1,141
Views
45
CrossRef citations to date
0
Altmetric
Reviews

Thermal Degradation and Fire Behavior of High Performance Polymers

, &
Pages 55-123 | Received 22 Mar 2018, Accepted 08 Aug 2018, Published online: 14 Feb 2019

References

  • Mittal, V. High Performance Polymers: An Overview. In High Performance Polymers and Engineering Plastics; Wiley: Hoboken, NJ, 2011; pp 1–20.
  • Parker, D.; Bussink, J.; van de Grampel, H. T.; Wheatley, G. W.; Dorf, E.-U.; Ostlinning, E.; Reinking, K.; Schubert, F.; Jünger, O.; Wagener, R.; et al. Polymers, High-Temperature. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012.
  • Elias, H.-G. Macromolecules, Volume 3: Physical Structures and Properties; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2008.
  • Hergenrother, P. M. The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview. High Perform. Polym. 2003, 15, 3–45.
  • Sikkema, D. J. Design, Synthesis and Properties of a Novel Rigid Rod Polymer, PIPD or `M5’: High Modulus and Tenacity Fibres with Substantial Compressive Strength. Polymer (Guildf) 1998, 39, 5981–5986.
  • Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886.
  • Flynn, J. H.; Wall, L. A. A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data. J. Polym. Sci. B Polym. Lett. 1966, 4, 323–328.
  • Friedman, H. L. Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic. J. Polym. Sci. 1964, 6, 183–195.
  • High Performance Polymers: Their Origin and Development; Seymour, R. B., Kirshenbaum, G. S., Eds.; Springer: Dordrecht, 1987.
  • Nelson, G. Fire and Polymers: An Overview. In Fire and Polymers II; ACS Symp Series, 1995; Vol. 29, pp 1–26.
  • Afshari, M.; Kotek, R.; Chen, P.; Hickory, O. High Performance Fibers - 1. In High Performance Polymers and Engineering Plastics; Wiley: New York, 2011, pp. 269–340.
  • Chung, T. A Critical Review of Polybenzimidazoles A Critical Review of Polybenzimidazoles: Historical Development and Future R & D. J. Macromol. Sci. Part C: Polym. Rev. 1997, 37, 277–301.
  • Bourbigot, S.; Flambard, X. Heat Resistance and Flammability of High Performance Fibres: A Review. Fire Mater. 2002, 26, 155–168.
  • Bloomfield, R.; Crossman, D.; Raeissi, A. Using Polyetherimide Thermoplastic for Forward Lighting Complex Reflectors. 2016. No. 724.
  • Galluci, R. R. Thermoplastic Polyetherimides (PEI). In Engineering Plastics Handbook; Margoli, J., Ed.; McGraw-Hill: New York; 2006. pp 155–180.
  • Foreman, J.; Lundgren, C.; Gill, P. Measurement of the Physical Properties of Engineering Thermoplastics Using Thermal Analysis. Tech. Pap 1993.
  • Tant, M. R.; McManus, H. L. N.; Rogers, M. E. High-Temperature Properties and Applications of Polymeric Materials - An Overview. ACS Symp. Ser. 1995, 603, 1–20.
  • Kenny, J. M.; Torre, L. Degradation Kinetics of High-Performance Polymers and Their Composites. In High-Temperature Properties and Applications of Polymeric Materials; ACS Symp Series 1995; Vol. 9, pp 140–154.
  • Farong, H.; Xueqiu, W.; Shijin, L. The Thermal Stability of Polyetherimide. Polym. Degrad. Stab. 1987, 18, 247–259.
  • Halawani, N.; Augé, J. L.; Morel, H.; Gain, O.; Pruvost, S. Electrical, Thermal and Mechanical Properties of Poly-Etherimide Epoxy-Diamine Blend. Compos. Part B Eng. 2017, 110, 530–541.
  • Lee, J.; Takekoshi, T.; Giannelis, E. P.; Giannelis, E. P. Fire Retardant Polyetherimide Nanocomposites. MRS Proc. 1996, 457, 513.
  • Lisa, G.; Hamciuc, C.; Hamciuc, E.; Tudorachi, N. Journal of Analytical and Applied Pyrolysis Thermal and Thermo-Oxidative Stability and Probable Degradation Mechanism of Some Polyetherimides. J. Anal. Appl. Pyrolysis 2016, 118, 144–154.
  • Zaragoza, S.; Álvarez, A.; Álvarez, B.; Lõpez-Beceiro, J.; Naya, S.; Forcén, P.; Artiaga, R.; Zaragoza, S.; Alvarez, A.; Álvarez, A.; et al. Thermogravimetric Study of Thermal Degradation of Polyetherimide. J. Appl. Polym. Sci. 2015, 132, 1–8.
  • Zhu, H.; Jie, X.; Wang, L.; Kang, G.; Liu, D.; Cao, Y. Effect of MIL-53 on Phase Inversion and Gas Separation Performance of Mixed Matrix Hollow Fiber Membranes. RSC Adv. 2016, 6, 69124–69134.
  • Perng, L.-H. Thermal Decomposition Characteristics of Poly(Ether Imide) by TG/MS. J. Polym. Res. 2000, 7, 185–193.
  • Batista, N. L.; Costa, M. L.; Iha, K.; Botelho, E. C. Thermal Degradation and Lifetime Estimation of Poly(Ether Imide)/Carbon Fiber Composites. J. Thermoplast. Compos. Mater. 2015, 28, 265–274.
  • Li, J.; Stoliarov, S. I. Measurement of Kinetics and Thermodynamics of the Thermal Degradation for Charring Polymers. Polym. Degrad. Stab. 2014, 106, 2–15.
  • Perng, L. H. Thermal Degradation Mechanism of Poly(Ether Imide) by Stepwise Py-GC/MS. J. Appl. Polym. Sci. 2001, 79, 1151–1161.
  • Carroccio, S.; Puglisi, C.; Montaudo, G.; Doria, V. A.; Chimiche, S.; Doria, V. A. Thermal Degradation Mechanisms of Polyetherimide Investigated by Direct Pyrolysis Mass Spectrometry. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 2000, 41, 684–685.
  • Khanna, Y. P.; Pearce, E. M. Aromatic Polyamides. II. Thermal Degradation of Some Aromatic Polyamides and Their Model Diamides. J. Polym. Sci. 1981, 19, 2817–2834.
  • Żurakowska-Orszàgh, J.; Chreptowicz, T. Thermal Degradation of Polyimides—II. Eur. Polym. J. 1981, 17, 877–880.
  • Hirsch, D. B.; Williams, J. H.; Harper, S. A.; Beeson, H.; Pedley, M. D. Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program. NASA Technical Report, 2007.
  • Bashford, D. Polyetherimides (PEI). In: Thermoplastics. Springer, Dordrecht. 1997, 470–473.
  • Koo, J. H.; Venumbaka, S.; Cassidy, P. E.; Fitch, J. W.; Grand, A. F.; Bundick, J. Flammability Studies of Thermally Resistant Polymers Using Cone Calorimetry. Fire Mater. 2000, 24, 209–218.
  • Marks, B. M. Boron Trifluoride - Hydrogen Fluoride Catalyzed Sunthesis of Poly(Aromatic Ketone) and Poly(Aromatic Sulfone) Polymers, 1969.
  • Rose, J. B.; Staniland, P. A. Thermoplastic Aromatic Poly(Ether Ketones) and Their Application as Electrical Insulants. Eur. Pat. Appl. Google Patents 1979, p 31.
  • Bonner, W. H. Aromatic Polyketones and Preparation Thereof, 1962.
  • Iwakura, Y.; Uno, K.; Takiguchi, T. Syntheses of Aromatic Polyketones and Aromatic Polyamide. J. Polym. Sci. A-1 Polym. Chem. 1968, 6, 3345–3355.
  • Attwood, T. E.; Dawson, P. C.; Freeman, J. L.; Hoy, L. R. J.; Rose, J. B.; Staniland, P. A. Synthesis and Properties of Polyaryletherketones. Polymer (Guildf) 1981, 22, 1096–1103. DOI:10.1016/0032-3861(81)90299-8.
  • Shukla, D.; Negi, Y. S.; Uppadhyaya, J. S.; Kumar, V. Synthesis and Modification of Poly(Ether Ether Ketone) and Their Properties: A Review. Polym. Rev. 2012, 52, 189–228.
  • Colquhoun, H. M.; Lewis, D. F. Synthesis of Aromatic Polyetherketoneswith Trifluoromethanesulphonic Acid. Polyhedron 1988, 29, 1902–1908.
  • Johnson, R. N.; Farnham, A. G.; Clendinning, R. A.; Hale, W. F.; Merriam, C. N. Poly (Aryl Ethers) by Nucleophilic Aromatic Substitution. I. Synthesis and Properties. J. Polym. Sci. A-1 Polym. Chem. 1967, 5, 2375–2398.
  • Ueda, M.; Ichikawa, F. Synthesis of Aromatic Poly(Ether Ketone)s by Nickel-Catalyzed Coupling Polymerization of Aromatic Dichlorides. Macromolecules 1990, 23, 926–930.
  • Mohanty, D. K.; Lowery, R. C.; Lyle, G. D.; McGrath, J. E. Ketimine Modifications as a Route to Novel Amorphous and Derived Semicrystalline Poly(Arylene Ether Keytone) Homo and Copolymers. In Int. SAMPE Symp; 1987; Vol. 32, pp. 408–419.
  • Roovers, J.; Cooney, J. D.; Toporowski, P. M. Synthesis and Characterization of Narrow Molecular Weight Distribution Fractions of Poly(Aryl Ether Ether Ketone). Macromolecules 1990, 23, 1611–1618.
  • Chen, M.; Gibson, H. W. Large-Sized Macrocyclic Monomeric Precursors of Poly(Ether Ether Ketone): Synthesis and Polymerization. Macromolecules 1996, 29, 5502–5504.
  • Conceição, T. F.; Bertolino, J. R.; Barra, G. M. O.; Mireski, S. L.; Joussef, A. C.; Pires, A. T. N. Preparation and Characterization of Poly(Ether Ether Ketone) Derivatives. Artic. J. Braz. Chem. Soc. 2008, 19, 111–116.
  • Kuo, M. C.; Tsai, C. M.; Huang, J. C.; Chen, M. PEEK Composites Reinforced by Nano-Sized SiO2 and A12O3 Particulates. Mater. Chem. Phys. 2005, 90, 185–195.
  • Patel, P.; Hull, T. R.; McCabe, R. W.; Flath, D.; Grasmeder, J.; Percy, M. Mechanism of Thermal Decomposition of Poly(Ether Ether Ketone) (PEEK) from a Review of Decomposition Studies. Polym. Degrad. Stab. 2010, 95, 709–718.
  • Perng, L.; Tsai, C.; Ling, Y. Mechanism and Kinetic Modelling of PEEK Pyrolysis by TG/MS. Polymer (Guildf) 1999, 40, 7321–7329.
  • Hay, J. N.; Kemmisht, D. J.; Kemmish, D. J. Thermal Decomposition of Poly(Aryl Ether Ketones). Polymer (Guildf) 1987, 28, 2047–2051.
  • Patel, P.; Hull, T. R.; Lyon, R. E.; Stoliarov, S. I.; Walters, R. N.; Crowley, S.; Safronava, N. Investigation of the Thermal Decomposition and Flammability of PEEK and Its Carbon and Glass-Fibre Composites. Polym. Degrad. Stab. 2011, 96, 12–22.
  • Vasconcelos, G. d C.; Mazur, R. L.; Ribeiro, B.; Botelho, E. C.; Costa, M. L. Evaluation of Decomposition Kinetics of Poly (Ether-Ether-Ketone) by Thermogravimetric Analysis. Mater. Res. 2013, 17, 227–235.
  • Tsai, C. J.; Perng, L. H.; Ling, Y. C. A Study of Thermal Degradation of Poly (Aryl-Ether-Ether-Ketone) Using Stepwise Pyrolysis/Gas Chromatography/. Rapid Commun. Mass Spectrom. 1997, 11, 1987–1995.
  • Lyon, R. E.; Walters, R. N. Pyrolysis Combustion Flow Calorimetry. J. Anal. Appl. Pyrolysis 2004, 71, 27–46.
  • Lyon, R. E.; Janssens, M. L. Polymer Flammability, Report, 2015.
  • Martin, F. J.; Fenimore, C. P. Flammability of Polymers; 1965. Vol. 1.
  • Margolis, J. Engineering Plastics Handbook; McGraw-Hill Professional: New York, 2005.
  • Colon, I.; Maresca, L. M.; Kwiatkowski, G. T. U.S Patent 4,263,466, 1981.
  • Colon, I.; Matzner, M.; Products, A. P.; Corporation, U. C.; Brook, B. Aromatic Biphenylene Polymers Synthesis via Nickel Coupling of Aryl Dichlorides. Macromol. Symp. 1992, 224, 199–224.
  • Sheet, T. D. Radel ® R-5000. 2016, 1–5.
  • Youjie, Z.; Yi, X.; Yong, W. Thermal Degradation Kinetics of Polyphenylene Sulfone Resins Under Nitrogen and Oxygen Atmosphere. 2015, 18 (6), 41–45.
  • Srithong, S.; Jiraratananon, R.; Hansupalak, N. A Simple Postsulfonation of Poly(Arylene Ether Sulfone) Radel® R. J. Appl. Polym. Sci. 2011, 119, 973–976.
  • Ajinjeru, C.; Kishore, V.; Chen, X.; Lindahl, J.; Sudbury, Z.; Hassen, A. A.; Kunc, V.; Post, B.; Love, L.; Duty, C. The Influence of Rheology on Melt Processing Conditions of Amorphous Thermoplastics for Big Area Additive Manufacturing (BAAM). Solid Free. Fabr. 2016, 2016, 754–761.
  • Ellison, S. T.; Gies, A. P.; Hercules, D. M.; Morgan, S. L. Py-GC/MS and MALDI-TOF/TOF CID Study of Poly (Phenyl Sulfone) Fragmentation Reactions. Macromolecules 2009, 42, 5526–5533.
  • Safronava, N.; Lyon, R. E.; Crowley, S.; Stoliarov, S. I. Effect of Moisture on Ignition Time of Polymers. Fire Technol. 2015, 51, 1093–1112.
  • Harper, C. A. Thermoplastics; McGraw Hill Professional, Access Engineering: Ohio, 2000.
  • Ha, C.-S.; Mathews, A. S. Polyimides and High Performance Organic Polymers. Adv. Funct. Mater. 2011, 1–36.
  • Anthony, K. J. Preparation of Aromatic Polyiminolactones. Google Patents 1966.
  • Hondred, P. R.; Yoon, S.; Bowler, N.; Moukhina, E.; Kessler, M. R. Degradation Kinetics of Polyimide Film. High Perform. Polym. 2011, 23, 335–342.
  • Sroog, C. Polyimides. J. Polym. Sci. Macromol. Rev. 1976, 11, 161–208.
  • Ozawa, T.; Arii, T.; Kishi, A. Thermogravimetry and Evolved Gas Analysis of Polyimide. Thermochim. Acta 2000, 352, 177–180.
  • Lua, A. C.; Su, J. Isothermal and Non-Isothermal Pyrolysis Kinetics of Kapton?? Polyimide. Polym. Degrad. Stab. 2006, 91, 144–153.
  • Shin, T.; Hajima, O.; Chuichi, W.; Tsuge, S.; Ohtani, H.; Watanabe, C. Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates. In Pyrolysis–GC/MS Data Book of Synthetic Polymers; Elsevier: Amsterdam, 2011.
  • Hatori, H.; Yamada, Y.; Shiraishi, M.; Yoshihara, M.; Kimura, T. The Mechanism of Polyimide Pyrolysis in the Early Stage. Carbon N. Y. 1996, 34, 201–208.
  • Li, L.; Guan, C.; Zhang, A.; Chen, D.; Qing, Z. Thermal Stabilities and the Thermal Degradation Kinetics of Polyimides. Polym. Degrad. Stab. 2004, 84, 369–373.
  • Zhang, X.; Yan, X.; Shi, M. The Flame Retardancy and Pyrolysis Mechanism of Polyimide Fibers Investigated by Cone Calorimeter and Pyrolysis–gas Chromatography–mass Spectrometry. J. Ind. Text. 2017, 48, 465–481.
  • Hshieh, F. Y.; Hirsch, D. B.; Beeson, H. D. Ignition and Combustion of Low-Density Polyimide Foam. Fire Mater. 2003, 27, 119–130.
  • Satheesh Chandran, M.; Reghunadhan Nair, C. P. Maleimide-Based Alder-Enes. In Handbook of Thermoset Plastics; Elsevier: New York, 2014. pp 459–510.
  • Zahir, A.-C.; Renner, A. Process for the Manufacture of Crosslinked Polymers Which Contain Imide Groups. US4100140A, 1998.
  • Regnier, N.; Mortaigne, B. Thermal Behavior of Bismaleimide Resin. Polym. Adv. Technol. 1994, 5, 513–520.
  • Iredale, R. J.; Ward, C.; Hamerton, I. Modern Advances in Bismaleimide Resin Technology: A 21st Century Perspective on the Chemistry of Addition Polyimides. Prog. Polym. Sci. 2017, 69, 1–21.
  • Meador, M. A. B.; Christopher Johnston, J.; Frimer, A. A.; Gilinsky-Sharon, P. On the Oxidative Degradation of Nadic End-Capped Polyimides. 3. Synthesis and Characterization of Model Compounds for End-Cap Degradation Products. Macromolecules 1999, 32, 5532–5538.
  • Ueda, M.; Aoyama, S.; Konno, M.; Imai, Y. A Facile Synthesis of Polyamides by a Direct Polycondensation with Thionyl Chloride. Macromol. Chem. Phys. 1978, 179, 2089–2091.
  • Barikani, M.; Mehdipour-Ataei, S. Aromatic/Cycloaliphatic Polyimides and Polyamide-Imide from Trans-1, 4-Cyclohexane Diisocyanate. J. Appl. Polym. Sci. 1999, 77, 1102–1107.
  • Mallakpour, S.; Rafiemanzelat, F. Diisocyanate Route as a Convenient Method for the Preparation of Novel Optically Active Poly(Amide-Imide)s Based on N-Trimellitylimido-S-Valine. Eur. Polym. J. 2005, 41, 2945–2955.
  • Abbasi, H.; Antunes, M.; Velasco, J. I. Influence of Polyamide-Imide Concentration on the Cellular Structure and Thermo-Mechanical Properties of Polyetherimide/Polyamide-Imide Blend Foams. Eur. Polym. J. 2015, 69, 273–283.
  • Ma, X.; Lee, N. H.; Oh, H. J.; Hwang, J. S.; Kim, S. J. Preparation and Characterization of Silica/Polyamide-Imide Nanocomposite Thin Films. Nanoscale Res. Lett. 2010, 5, 1846–1851.
  • Bourbigot, S.; Flambard, X.; Duquesne, S. Thermal Degradation of Poly (p-Phenylenebenzobisoxazole) and Poly (p-Phenylenediamine Terephthalamide) Fibres. Polym. Int. 2001, 50, 157–164.
  • Hu, X.; Jenkins, S. E.; Min, B. G.; Polk, M. B.; Kumar, S. Rigid-Rod Polymers: Synthesis, Processing, Simulation, Structure, and Properties. Macromol. Mater. Eng. 2003, 288, 823–843.
  • Martin, D. C.; Thomas, E. L. Ultrastructure of Poly(p-Phenylenebenzobisoxazole) Fibers. Macromolecules 1991, 24, 2450–2460.
  • Wolfe, J. Polybenzothiazoles and Polybenzoxazoles. In Encyclopedia of Polymer Science and Engineering; Wiley: New York; 1988. pp. 601–635.
  • Chae, H. G.; Kumar, S. Rigid-Rod Polymeric Fibers. J. Appl. Polym. Sci. 2005, 100, 791–802.
  • Itoya, K.; Sawada, H.; Kakimoto, M.; Imai, Y. Facile Synthesis of Aromatic Polybenzoxazoles from Monomers Having O-Aminophenol and Nitrile Functions. J. Polym. Sci. 1999, 37, 683–686.
  • Chang, J.-H.; Park, K. M.; Lee, S.-M.; Oh, J. B. Two-Step Thermal Conversion from Poly(Amic Acid) to Polybenzoxazole via Polyimide: Their Thermal and Mechanical Properties. J. Polym. Sci. B Polym. Phys. 2000, 38, 2537–2545.
  • Calle, M.; Lozano, A. E.; Lee, Y. M. Formation of Thermally Rearranged (TR) Polybenzoxazoles: Effect of Synthesis Routes and Polymer Form. Eur. Polym. J. 2012, 48, 1313–1322.
  • Li, G. High-Performance Rigid-Rod Polymer Fibers. In Structure and Properties of High-Performance Fibers; Elsevier: Amsterdam, 2016, pp. 141–166.
  • Nielsen, C. A.; Pierini, P. Thermal and Thermo-Oxidative Degradation of PBO: Determination of Kinetics and Reaction Products. J. Fire Sci. 1993, 11, 156–171.
  • Liu, X.; Yu, W. Degradation of PBO Fiber by Heat and Light. Text. Appar. 2006, 10, 26–32.
  • Tamargo-Martínez, K.; Villar-Rodil, S.; Paredes, J. I.; Montes-Morán, M. A.; Martínez-Alonso, A.; Tascón, J. M. D. Thermal Decomposition of Poly(p-Phenylene Benzobisoxazole) Fibres: Monitoring the Chemical and Nanostructural Changes by Raman Spectroscopy and Scanning Probe Microscopy. Polym. Degrad. Stab. 2004, 86, 263–268.
  • Huang, Y. Thermal Stability of Poly(p-Phenylenebenzobisoxazole) Fibres. Iran. Polym. J. 2008, 17, 853–859.
  • Liu, X.; Yu, W. Evaluating the Thermal Stability of High Performance Fibers by TGA. J. Appl. Polym. Sci. 2006, 99, 937–944.
  • Denny, L. R.; Goldfarb, I. J.; Soloski, E. J. Thermal Stability Of Rigid-Rod Polymers. Mater. Res. Soc. Symp. Proc. 1989, 134, 395–406.
  • Cai, G. M.; Yu, W. D.; Ming, G.; Wei, C.; Yu, D. Study on the Thermal Degradation of High Performance Fibers by TG/FTIR and Py-GC/MS. J. Therm. Anal. Calorim. 2011, 104, 757–763.
  • So, Y.; Froelicher, S. W.; Kaliszewski, B.; Decaire, R. Reactions at Elevated Temperatures. Macromolecule 1999, 32, 6565–6569.
  • So, Y.-H.; Froelicher, S. W.; Kaliszewski, B.; DeCaire, R. A Study of Poly(Benzo[1,2- d :5,4- d′]Bisoxazole-2,6-Diyl-1,4-Phenylene) Reactions at Elevated Temperatures. Macromolecules 1999, 32, 6565–6569.
  • Wang, X. W., Hu, Z. M., and Liu, Z. F. Thermal degradation process of PBO fiber. Huadong Ligong Daxue Xuebao/Journal of East China University of Science and Technology, 34(2): 235–241.
  • Kim, P. K.; Pierini, P.; Wessling, R. Thermal and Flammability Properties of Poly(p-Phenylene- Benzobisoxazole). J. Fire Sci. 1993, 11, 296–307.
  • Bourbigot, S.; Flambard, X.; Poutch, F. Study of the Thermal Degradation of High Performance Fibres — Application to Polybenzazole and p -Aramid Fibres. J. Thermal Anal. Calorim. 2001, 74, 283–290.
  • Brinker, C. B. I.M, R. Polybenzimidazoles. US 2895948 A, 1959.
  • Vogel, H.; Marvel, C. S. Polybenzimidazoles, New Thermally Stable Polymers. J. Polym. Sci. 1961, 50, 511–539.
  • Einhorn, I. N.; Chatfield, D. A.; Wendel, D. J. Thermochemistry of Polybenzimidazole Foams, paper presented at the Third International Symposium on Analytical Pyrolysis, Amsterdam, Sept. 1976 (Flammability Research Center, University of Utah, FRC/UU-65, UTEC 76126, March 1976).
  • Chung, T.-S. A Critical Review of Polybenzimidazoles. Polymer Rev. 1997, 37, 277–301.
  • Chatfield, D. A.; State, D.; Diego, S.; Einhorn, I. N. Stepwise Thermal Degradation of a Polybenzimidazole Foam. J. Polym. Sci. Polym. Chem. Ed. 1981, 19, 601–618.
  • Coffin, D. R.; Serad, G. A.; Hicks, H. L.; Montgomery, R. T. Properties and Applications of Celanese PBI—Polybenzimidazole Fiber. Text. Res. J. 1982, 52, 466–472.
  • Wrasidlo, W.; Levine, H. H. Polybenzimidazoles. I. Reaction Mechanism and Kinetics. J. Polym. Sci. 1964, 2, 4795–4808.
  • Shulman, G. P.; Lochte, W. Thermal Degradation of Polymers. IV. Poly-2,2′-(m-Phenylene)-5,5′-Bibenzimidazole. J. Macromol. Sci. Part A – Chem. 1967, 1, 413–428.
  • Musto, P.; Karasz, F. E.; MacKnight, W. J. Fourier Transform Infra-Red Spectroscopy on the Thermo-Oxidative Degradation of Polybenzimidazole and of a Polybenzimidazole/Polyetherimide Blend. Polymer (Guildf) 1993, 34, 2934–2945.
  • Guenthner, A.; Lamison, K. R.; Reams, J. T.; Vij, V.; Yandek, G. R.; Davis, M. C.; Wright, M. E.; Cambrea, L. R.; Mabry, J. M. High-temperature composite Resins: Re-writing the rules for thermosetting polymers. Report. 2011. 22 (0704).
  • Burningham, N. W.; Seader, J. D. Thermal Decomposition Of High-Temperature Resistant Polymers; 1970.
  • Horrocks, A. R.; Eichhorn, H.; Schwaenke, H.; Saville, N.; Thomas, C. Thermally Resistant Fibres; Woodhead Publishing Ltd, 2001.
  • Northolt, M. G. G.; Sikkema, D. J. J.; Zegers, H. C. C.; Klop, E. A. A. PIPD, a New High-Modulus and High-Strength Polymer Fibre with Exceptional Fire Protection Properties. Fire Mater. 2002, 26, 169–172.
  • Huges, W. J.; Report, F.; Huges, W. J. Polymer Flammability. Natl. Tech. Inf 2005, No. May, 1–82.
  • Bourbigot, S.; Flambard, X.; Ferreira, M.; Devaux, E.; Poutch, F. G, L. De. Characterisation and Reaction to Fire of “M5” Rigid Rod Polymer Fibres. J. Mater. Sci. 2003, 38, 2187–2194.
  • Zhang, T.; Jin, J. H.; Yang, S. L.; Li, G.; Jiang, J. M.; Tao, Z.; Junhong, J. I. N.; Shenglin, Y.; Guang, L. I.; Jianming, J. Preparation and Properties of Novel PIPD Fibers. Chin. Sci. Bull. 2010, 55, 4203–4207.
  • S, K. Wholly Aromatic Carbocyclic Polycarbonamide Fiber Having Orientation Angle of Less than about 45{20. Google Patents June 25, 1974.
  • Blades, H. High Strength Polyamide Fibers and Films. US Patent 3 869 429. 3,869,429, March 4, 1975.
  • Penn, L.; Larsen, F. Physicochemical Properties of Kevlar 49 Fiber. J. Appl. Polym. Sci. 1979, 23, 59–73.
  • Yip, P. W. Analysis of Two Methods for Characterization of Flame Resistant Military Fabrics and Commercial Textile Fibers: Simultaneous DSC-TGA and Pyrolysis GCMS. Technical Report 2014. April.
  • Perepelkin, K. E.; Andreeva, I. V.; Pakshver, E. A.; Morgoeva, I. Y. Thermal Characteristics of Para-Aramid Fibres. Fibre Chem. 2003, 35, 265–269.
  • Brown, J. R.; Ennis, B. C. Thermal Analysis of Nomex® and Kevlar® Fibers. Text. Res. J. 1977, 47, 62–66.
  • Li, X.-G.; Huang, M.-R. Thermal Degradation of Kevlar Fiber by High-Resolution Thermogravimetry. J. Appl. Polym. Sci. 1999, 71, 565–571.
  • Akato, K.; Bhat, G. High Performance Fibers from Aramid Polymers; Elsevier, Amsterdam, 2016.
  • Mosquera, M. E. G.; Jamond, M.; Martinez-Alonso, A.; Tascon, J. M. D. Thermal Transformations of Kevlar Aramid Fibers during Pyrolysis: Infrared and Thermal Analysis Studies. Chem. Mater. 1994, 6, 1918–1924.
  • Brown, J. R.; Power, A. J. Thermal Degradation of Aramids: Part I—Pyrolysis/Gas Chromatography/Mass Spectrometry of Poly(1,3-Phenylene Isophthalamide) and Poly(1,4-Phenylene Terephthalamide). Polym. Degrad. Stab. 1982, 4, 379–392.
  • Wang, X. W.; Hu, Z. M.; Liu, Z. F. Thermal Degradation of Meta- and Para-Aramid Fibers in Different Atmospheres. Int Polym. Process. 2008, 23, 81–87.
  • Brown, J. R.; Hodgeman, D. K. C. An e.s.r. Study of the Thermal Degradation of Kevlar 49 Aramid. Polymer (Guildf) 1982, 23, 365–368.
  • Kalashnik, A. T.; Pakikarova, N. P.; Dovbii, Y. V.; Kozhina, G. V.; Kakmykova, V. D.; Papkov, S. P. Comparative Analysis of the Thermal Degradation of Poly-p-Bemzamide and Poly-p-phenylene Terephthalamide. Polym. Sci. USSR 1977, 19, 3173–3181.
  • Bhuiyan, A. L. Some Thermodynamic Aspects of the Thermal Degradation of Wholly Aromatic Polyamides. Eur. Polym. J. 1983, 19, 195–198.
  • Krasnov, Y. P.; Logunova, V. I.; Sokolov, L. B. Hydrolytic Processes of the Thermal Degradation of Isomeric Aromatic Polyamides. Polym. Sci. U.S.S.R. 1966, 8, 2176–2183.
  • Ehlers, G. F. L.; Fisch, K. R.; Powell, W. R. The Thermal Breakdown Mechanism of Polybenzoxazoles and Polybenzothiazoles. J. Polym. Sci., C Polym. Symp. 2007, 43, 55–75.
  • Blyumenfel’d, A. B.; Puzeyev, A. I.; Kovarskaya, B. M.; Akutin, M. S. The Degradation of Methoxy-Substituted Aromatic Polyamide. Polym. Sci. U.S.S.R. 1973, 15, 2651–2661.
  • Hurley, M. J.; Gottuk, D.; Hall, J. R.; Harada, K.; Kuligowski, E.; Puchovsky, M.; Torero, J.; Watts, J. M.; Wieczorek, C. SFPE Handbook of Fire Protection Engineering, 5th ed.; Springer: New York, 2016.
  • Bourbigot, S.; Flambard, X.; Poutch, F.; Duquesne, S. Cone Calorimeter Study of High Performance Fibres — Application to Polybenzazole and P-Aramid Fibres. Polym. Degrad. Stab. 2001, 74, 481–486.
  • Zhang, H. Fire-Safe Polymers and Polymer Composites. DOT/FAA/AR 2004, 1–209. (September).
  • Vitruvius, Building Materials; 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.