. J. “Current clinical and preclinical photosensitizers for use in photodynamic therapy”, J. Med. Chem. 2004, 47, 3897–3915.
  • Moore, C. M.; Pendse, D.; Emberton, M. “Photodynamic therapy for prostate cancer: A review of current status and future promise”, Nat. Clin. Pract. Urol. 2009, 6, 18-30.
  • Choudhary, S.; Nouri, K.; Elsaie, M. L. “Photodynamic therapy in dermatology: A review”, Lasers Med. Sci. 2009, 24, 971–980.
  • Leanne B, J.; Ross W, B. “Photodynamic therapy and the development of metal-based photosensitisers”, Met Based Drugs 2008, 2008, 1–24.
  • Bechet, D.; Couleaud, P.; Frochot, C.; Viriot, M.-L.; Guillemin, F.; Barberi-Heyob, M. “Nanoparticles as vehicles for delivery of photodynamic therapy agents”, Trends Biotechnol. 2008, 26, 612–621.
  • Lee, S. J.; Koo, H.; Lee, D.-E.; Min, S.; Lee, S.; Chen, X.; Choi, Y.; Leary, J. F.; Park, K.; Jeong, S. Y. “Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system”, Biomaterials 2011, 32, 4021–4029.
  • Sun, Y.; Chen, Z.-l.; Yang, X.-X.; Huang, P.; Zhou, X.-P.; Du, X.-X. “Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy”, Nanotechnology 2009, 20, 135102–135108.
  • Oh, I.-h.; Min, H. S.; Li, L.; Tran, T. H.; Lee, Y.-k.; Kwon, I. C.; Choi, K.; Kim, K.; Huh, K. M. “Cancer cell-specific photoactivity of pheophorbide a–glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice”, Biomaterials 2013, 34, 6454–6463.
  • Lee, S. J.; Koo, H.; Jeong, H.; Huh, M. S.; Choi, Y.; Jeong, S. Y.; Byun, Y.; Choi, K.; Kim, K.; Kwon, I. C. “Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy”, J. Control. Release 2011, 152, 21–29.
  • Cui, S.; Chen, H.; Zhu, H.; Tian, J.; Chi, X.; Qian, Z.; Achilefu, S.; Gu, Y. “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light”, J. Mater. Chem. 2012, 22, 4861–4873.
  • Lee, S. J.; Park, K.; Oh, Y.-K.; Kwon, S.-H.; Her, S.; Kim, I.-S.; Choi, K.; Lee, S. J.; Kim, H.; Lee, S. G. “Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice”, Biomaterials 2009, 30, 2929–2939.
  • Zhou, A.; Wei, Y.; Wu, B.; Chen, Q.; Xing, D. “Pyropheophorbide A and C (RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy”, Mol. Pharm. 2012, 9, 1580–1589.
  • Westermann, A. M.; Jones, E. L.; Schem, B. C.; van der Steen‐Banasik, E. M.; Koper, P.; Mella, O.; Uitterhoeve, A. L.; de Wit, R.; van der Velden, J.; Burger, C. “First results of triple‐modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with Stage IIB, III, and IVA cervical carcinoma”, Cancer 2005, 104, 763–770.
  • Ciofani, G.; Riggio, C.; Raffa, V.; Menciassi, A.; Cuschieri, A. “A bi-modal approach against cancer: Magnetic alginate nanoparticles for combined chemotherapy and hyperthermia”, Med. Hypotheses 2009, 73, 80–82.
  • Zamora-Mora, V.; Fernández-Gutiérrez, M.; San Román, J.; Goya, G.; Hernández, R.; Mijangos, C. “Magnetic core–shell chitosan nanoparticles: Rheological characterization and hyperthermia application”, Carbohydr. Polym. 2014, 102, 691–698.
  • Qu, J.; Liu, G.; Wang, Y.; Hong, R. “Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia”, Adv. Powder Technol. 2010, 21, 461–467.
  • Zhao, D.-L.; Wang, X.-X.; Zeng, X.-W.; Xia, Q.-S.; Tang, J.-T. “Preparation and inductive heating property of Fe 3O4–chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia”, J. Alloys Compd 2009, 477, 739–743.
  • Kim, D. H.; Kim, K. N.; Kim, K. M.; Lee, Y. K. “Targeting to carcinoma cells with chitosan‐and starch‐coated magnetic nanoparticles for magnetic hyperthermia”, J. Biomed. Mater. Res. A 2009, 88, 1–11.
  • Patil, R.; Shete, P.; Thorat, N.; Otari, S.; Barick, K.; Prasad, A.; Ningthoujam, R.; Tiwale, B.; Pawar, S. “Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and biocompatibility”, J. Magn. Magn. Mater. 2014, 355, 22–30.
  • Chen, Y.-S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers”, Nano Lett. 2011, 11, 348–354.
  • Zhang, H. F.; Maslov, K.; Stoica, G.; Wang, L. V. “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging”, Nature Biotechnol. 2006, 24, 848–851.
  • Wang, L. V.; Hu, S. “Photoacoustic tomography: In vivo imaging from organelles to organs”, Science 2012, 335, 1458–1462.
  • Song, K. H.; Stein, E. W.; Margenthaler, J. A.; Wang, L. V. “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model”, J. Biomed. Opt. 2008, 13, 054033-054033-6.
  • Feng, B.; Hong, R.; Wu, Y.; Liu, G.; Zhong, L.; Zheng, Y.; Ding, J.; Wei, D. “Synthesis of monodisperse magnetite nanoparticles via chitosan–poly (acrylic acid) template and their application in MRI”, J. Alloys Compd 2009, 473, 356–362.
  • Sanjai, C.; Kothan, S.; Gonil, P.; Saesoo, S.; Sajomsang, W. “Chitosan-triphosphate nanoparticles for encapsulation of super-paramagnetic iron oxide as an MRI contrast agent”, Carbohydr. Polym. 2014, 104, 231–237.
  • Hainfeld, J.; Slatkin, D.; Focella, T.; Smilowitz, H. “Gold nanoparticles: A new X-ray contrast agent”, Br. J. Radiol. 2006, 79, 248–253.
  • Krause, W. “Liver-specific X-ray contrast agents”, In Top Curr Chem Contrast Agents II, 2002, pp. 173–200.
  • Sun, I.-C.; Na, J. H.; Jeong, S. Y.; Kim, D.-E.; Kwon, I. C.; Choi, K.; Ahn, C.-H.; Kim, K. “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging”, Pharm. Res. 2014, 31, 1418–1425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.