8,586
Views
469
CrossRef citations to date
0
Altmetric
Review

Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review

, , , , , , , , , , , & show all
Pages 280-337 | Received 29 Aug 2018, Accepted 02 Oct 2018, Published online: 08 Feb 2019

References

  • Gurusiddesh, M.; Madhu, B. J.; Shankaramurthy, G. J. Structural, Dielectric, Magnetic and Electromagnetic Interference Shielding Investigations of Polyaniline Decorated Co0.5Ni0.5Fe2O4 Nanoferrites. J. Mater. Sci: Mater. Electron. 2018, 29, 3502–3509. doi: 10.1007/s10854-017-8285-4.
  • Gong, S.; Zhu Zheng, H.; Arjmand, M.; Sundararaj, U.; Yeow, J.; T. W.; Zheng, W. Effect of Carbon Nanotubes on Electromagnetic Interference Shielding of Carbon Fiber Reinforced Polymer Composites. Polym. Compos. 2018, 39, E655–E663. doi: 10.1002/pc.24084.
  • Biao, Z.; Deng, J.; Zhang, R.; Liang, L.; Fan, B.; Bai, Z.; Shao, G.; Park, C. B. Recent Advances on the Electromagnetic Wave Absorption Properties of Ni Based Materials. Eng.Sci. doi:2018, 3, 5–40. doi: 10.30919/es8d735.
  • Li, T.-T.; Chen, A.-P.; Hwang, P.-W.; Pan, Y.-J.; Hsing, W.-H.; Lou, C.-W.; Chen, Y.-S.; Lin, J.-H. Synergistic Effects of Micro-/Nano-fillers on Conductive and Electromagnetic Shielding Properties of Polypropylene Nanocomposites. Mater. Manuf. Processes 2018, 33, 149–155. doi: 10.1080/10426914.2016.1269924.
  • Engels, S.; Schneider, N.-L.; Lefeldt, N.; Hein, C. M.; Zapka, M.; Michalik, A.; Elbers, D.; Kittel, A.; Hore, P. J.; Mouritsen, H. Anthropogenic Electromagnetic Noise Disrupts Magnetic Compass Orientation in a Migratory Bird. Nature 2014, 509, 353. doi: 10.1038/nature13290.
  • Erogul, O.; Oztas, E.; Yildirim, I.; Kir, T.; Aydur, E.; Komesli, G.; Irkilata, H. C.; Irmak, M. K.; Peker, A. F. Effects of Electromagnetic Radiation from a Cellular Phone on Human Sperm Motility: An in Vitro Study. Arch. Med. Res. 2006, 37, 840–843. doi: 10.1016/j.arcmed.2006.05.003.
  • Ding, Z.; Shi, S. Q.; Zhang, H.; Cai, L. Electromagnetic Shielding Properties of Iron Oxide Impregnated Kenaf Bast Fiberboard. Composites, Part B. 2015, 78, 266–271. doi: 10.1016/j.compositesb.2015.03.044.
  • Tang, H.; Jian, X.; Wu, B.; Liu, S.; Jiang, Z.; Chen, X.; Lv, W.; He, W.; Tian, W.; Wei, Y.; et al. Fe3C/helical Carbon Nanotube Hybrid: Facile Synthesis and Spin-Induced Enhancement in Microwave-absorbing Properties. Composites, Part B 2016, 107, 51–58. doi: 10.1016/j.compositesb.2016.09.003.
  • Tugirumubano, A.; Vijay, S. J.; Go, S. H.; Kwac, L. K.; Kim, H. G. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel–CFRP Textile Composites. J. Mater. Eng. Perform. 2018, 27, 2255–2262. doi: 10.1007/s11665-018-3334-6.
  • Bhawal, P.; Ganguly, S.; Das Tushar, K.; Mondal, S.; Das, N. C. Mechanically Robust Conductive Carbon Clusters Confined Ethylene Methyl Acrylate–based Flexible Composites for Superior Shielding Effectiveness. Polym. Adv. Technol. 2018, 29, 95–110. doi: 10.1002/pat.4092.
  • Sawai, P.; Chattopadhaya, P. P.; Banerjee, S. Synthesized Reduce Graphene Oxide (rGO) Filled Polyetherimide Based Nanocomposites for EMI Shielding Applications. Mater. Today: Proc. 2018, 5, 9989–9999. doi: 10.1016/j.matpr.2017.10.197.
  • Singh, A. K.; Shishkin, A.; Koppel, T.; Gupta, N. A Review of Porous Lightweight Composite Materials for Electromagnetic Interference Shielding. Comp., Part B 2018, 149, 188–197. doi: 10.1016/j.compositesb.2018.05.027.
  • Huang, J.-C. EMI Shielding Plastics: A Review. Adv. Polym. Technol. 1995, 14, 137–150. doi: 10.1002/adv.1995.060140205.
  • Zhang, Y.; Wang, X.; Cao, M. Confinedly Implanted NiFe2O4-rGO: Cluster Tailoring and Highly Tunable Electromagnetic Properties for Selective-frequency Microwave Absorption. Nano Res. 2018, 11, 1426–1436. doi: 10.1007/s12274-017-1758-1.
  • Xiang, C.; Pan, Y.; Liu, X.; Sun, X.; Shi, X.; Guo, J. Microwave Attenuation of Multiwalled Carbon Nanotube-fused Silica Composites. Appl. Phys. Lett. 2005, 87, 123103. doi: 10.1063/1.2051806.
  • Cao, M.-S.; Wang, X.-X.; Cao, W.-Q.; Yuan, J. Ultrathin Graphene: Electrical Properties and Highly Efficient Electromagnetic Interference Shielding. J. Mater. Chem. C. 2015, 3, 6589–6599. doi: 10.1039/C5TC01354B.
  • Yang, C. C.; Gung, Y. J.; Hung, W. C.; Ting, T. H.; Wu, K. H. Infrared and Microwave Absorbing Properties of BaTiO3/polyaniline and BaFe12O19/polyaniline Composites. Compos. Sci. Technol. 2010, 70, 466–471. doi: 10.1016/j.compscitech.2009.11.021.
  • Luo, C.; Duan, W.; Yin, X.; Kong, J. Microwave-Absorbing Polymer-Derived Ceramics from Cobalt-Coordinated Poly(dimethylsilylene)Diacetylenes. J. Phys. Chem. C. 2016, 120, 18721–18732. doi: 10.1021/acs.jpcc.6b03995.
  • Jiang, X.; Li, S.; He, S.; Bai, Y.; Shao, L. Interface Manipulation of CO2–philic Composite Membranes Containing Designed UiO-66 Derivatives towards Highly Efficient CO2 Capture. J. Mater. Chem. A. 2018, 6, 15064–15073. doi: 10.1039/C8TA03872D.
  • Song, Y.; He, L.; Zhang, X.; Liu, F.; Tian, N.; Tang, Y.; Kong, J. Highly Efficient Electromagnetic Wave Absorbing Metal-Free and Carbon-Rich Ceramics Derived from Hyperbranched Polycarbosilazanes. J. Phys. Chem. C. 2017, 121, 24774–24785. doi: 10.1021/acs.jpcc.7b07646.
  • Sun, H.; Yang, X.; Zhang, Y.; Cheng, X.; Xu, Y.; Bai, Y.; Shao, L. Segregation-Induced in Situ Hydrophilic Modification of Poly (vinylidene Fluoride) ultrafiltration Membranes via Sticky Poly (ethylene Glycol) Blending. J. Membr. Sci. 2018, 563, 22–30. doi: 10.1016/j.memsci.2018.05.046.
  • Yang, X.; Wang, Z.; Shao, L. Construction of Oil-unidirectional Membrane for Integrated Oil Collection with Lossless Transportation and Oil-in-water Emulsion Purification. J. Membr. Sci. 2018, 549, 67–74. doi: 10.1016/j.memsci.2017.11.071.
  • Gu, J.; Li, Y.; Liang, C.; Tang, Y.; Tang, L.; Zhang, Y.; Kong, J.; Liu, H.; Guo, Z. Synchronously Improved Dielectric and Mechanical Properties of Wave-transparent Laminated Composites Combined with Outstanding Thermal Stability by Incorporating Iysozyme/POSS Functionalized PBO Fibers. J. Mater. Chem. C 2018, 6, 7652–7660. doi: 10.1039/C8TC02391C.
  • Wu, N.; Liu, C.; Xu, D.; Liu, J.; Liu, W.; Shao, Q.; Guo, Z. Enhanced Electromagnetic Wave Absorption of Three-Dimensional Porous Fe3O4/C Composite Flowers. ACS Sustainable Chem. Eng. 2018, 6, 12471–12480. doi: 10.1021/acssuschemeng.8b03097.
  • Cao, M.; Han, C.; Wang, X.; Zhang, M.; Zhang, Y.; Shu, J.; Yang, H.; Fang, X.; Yuan, J. Graphene Nanohybrids: excellent Electromagnetic Properties for the Absorbing and Shielding of Electromagnetic Waves. J. Mater. Chem. C. 2018, 6, 4586–4602. doi: 10.1039/C7TC05869A.
  • Ren, F.; Guo, Z.-Z.; Guo, H.; Jia, L.-C.; Zhao, Y.-C.; Ren, P.-G.; Yan, D.-X. Layer-Structured Design and Fabrication of Cyanate Ester Nanocomposites for Excellent Electromagnetic Shielding with Absorption-Dominated Characteristic. Polymers 2018, 10, 933.
  • Zhou, S.; Wang, J.; Wang, S.; Ma, X.; Huang, J.; Zhao, G.; Liu, Y. Facile Preparation of Multiscale Graphene-basalt Fiber Reinforcements and Their Enhanced Mechanical and Tribological Properties for Polyamide 6 Composites. Mater. Chem. Phys. 2018, 217, 315–322. doi: 10.1016/j.matchemphys.2018.06.080.
  • Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C.; Angaiah, S.; Guo, Z. Overview of Carbon Nanostructures and Nanocomposites for Electromagnetic Wave Shielding. Carbon 2018, 140, 696–733. doi: 10.1016/j.carbon.2018.09.006.
  • Yang, Z.; Hao, X.; Chen, S.; Ma, Z.; Wang, W.; Wang, C.; Yue, L.; Sun, H.; Shao, Q.; Murugadoss, V.; Guo, Z. Long-term Antibacterial Stable Reduced Graphene Oxide Nanocomposites Loaded with Cuprous Oxide Nanoparticles. J. Colloid Interface Sci. 2019, 533, 13–23. doi: 10.1016/j.jcis.2018.08.053.
  • Ren, F.; Guo, Z.; Shi, Y.; Jia, L.; Qing, Y.; Ren, P.; Yan, D. Lightweight and Highly Efficient Electromagnetic Wave-absorbing of 3D CNTs/GNS@CoFe2O4 Ternary Composite Aerogels. J. Alloys Compd. 2018, 768, 6–14. doi: 10.1016/j.jallcom.2018.07.209.
  • Wu, H.-Y.; Zhang, Y.-P.; Jia, L.-C.; Yan, D.-X.; Gao, J.-F.; Li, Z.-M. Injection Molded Segregated Carbon Nanotube/Polypropylene Composite for Efficient Electromagnetic Interference Shielding. Ind. Eng. Chem. Res. 2018, 57, 12378–12385. doi: 10.1021/acs.iecr.8b02293.
  • Jia, L.-C.; Yan, D.-X.; Jiang, X.; Pang, H.; Gao, J.-F.; Ren, P.-G.; Li, Z.-M. Synergistic Effect of Graphite and Carbon Nanotubes on Improved Electromagnetic Interference Shielding Performance in Segregated Composites. Ind. Eng. Chem. Res. 2018, 57, 11929–11938. doi: 10.1021/acs.iecr.8b03238.
  • Li, M.-Z.; Jia, L.-C.; Zhang, X.-P.; Yan, D.-X.; Zhang, Q.-C.; Li, Z.-M. Robust Carbon Nanotube Foam for Efficient Electromagnetic Interference Shielding and Microwave Absorption. J. Colloid Interface Sci. 2018, 530, 113–119. doi: 10.1016/j.jcis.2018.06.052.
  • Yu, H.; Wang, T.; Wen, B.; Lu, M.; Xu, Z.; Zhu, C.; Chen, Y.; Xue, X.; Sun, C.; Cao, M. Graphene/polyaniline Nanorod Arrays: Synthesis and Excellent Electromagnetic Absorption Properties. J. Mater. Chem. 2012, 22, 21679–21685. doi: 10.1039/c2jm34273a.
  • Bera, R.; Maitra, A.; Paria, S.; Karan, S. K.; Das, A. K.; Bera, A.; Si, S. K.; Halder, L.; De, A.; Khatua, B. B. An Approach to Widen the Electromagnetic Shielding Efficiency in PDMS/ferrous Ferric Oxide Decorated RGO-SWCNH Composite through Pressure Induced Tunability. Chem. Eng. J. 2018, 335, 501–509. doi: 10.1016/j.cej.2017.10.178.
  • Song, W.-L.; Cao, M.-S.; Lu, M.-M.; Bi, S.; Wang, C.-Y.; Liu, J.; Yuan, J.; Fan, L.-Z. Flexible Graphene/polymer Composite Films in Sandwich Structures for Effective Electromagnetic Interference Shielding. Carbon 2014, 66, 67–76. doi: 10.1016/j.carbon.2013.08.043.
  • Chen, Y.-H.; Huang, C.-Y.; Roan, M.-L.; Lai, F.-D.; Chen, K.-N.; Yeh, J.-T. The Copper Sulfide Coating on Polyacrylonitrile with a Chelating Agent of Ethylenediaminetetraacetic Acid by an Electroless Deposition Method and Its EMI Shielding Effectiveness. J. Appl. Polym. Sci. 2010, 115, 570–578. doi: 10.1002/app.31009.
  • Onar, N.; AkşIt, A. C.; Ebeoglugil, M. F.; Birlik, I.; Celik, E.;.; Ozdemir, I. Structural, Electrical, and Electromagnetic Properties of Cotton Fabrics Coated with Polyaniline and Polypyrrole. J. Appl. Polym. Sci. 2009, 114, 2003–2010. doi: 10.1002/app.30652.
  • Wang, C.; Zhao, M.; Li, J.; Yu, J.; Sun, S.; Ge, S.; Guo, X.; Xie, F.; Jiang, B.; Wujcik, E. K.; et al. Silver Nanoparticles/Graphene Oxide Decorated Carbon Fiber Synergistic Reinforcement in Epoxy-Based Composites. Polym. 2017, 131, 263–271. doi: 10.1016/j.polymer.2017.10.049.
  • Kuang, T.; Chang, L.; Chen, F.; Sheng, Y.; Fu, D.; Peng, X. Facile Preparation of Lightweight High-strength Biodegradable Polymer/multi-walled Carbon Nanotubes Nanocomposite Foams for Electromagnetic Interference Shielding. Carbon 2016, 105, 305–313. doi: 10.1016/j.carbon.2016.04.052.
  • Nam, Y.-W.; Sathish Kumar, S. K.; Ankem, V. A.; Kim, C.-G. Multi-functional Aramid/Epoxy Composite for Stealth Space Hypervelocity Impact Shielding System. Compos. Struct. 2018, 193, 113–120. doi: 10.1016/j.compstruct.2018.03.046.
  • Gyergyek, S.; Pahovnik, D.; Žagar, E.; Mertelj, A.; Kostanjšek, R.; Beković, M.; Jagodič, M.; Hofmann, H.; Makovec, D. Nanocomposites Comprised of Homogeneously Dispersed Magnetic Iron-oxide Nanoparticles and Poly(methyl Methacrylate). Beilstein J. Nanotechnol. 2018, 9, 1613–1622. doi: 10.3762/bjnano.9.153.
  • Li, Y.; Jing, T.; Xu, G.; Tian, J.; Dong, M.; Shao, Q.; Wang, B.; Wang, Z.; Zheng, Y.; Yang, C.; Guo, Z. 3-D Magnetic Graphene Oxide-Magnetite Poly(vinyl Alcohol) Nanocomposite Substrates for Immobilizing Enzyme. Polym 2018, 149, 13–22. doi: 10.1016/j.polymer.2018.06.046.
  • Sun, Y.; Luo, S.; Sun, H.; Zeng, W.; Ling, C.; Chen, D.; Chan, V.; Liao, K. Engineering Closed-Cell Structure in Lightweight and Flexible Carbon Foam Composite for High-Efficient Electromagnetic Interference Shielding. Carbon 2018, 136, 299–308. doi: 10.1016/j.carbon.2018.04.084.
  • Muzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Faisal, M.; Pasha, S. K. K. Enhanced Electromagnetic Absorption in NiO and BaTiO3 Based Polyvinylidenefluoride Nanocomposites. Mater. Lett. 2018, 218, 217–220. doi: 10.1016/j.matlet.2018.02.029.
  • Jana, P. B.; Mallick, A. K.; De, S. K. Effects of Sample Thickness and Fiber Aspect Ratio on EMI Shielding Effectiveness of Carbon Fiber Filled Polychloroprene Composites in the X-band Frequency Range. IEEE Trans. Electromagn. Compat. 1992, 34, 478–481. doi: 10.1109/15.179281.
  • Lv, L.; Liu, J.; Liu, H.; Liu, C.; Lu, Y.; Sun, K.; Fan, R.; Wang, N.; Lu, N.; Guo, Z.; Wujcik, E. K. An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding. Eng. Sci. 2018, 2, 26–42. doi: 10.30919/es8d615.
  • Geetha, S.; Satheesh Kumar, K. K.; Rao Chepuri, R. K.; Vijayan, M.; Trivedi, D. C. EMI Shielding: Methods and Materials-A Review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. doi: 10.1002/app.29812.
  • Biswas, S.; Panja, S. S.; Bose, S. Tailored Distribution of Nanoparticles in bi-phasic Polymeric Blends as Emerging Materials for Suppressing Electromagnetic Radiation: Challenges and Prospects. J. Mater. Chem. C. 2018, 6, 3120–3142. doi: 10.1039/C8TC00002F.
  • Qin, F.; Brosseau, C. A Review and Analysis of Microwave Absorption in Polymer Composites Filled with Carbonaceous Particles. J. Appl. Phys. 2012, 111, 061301.
  • Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S. K. Microwave Absorption Behavior of Core − Shell Structured Poly (3,4-Ethylenedioxy Thiophene)−Barium Ferrite Nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 927–933. doi: 10.1021/am900893d.
  • Parveen, S.; Manju, A. “Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes”, In New Polymers for Special Applications, 1st edition; Gomes, A. D. S., (Ed.); Ivona Lovric: Croatia, 2012; pp 71–112.
  • Chiang, W.-Y.; Chiang, Y.-S. Effect of Titanate Coupling Agent on Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of PC–ABS–NCF Composite. J. Appl. Polym. Sci. 1992, 46, 673–681. doi: 10.1002/app.1992.070460414.
  • Abdi, M. M.; Kassim, A. B.; Ekramul Mahmud, H. N. M.; Yunus, W. M. M.; Talib, Z. A. Electromagnetic Interference Shielding Effectiveness of New Conducting Polymer Composite. J. Macromol. Sci., Part A 2009, 47, 71–75. doi: 10.1080/10601320903399834.
  • Rathi, V.; Panwar, V. Electromagnetic Interference Shielding Analysis of Conducting Composites in near- and Far-Field Region. IEEE Trans. Electromagn. Compat. 2018, 60, 1–7.
  • Cheng, C.; Fan, R.; Wang, Z.; Shao, Q.; Guo, X.; Xie, P.; Yin, Y.; Zhang, Y.; An, L.; Lei, Y.; et al. Tunable and Weakly Negative Permittivity in Carbon/silicon Nitride Composites with Different Carbonizing Temperatures. Carbon 2017, 125, 103–112. doi: 10.1016/j.carbon.2017.09.037.
  • Wang, Z.; Wei, R.; Gu, J.; Liu, H.; Liu, C.; Luo, C.; Kong, J.; Shao, Q.; Wang, N.; Guo, Z.; Liu, X. Ultralight, Highly Compressible and Fire-Retardant Graphene Aerogel with Self-adjustable Electromagnetic Wave Absorption. Carbon 2018, 139, 1126–1135. doi: 10.1016/j.carbon.2018.08.014.
  • Zhu, J.; Gu, H.; Luo, Z.; Haldolaarachige, N.; Young, D. P.; Wei, S.; Guo, Z. Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties. Langmuir 2012, 28, 10246–10255. doi: 10.1021/la302031f.
  • Sun, K.; Xie, P.; Wang, Z.; Su, T.; Shao, Q.; Ryu, J.; Zhang, X.; Guo, J.; Shankar, A.; Li, J.; et al. Flexible Polydimethylsiloxane/multi-walled Carbon Nanotubes Membranous Metacomposites with Negative Permittivity. Polym 2017, 125, 50–57. doi: 10.1016/j.polymer.2017.07.083.
  • Soloman, M. A.; Kurian, P.; Anantharaman, M. R.; Joy, P. A. Effect of Carbon Black on the Mechanical and Dielectric Properties of Rubber Ferrite Composites Containing Barium Ferrite. J. Appl. Polym. Sci. 2003, 89, 769–778. doi: 10.1002/app.12266.
  • Koops, C. G. On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies. Phys. Rev. 1951, 83, 121–124. doi: 10.1103/PhysRev.83.121.
  • Luo, J.; Shen, P.; Yao, W.; Jiang, C.; Xu, J. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites. Nanoscale Res. Lett. 2016, 11, 141.
  • González, M.; Pozuelo, J.; Baselga, J. Electromagnetic Shielding Materials in GHz Range. Chem. Rec. 2018, 18, 1000–1009.
  • Wu, T.; Liu, Y.; Zeng, X.; Cui, T.; Zhao, Y.; Li, Y.; Tong, G. Facile Hydrothermal Synthesis of Fe3O4/C Core-Shell Nanorings for Efficient Low-Frequency Microwave Absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370–7380. doi: 10.1021/acsami.6b00264.
  • Philippe, T.; Guillaume, V.; Olivier, A.; Francoise, F.-V.; Fernand, F. Monodisperse Ferromagnetic Particles for Microwave Applications. Adv. Mater. 1998, 10, 1032–1035.
  • Arias, R.; Chu, P.; Mills, D. L. Dipole Exchange Spin Waves and Microwave Response of Ferromagnetic Spheres. Phys. Rev. B. 2005, 71, 224410.
  • Kittel, C. On the Theory of Ferromagnetic Resonance Absorption. Phys. Rev. 1948, 73, 155–161. doi: 10.1103/PhysRev.73.155.
  • Yang, L.; Yichun, Z.; Cheng, Z.; Benyuan, H.; Yulong, L.; Wenchuan, L.; Xu, W.; Xiangyang, L. Low Temperature Preparation of Highly Fluorinated Multiwalled Carbon Nanotubes Activated by Fe3 O4 to Enhance Microwave Absorbing Property. Nanotechnology 2018, 29, 365703.
  • Seng, L. Y.; Wee, F. H.; Rahim, H. A.; Malek, F.; You, K. Y.; Liyana, Z.; Jamlos, M. A.; Ezanuddin, A. A. M. EMI Shielding Based on MWCNTs/polyester Composites. Appl. Phys. A. 2018, 124, 140.
  • Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S. K. Microwave Absorption Properties of Conducting Polymer Composite with Barium Ferrite Nanoparticles in 12.4–18GHz. Appl. Phys. Lett. 2008, 93, 053114. doi: 10.1063/1.2969400.
  • Chen, M.; Zhang, L.; Duan, S.; Jing, S.; Jiang, H.; Luo, M.; Li, C. Highly Conductive and Flexible Polymer Composites with Improved Mechanical and Electromagnetic Interference Shielding Performances. Nanoscale 2014, 6, 3796–3803. doi: 10.1039/C3NR06092F.
  • Zhang, K.; Yu, H.-O.; Yu, K.-X.; Gao, Y.; Wang, M.; Li, J.; Guo, S. A Facile Approach to Constructing Efficiently Segregated Conductive Networks in Poly(lactic Acid)/Silver Nanocomposites via Silver Plating on Microfibers for Electromagnetic Interference Shielding. Compos. Sci. Technol. 2018, 156, 136–143. doi: 10.1016/j.compscitech.2017.12.037.
  • Menon, A. V.; Madras, G.; Bose, S. Magnetic Alloy-MWNT Heterostructure as Efficient Electromagnetic Wave Suppressors in Soft Nanocomposites. Chemistry Select 2017, 2, 7831–7844. doi: 10.1002/slct.201700986.
  • Liu, Z.; Bai, G.; Huang, Y.; Ma, Y.; Du, F.; Li, F.; Guo, T.; Chen, Y. Reflection and Absorption Contributions to the Electromagnetic Interference Shielding of Single-walled Carbon Nanotube/polyurethane Composites. Carbon 2007, 45, 821–827. doi: 10.1016/j.carbon.2006.11.020.
  • Liu, Z.; Bai, G.; Huang, Y.; Li, F.; Ma, Y.; Guo, T.; He, X.; Lin, X.; Gao, H.; Chen, Y. Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites. J. Phys. Chem. C. 2007, 111, 13696–13700. doi: 10.1021/jp0731396.
  • Ramoa Sílvia, D. A. S.; Barra Guilherme, M. O.; Merlini, C.; Livi, S.; Soares Bluma, G.; Pegoretti, A. Electromagnetic Interference Shielding Effectiveness and Microwave Absorption Properties of Thermoplastic Polyurethane/Montmorillonite-polypyrrole Nanocomposites. Polym. Adv. Technol. 2018, 29, 1377–1384. doi: 10.1002/pat.4249.
  • Kalkan Erdoğan, M.; Karakışla, M.; Saçak, M. Polypyrrole and Silver Particles Coated Poly(ethylene Terephthalate) Nonwoven Composite for Electromagnetic Interference Shielding. J. Compos. Mater. 2018, 52, 1353–1362. doi: 10.1177/0021998317724859.
  • Gupta, A.; Choudhary, V. Electromagnetic Interference Shielding Behavior of Poly(trimethylene Terephthalate)/Multi-walled Carbon Nanotube Composites. Compos. Sci. Technol. 2011, 71, 1563–1568. doi: 10.1016/j.compscitech.2011.06.014.
  • Anand, J.; Palaniappan, S.; Sathyanarayana, D. N. Conducting Polyaniline Blends and Composites. Progr. Polym. Sci. 1998, 23, 993–1018. doi: 10.1016/S0079-6700(97)00040-3.
  • Huang, J.; Cao, Y.; Shao, Q.; Peng, X.; Guo, Z. Magnetic Nanocarbon Adsorbents with Enhanced Hexavalent Chromium Removal: Morphology Dependence of Fibrillar vs Particulate Structures. Ind. Eng. Chem. Res. 2017, 56, 10689–10701. doi: 10.1021/acs.iecr.7b02835.
  • Bhardwaj, P.; Kaushik, S.; Gairola, P.; Gairola, S. P. Exceptional Electromagnetic Radiation Shielding Performance and Dielectric Properties of Surfactant Assisted Polypyrrole-carbon Allotropes Composites. Radiat. Phys. Chem. 2018, 151, 156–163. doi: 10.1016/j.radphyschem.2018.06.001.
  • Sastry, D. N.; Revanasiddappa, M.; Suresh, T.; Kiran, Y. T. R.; Raghavendra, S. C. Electromagnetic Shielding Effectiveness Studies on Polyaniline/CSA-WO3 Composites at KU Band Frequencies. AIP Conf. Proc. 2018, 1953, 090067.
  • Wan, Y.; Li, J.; Yang, Z.; Ao, H.; Xiong, L.; Luo, H. Simultaneously Depositing Polyaniline onto Bacterial Cellulose Nanofibers and Graphene Nanosheets toward Electrically Conductive Nanocomposites. Curr. Appl. Phys. 2018, 18, 933–940. doi: 10.1016/j.cap.2018.05.008.
  • Wang, H.; Zhu, E.; Yang, J.; Zhou, P.; Sun, D.; Tang, W. Bacterial Cellulose Nanofiber-Supported Polyaniline Nanocomposites with Flake-Shaped Morphology as Supercapacitor Electrodes. J. Phys. Chem. C. 2012, 116, 13013–13019. doi: 10.1021/jp301099r.
  • Bláha, M.; Varga, M.; Prokeš, J.; Zhigunov, A.; Vohlídal, J. Effects of the Polymerization Temperature on the Structure, Morphology and Conductivity of Polyaniline Prepared with Ammonium Peroxodisulfate. Eur. Polym. J. 2013, 49, 3904–3911. doi: 10.1016/j.eurpolymj.2013.08.018.
  • Zhang, Z.; Wei, Z.; Zhang, L.; Wan, M. Polyaniline Nanotubes and Their Dendrites Doped with Different Naphthalene Sulfonic Acids. Acta Mater. 2005, 53, 1373–1379. doi: 10.1016/j.actamat.2004.11.030.
  • Qiu, M.; Zhang, Y.; Wen, B. Facile Synthesis of Polyaniline Nanostructures with Effective Electromagnetic Interference Shielding Performance. J. Mater. Sci: Mater. Electron. 2018, 29, 10437–10444. doi: 10.1007/s10854-018-9100-6.
  • He, W.; Li, J.; Tian, J.; Jing, H.; Li, Y. Characteristics and Properties of Wood/Polyaniline Electromagnetic Shielding Composites Synthesized via in Situ Polymerization. Polym. Compos. 2018, 39, 537–543. doi: 10.1002/pc.23966.
  • Tantawy, H. R.; Aston, D. E.; Smith, J. R.; Young, J. L. Comparison of Electromagnetic Shielding with Polyaniline Nanopowders Produced in Solvent-Limited Conditions. ACS Appl. Mater. Interfaces 2013, 5, 4648–4658. doi: 10.1021/am401695p.
  • Gahlout, P.; Choudhary, V. Tailoring of Polypyrrole Backbone by Optimizing Synthesis Parameters for Efficient EMI Shielding Properties in X-band (8.2–12.4GHz). Synth. Met. 2016, 222, 170–179. doi: 10.1016/j.synthmet.2016.10.016.
  • Kaur, A.; Ishpal.; Dhawan, S. K. Tuning of EMI Shielding Properties of Polypyrrole Nanoparticles with Surfactant Concentration. Synth. Met. 2012, 162, 1471–1477.
  • Ebrahimi, I.; Gashti, M. P. Polypyrrole-MWCNT-Ag Composites for Electromagnetic Shielding: Comparison between Chemical Deposition and UV-reduction Approaches. J. Phys. Chem. Solids 2018, 118, 80–87.
  • Yu, D.; Wang, Y.; Hao, T.; Wang, W.; Liu, B. Preparation of Silver-plated Polyimide Fabric Initiated by Polyaniline with Electromagnetic Shielding Properties. J. Ind. Text 2018, 47, 1392–1406. doi: 10.1177/1528083717692592.
  • Chen, J.-J.; Liu, S.-L.; Wu, H.-B.; Sowade, E.; Baumann, R. R.; Wang, Y.; Gu, F.-Q.; Liu, C.-R.-L.; Feng, Z.-S. Structural Regulation of Silver Nanowires and Their Application in Flexible Electronic Thin Films. Mater. Design 2018, 154, 266–274. doi: 10.1016/j.matdes.2018.05.018.
  • Faisal, M.; Khasim, S. Polyaniline-Antimony Oxide Composites for Effective Broadband EMI Shielding. Iran. Polym. J. 2013, 22, 473–480. doi: 10.1007/s13726-013-0149-z.
  • Faisal, M.; Khasim, S. Broadband Electromagnetic Shielding and Dielectric Properties of Polyaniline-stannous Oxide Composites. J. Mater. Sci: Mater. Electron. 2013, 24, 2202–2210. doi: 10.1007/s10854-013-1080-y.
  • Faisal, M.; Khasim, S. Electrical Conductivity, Dielectric Behavior and EMI Shielding Effectiveness of Polyaniline-Yttrium Oxide Composites. Bull. Korean Chem. Soc. 2013, 34, 99–106. doi: 10.5012/bkcs.2013.34.1.99.
  • Saini, P.; Arora, M.; Gupta, G.; Gupta, B. K.; Singh, V. N.; Choudhary, V. High Permittivity Polyaniline–Barium Titanate Nanocomposites with Excellent Electromagnetic Interference Shielding Response. Nanoscale 2013, 5, 4330–4336. doi: 10.1039/c3nr00634d.
  • Koh, Y.-N.; Mokhtar, N.; Phang, S.-W. Effect of Microwave Absorption Study on Polyaniline Nanocomposites with Untreated and Treated Double Wall Carbon Nanotubes. Polym. Compos. 2018, 39, 1283–1291. doi: 10.1002/pc.24064.
  • Saini, P.; Choudhary, V.; Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Polyaniline-MWCNT Nanocomposites for Microwave Absorption and EMI Shielding. Mater. Chem. Phys. 2009, 113, 919–926. doi: 10.1016/j.matchemphys.2008.08.065.
  • Saini, M.; Singh, S. K.; Shukla, R.; Kumar, A. Mg Doped Copper Ferrite with Polyaniline Matrix Core–Shell Ternary Nanocomposite for Electromagnetic Interference Shielding. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2306–2315.
  • Gu, H.; Zhang, H.; Lin, J.; Shao, Q.; Young, D. P.; Sun, L.; Shen, T. D.; Guo, Z. Large Negative Giant Magnetoresistance at Room Temperature and Electrical Transport in Cobalt Ferrite-polyaniline Nanocomposites. Polym 2018, 143, 324–330. doi: 10.1016/j.polymer.2018.04.008.
  • Belaabed, B.; Wojkiewicz, J. L.; Lamouri, S.; El Kamchi, N.; Lasri, T. Synthesis and Characterization of Hybrid Conducting Composites Based on Polyaniline/magnetite Fillers with Improved Microwave Absorption Properties. J. Alloys Compd. 2012, 527, 137–144. doi: 10.1016/j.jallcom.2012.02.179.
  • Choudhary Harish, K.; Kumar, R.; Pawar Shital, P.; Anupama, A. V.; Bose, S.; Sahoo, B. Effect of Coral-Shaped Yttrium Iron Garnet Particles on the EMI Shielding Behaviour of Yttrium Iron Garnet-Polyaniline-Wax Composites. ChemistrySelect 2018, 3, 2120–2130. doi: 10.1002/slct.201702698.
  • Gandhi, N.; Singh, K.; Ohlan, A.; Singh, D. P.; Dhawan, S. K. Thermal, Dielectric and Microwave Absorption Properties of Polyaniline–CoFe2O4 Nanocomposites. Compos. Sci. Technol. 2011, 71, 1754–1760. doi: 10.1016/j.compscitech.2011.08.010.
  • Zhang, B.; Du, Y.; Zhang, P.; Zhao, H.; Kang, L.; Han, X.; Xu, P. Microwave Absorption Enhancement of Fe3O4/polyaniline Core/shell Hybrid Microspheres with Controlled Shell Thickness. J. Appl. Polym. Sci. 2013, 130, 1909–1916. doi: 10.1002/app.39332.
  • Wu, K. H.; Ting, T. H.; Wang, G. P.; Ho, W. D.; Shih, C. C. Effect of Carbon Black Content on Electrical and Microwave Absorbing Properties of Polyaniline/carbon Black Nanocomposites. Polym. Degrad. Stab. 2008, 93, 483–488. doi: 10.1016/j.polymdegradstab.2007.11.009.
  • Gopakumar, D. A.; Pai, A. R.; Pottathara, Y. B.; Pasquini, D.; Carlos de Morais, L. s.; Luke, M.; Kalarikkal, N.; Grohens, Y.; Thomas, S. Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band. ACS Appl. Mater. Interfaces 2018, 10, 20032–20043. doi: 10.1021/acsami.8b04549.
  • Olad, A.; Shakoori, S. Electromagnetic Interference Attenuation and Shielding Effect of Quaternary Epoxy-PPy/Fe3O4-ZnO Nanocomposite as a Broad Band Microwave-Absorber. J. Magn. Magn. Mater. 2018, 458, 335–345. doi: 10.1016/j.jmmm.2018.03.050.
  • Zhang, W.; Zhang, X.; Qiao, Y.; Yan, H.; Qi, S. Covalently Bonded GNPs-NH-PANI Nanorod Arrays Modified by Fe3O4 Nanoparticles as High-performance Electromagnetic Wave Absorption Materials. Mater. Lett. 2018, 216, 101–105. doi: 10.1016/j.matlet.2018.01.008.
  • Liu, P.; Huang, Y.; Zhang, X. Superparamagnetic Fe3O4 Nanoparticles on Graphene-Polyaniline: Synthesis, Characterization and Their Excellent Electromagnetic Absorption Properties. J. Alloys Compd. 2014, 596, 25–31. doi: 10.1016/j.jallcom.2014.01.188.
  • Wang, Y.; Wu, X.; Zhang, W.; Huang, S. Facile Synthesis of Ni/PANI/RGO Composites and Their Excellent Electromagnetic Wave Absorption Properties. Synth. Met. 2015, 210, 165–170. doi: 10.1016/j.synthmet.2015.09.022.
  • Liu, P.; Huang, Y.; Wang, L.; Zhang, W. Preparation and Excellent Microwave Absorption Property of Three Component Nanocomposites: Polyaniline-reduced Graphene oxide-Co3O4 Nanoparticles. Synth. Met. 2013, 177, 89–93. doi: 10.1016/j.synthmet.2013.06.009.
  • Liu, P.; Huang, Y.; Wang, L.; Zhang, W. Synthesis and Excellent Electromagnetic Absorption Properties of Polypyrrole-Reduced Graphene oxide-Co3O4 Nanocomposites. J. Alloys Compd. 2013, 573, 151–156. doi: 10.1016/j.jallcom.2013.03.280.
  • Wang, Y.; Huang, Y.; Ding, J. Synthesis and Enhanced Electromagnetic Absorption Properties of polypyrrole-BaFe12O19/Ni0.8Zn0.2Fe2O4 on Graphene Nanosheet. Synth. Met. 2014, 196, 125–130. doi: 10.1016/j.synthmet.2014.07.027.
  • Ding, X.; Huang, Y.; Wang, J.; Wu, H.; Liu, P. Excellent Electromagnetic Wave Absorption Property of Quaternary Composites Consisting of Reduced Graphene Oxide, polyaniline and FeNi3@SiO2 Nanoparticles. Appl. Surf. Sci. 2015, 357, 908–914. doi: 10.1016/j.apsusc.2015.09.103.
  • Wang, Y.; Zhang, W.; Luo, C.; Wu, X.; Yan, G. Superparamagnetic FeCo@SnO2 Nanoparticles on Graphene-polyaniline: Synthesis and Enhanced Electromagnetic Wave Absorption Properties. Ceram. Int. 2016, 42, 12496–12502. doi: 10.1016/j.ceramint.2016.05.038.
  • Zhang, K.; Gao, X.; Zhang, Q.; Li, T.; Chen, H.; Chen, X. Preparation and Microwave Absorption Properties of Asphalt Carbon Coated Reduced Graphene Oxide/magnetic CoFe2O4 Hollow Particles Modified Multi-wall Carbon Nanotube Composites. J. Alloys Compd. 2017, 723, 912–921. doi: 10.1016/j.jallcom.2017.06.327.
  • Wang, L.; Huang, Y.; Li, C.; Chen, J.; Sun, X. Hierarchical Composites of Polyaniline Nanorod Arrays Covalently-grafted on the Surfaces of Graphene@Fe3O4@C with High Microwave Absorption Performance. Compos. Sci. Technol. 2015, 108, 1–8. doi: 10.1016/j.compscitech.2014.12.011.
  • Wang, L.; Huang, Y.; Huang, H. N-doped Graphene@polyaniline Nanorod Arrays Hierarchical Structures: Synthesis and Enhanced Electromagnetic Absorption Properties. Mater. Lett. 2014, 124, 89–92. doi: 10.1016/j.matlet.2014.03.066.
  • Liu, P.; Huang, Y.; Yang, Y.; Yan, J.; Zhang, X. Sandwich Structures of Graphene@Fe3O4@PANI Decorated with TiO2 Nanosheets for Enhanced Electromagnetic Wave Absorption Properties. J. Alloys Compd. 2016, 662, 63–68. doi: 10.1016/j.jallcom.2015.12.022.
  • Wang, Y.; Wu, X.; Zhang, W.; Luo, C.; Li, J. Synthesis of Ferromagnetic Sandwich FeCo@graphene@PPy and Enhanced Electromagnetic Wave Absorption Properties. J. Magn. Magn. Mater. 2017, 443, 358–365. doi: 10.1016/j.jmmm.2017.07.063.
  • Weng, X.; Li, B.; Zhang, Y.; Lv, X.; Gu, G. Synthesis of Flake Shaped Carbonyl Iron/reduced Graphene Oxide/polyvinyl Pyrrolidone Ternary Nanocomposites and Their Microwave Absorbing Properties. J. Alloys Compd. 2017, 695, 508–519. doi: 10.1016/j.jallcom.2016.11.083.
  • Liu, P.; Huang, Y.; Zhang, X. Preparation and Excellent Microwave Absorption Properties of Ferromagnetic Graphene/poly(3, 4-ethylenedioxythiophene)/CoFe2O4 Nanocomposites. Powder Technol. 2015, 276, 112–117. doi: 10.1016/j.powtec.2014.08.045.
  • Wu, F.; Xie, A.; Sun, M.; Wang, Y.; Wang, M. Reduced Graphene Oxide (RGO) modified Spongelike Polypyrrole (PPy) aerogel for Excellent Electromagnetic Absorption. J. Mater. Chem. A. 2015, 3, 14358–14369. doi: 10.1039/C5TA01577D.
  • Yang, R.-B.; Reddy, P. M.; Chang, C.-J.; Chen, P.-A.; Chen, J.-K.; Chang, C.-C. Synthesis and Characterization of Fe3O4/polypyrrole/carbon Nanotube Composites with Tunable Microwave Absorption Properties: Role of Carbon Nanotube and Polypyrrole Content. Chem. Eng. J. 2016, 285, 497–507. doi: 10.1016/j.cej.2015.10.031.
  • Luo, J.; Xu, Y.; Yao, W.; Jiang, C.; Xu, J. Synthesis and Microwave Absorption Properties of Reduced Graphene Oxide-magnetic Porous Nanospheres-polyaniline Composites. Compos. Sci. Technol. 2015, 117, 315–321. doi: 10.1016/j.compscitech.2015.07.008.
  • Liu, P.; Huang, Y.; Zhang, X. Cubic NiFe2O4 Particles on Graphene-polyaniline and Their Enhanced Microwave Absorption Properties. Compos. Sci. Technol. 2015, 107, 54–60. doi: 10.1016/j.compscitech.2014.11.021.
  • Liu, P.; Huang, Y.; Zhang, X. Synthesis, characterization and Excellent Electromagnetic Wave Absorption Properties of Graphene@CoFe2O4@polyaniline Nanocomposites. Synth. Met. 2015, 201, 76–81. doi: 10.1016/j.synthmet.2015.01.022.
  • Sun, J.; Shen, Y.; Hu, X.-S. Polyaniline/flower-like CuS Composites with Improved Electromagnetic Interference Shielding Effectiveness. Polym. Bull. 2018, 75, 653–667. doi: 10.1007/s00289-017-2060-9.
  • Liu, P.; Huang, Y. Decoration of Reduced Graphene Oxide with Polyaniline Film and Their Enhanced Microwave Absorption Properties. J. Polym. Res. 2014, 21, 430.
  • Zhang, P.; Han, X.; Kang, L.; Qiang, R.; Liu, W.; Du, Y. Synthesis and Characterization of Polyaniline Nanoparticles with Enhanced Microwave Absorption. RSC Adv. 2013, 3, 12694–12701. doi: 10.1039/c3ra40973b.
  • Du, L.; Du, Y.; Li, Y.; Wang, J.; Wang, C.; Wang, X.; Xu, P.; Han, X. Surfactant-Assisted Solvothermal Synthesis of Ba(CoTi)xFe12 − 2xO19 Nanoparticles and Enhancement in Microwave Absorption Properties of Polyaniline. J. Phys. Chem. C. 2010, 114, 19600–19606. doi: 10.1021/jp1067268.
  • Wang, G.; Wang, L.; Mark, L. H.; Shaayegan, V.; Wang, G.; Li, H.; Zhao, G.; Park, C. B. Ultralow-Threshold and Lightweight Biodegradable Porous PLA/MWCNT with Segregated Conductive Networks for High-Performance Thermal Insulation and Electromagnetic Interference Shielding Applications. ACS Appl. Mater. Interfaces. 2018, 10, 1195–1203. doi: 10.1021/acsami.7b14111.
  • Pawar, S. P.; Rzeczkowski, P.; Pötschke, P.; Krause, B.; Bose, S. Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties? ACS Omega 2018, 3, 5771–5782. doi: 10.1021/acsomega.8b00575.
  • Wang, Y.; Cheng, X.-D.; Song, W.-L.; Ma, C.-J.; Bian, X.-M.; Chen, M. Hydro-sensitive Sandwich Structures for Self-tunable Smart Electromagnetic Shielding. Chem. Eng. J. 2018, 344, 342–352. doi: 10.1016/j.cej.2018.03.097.
  • Wang, Z.; Wei, R.; Liu, X. Fluffy and Ordered Graphene Multilayer Films with Improved Electromagnetic Interference Shielding over X-Band. ACS Appl. Mater. Interfaces. 2017, 9, 22408–22419. doi: 10.1021/acsami.7b04008.
  • Yuan, J.-K.; Yao, S.-H.; Sylvestre, A.; Bai, J. Biphasic Polymer Blends Containing Carbon Nanotubes: Heterogeneous Nanotube Distribution and Its Influence on the Dielectric Properties. J. Phys. Chem. C. 2012, 116, 2051–2058. doi: 10.1021/jp210872w.
  • Chen, J.; Teng, Z.; Zhao, Y.; Liu, W. Electromagnetic Interference Shielding Properties of Wood–plastic Composites Filled with Graphene Decorated Carbon Fiber. Polym. Compos. 2018, 39, 2110–2116. doi: 10.1002/pc.24173.
  • Nan, C.-W. Physics of Inhomogeneous Inorganic Materials. Prog. Mater. Sci. 1993, 37, 1–116. doi: 10.1016/0079-6425(93)90004-5.
  • Kashi, S.; Hadigheh, S.; Varley, R. Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene Adipate-co-terephthalate) Nanocomposites. Polym. 2018, 10, 582.
  • Zha, X.-J.; Li, T.; Bao, R.-Y.; Bai, L.; Liu, Z.-Y.; Yang, W.; Yang, M.-B. Constructing a Special 'sosatie' Structure to Finely Dispersing MWCNT for Enhanced Electrical Conductivity, ultra-high Dielectric Performance and Toughness of iPP/OBC/MWCNT Nanocomposites. Compos. Sci. Technol. 2017, 139, 17–25. doi: 10.1016/j.compscitech.2016.12.011.
  • Nan, C.-W.; Shen, Y.; Ma, J. Physical Properties of Composites near Percolation. Annu. Rev. Mater. Res. 2010, 40, 131–151. doi: 10.1146/annurev-matsci-070909-104529.
  • Wen, B.; Cao, M.-S.; Hou, Z.-L.; Song, W.-L.; Zhang, L.; Lu, M.-M.; Jin, H.-B.; Fang, X.-Y.; Wang, W.-Z.; Yuan, J. Temperature Dependent Microwave Attenuation Behavior for Carbon-Nanotube/Silica Composites. Carbon 2013, 65, 124–139. doi: 10.1016/j.carbon.2013.07.110.
  • Cao, M.-S.; Song, W.-L.; Hou, Z.-L.; Wen, B.; Yuan, J. The Effects of Temperature and Frequency on the Dielectric Properties, electromagnetic Interference Shielding and Microwave-absorption of Short Carbon Fiber/silica Composites. Carbon 2010, 48, 788–796. doi: 10.1016/j.carbon.2009.10.028.
  • Ryvkina, N.; Tchmutin, I.; Vilčáková, J.; Pelíšková, M.; Sáha, P. The Deformation Behavior of Conductivity in Composites Where Charge Carrier Transport Is by Tunneling: theoretical Modeling and Experimental Results. Synth. Met. 2005, 148, 141–146. doi: 10.1016/j.synthmet.2004.09.028.
  • Rahaman, M.; Chaki, T. K.; Khastgir, D. Development of High Performance EMI Shielding Material from EVA, NBR, and Their Blends: Effect of Carbon Black Structure. J. Mater. Sci. 2011, 46, 3989–3999. doi: 10.1007/s10853-011-5326-x.
  • Yilmaz, A. C.; Ozen, M. S.; Sancak, E.; Erdem, R.; Erdem, O.; Soin, N. Analyses of the Mechanical, electrical and Electromagnetic Shielding Properties of Thermoplastic Composites Doped with Conductive Nanofillers. J. Compos. Mater. 2018, 52, 1423–1432. doi: 10.1177/0021998317752503.
  • Chung, D. D. L. Materials for Electromagnetic Interference Shielding. J. Mater. Eng. Perform 2000, 9, 350–354. doi: 10.1361/105994900770346042.
  • Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative Study of Electromagnetic Interference Shielding Properties of Injection Molded versus Compression Molded Multi-walled Carbon Nanotube/polystyrene Composites. Carbon 2012, 50, 5126–5134. doi: 10.1016/j.carbon.2012.06.053.
  • Dakin, T. W. Conduction and Polarization Mechanisms and Trends in Dielectric. IEEE Electr. Insul. Mag. 2006, 22, 11–28. doi: 10.1109/MEI.2006.1705854.
  • Vas, J. V.; Thomas, M. J. Electromagnetic Shielding Effectiveness of Layered Polymer Nanocomposites. IEEE Trans. Electromagn. Compat. 2018, 60, 376–384. doi: 10.1109/TEMC.2017.2719764.
  • Mondal, S.; Das, P.; Ganguly, S.; Ravindren, R.; Remanan, S.; Bhawal, P.; Das, T. K.; Das, N. C. Thermal-Air Ageing Treatment on Mechanical, Electrical, and Electromagnetic Interference Shielding Properties of Lightweight Carbon Nanotube Based Polymer Nanocomposites. Compos. Part A. 2018, 107, 447–460. doi: 10.1016/j.compositesa.2018.01.025.
  • Sahoo, B. P.; Naskar, K.; Tripathy, D. K. Conductive Carbon Black-Filled Ethylene Acrylic Elastomer Vulcanizates: Physico-Mechanical, Thermal, and Electrical Properties. J. Mater. Sci. 2012, 47, 2421–2433. doi: 10.1007/s10853-011-6065-8.
  • Mondal, S.; Ganguly, S.; Das, P.; Khastgir, D.; Das, N. C. Low Percolation Threshold and Electromagnetic Shielding Effectiveness of Nano-structured Carbon Based Ethylene Methyl Acrylate Nanocomposites. Composites, Part B. 2017, 119, 41–56. doi: 10.1016/j.compositesb.2017.03.022.
  • Ameli, A.; Jung, P. U.; Park, C. B. Electrical Properties and Electromagnetic Interference Shielding Effectiveness of Polypropylene/carbon Fiber Composite Foams. Carbon 2013, 60, 379–391. doi: 10.1016/j.carbon.2013.04.050.
  • Pawar, S. P.; Pattabhi, K.; Bose, S. Assessing the Critical Concentration of NH2 Terminal Groups on the Surface of MWNTs towards Chain Scission of PC in PC/SAN Blends: Effect on Dispersion, Electrical Conductivity and EMI Shielding. RSC Adv. 2014, 4, 18842–18852. doi: 10.1039/c4ra01610f.
  • Pawar, S. P.; Marathe, D. A.; Pattabhi, K.; Bose, S. Electromagnetic Interference Shielding through MWNT Grafted Fe3O4 Nanoparticles in PC/SAN Blends. J. Mater. Chem. A. 2015, 3, 656–669. doi: 10.1039/C4TA04559A.
  • Biswas, S.; Panja, S. S.; Bose, S. A Novel Fluorophore-Spacer-Receptor to Conjugate MWNTs and Ferrite Nanoparticles to Design an Ultra-Thin Shield to Screen Electromagnetic Radiation. Mater. Chem. Front. 2017, 1, 132–145. doi: 10.1039/C6QM00074F.
  • Im, J. S.; Park, I. J.; In, S. J.; Kim, T.; Lee, Y.-S. Fluorination Effects of MWCNT Additives for EMI Shielding Efficiency by Developed Conductive Network in Epoxy Complex. J. Fluorine Chem. 2009, 130, 1111–1116. doi: 10.1016/j.jfluchem.2009.06.022.
  • Hosseini, H.; Mahdavi, H. Nanocomposite Based on Epoxy and MWCNTs Modified with NiFe2O4 Nanoparticles as Efficient Microwave Absorbing Material. Appl. Organometal. Chem. 2018, 32, e4294. doi: 10.1002/aoc.4294.
  • Kar, G. P.; Biswas, S.; Bose, S. Simultaneous Enhancement in Mechanical Strength, Electrical Conductivity, and Electromagnetic Shielding Properties in PVDF-ABS Blends Containing PMMA Wrapped Multiwall Carbon Nanotubes. Phys. Chem. Chem. Phys. 2015, 17, 14856–14865. doi: 10.1039/C5CP01452B.
  • Sourav, B.; Prasanna, K. G.; Suryasarathi, B. Simultaneous Improvement in Structural Properties and Microwave Shielding of Polymer Blends with Carbon Nanotubes. Chem. Nano. Mat. 2016, 2, 140–148.
  • Wu, Y.; Wang, Z.; Liu, X.; Shen, X.; Zheng, Q.; Xue, Q.; Kim, J.-K. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2017, 9, 9059–9069. doi: 10.1021/acsami.7b01017.
  • Zhang, X.; Wei, S.; Haldolaarachchige, N.; Colorado, H. A.; Luo, Z.; Young, D. P.; Guo, Z. Magnetoresistive Conductive Polyaniline–Barium Titanate Nanocomposites with Negative Permittivity. J. Phys. Chem. C. 2012, 116, 15731–15740. doi: 10.1021/jp303226u.
  • Liang, J.; Wang, Y.; Huang, Y.; Ma, Y.; Liu, Z.; Cai, J.; Zhang, C.; Gao, H.; Chen, Y. Electromagnetic Interference Shielding of Graphene/Epoxy Composites. Carbon 2009, 47, 922–925. doi: 10.1016/j.carbon.2008.12.038.
  • Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Jiang, Z.-G.; Yu, Z.-Z. The Effect of Surface Chemistry of Graphene on Rheological and Electrical Properties of Polymethylmethacrylate Composites. Carbon 2012, 50, 5117–5125. doi: 10.1016/j.carbon.2012.06.052.
  • Li, C.; Yang, G.; Deng, H.; Wang, K.; Zhang, Q.; Chen, F.; Fu, Q. The Preparation and Properties of Polystyrene/Functionalized Graphene Nanocomposite Foams Using Supercritical Carbon Dioxide. Polym. Int. 2012, 62, 1077–1084.
  • Hsiao, S.-T.; Ma, C.-C. M.; Tien, H.-W.; Liao, W.-H.; Wang, Y.-S.; Li, S.-M.; Yang, C.-Y.; Lin, S.-C.; Yang, R.-B. Effect of Covalent Modification of Graphene Nanosheets on the Electrical Property and Electromagnetic Interference Shielding Performance of a Water-Borne Polyurethane Composite. ACS Appl. Mater. Interfaces 2015, 7, 2817–2826. doi: 10.1021/am508069v.
  • Hsiao, S.-T.; Ma, C.-C. M.; Tien, H.-W.; Liao, W.-H.; Wang, Y.-S.; Li, S.-M.; Huang, Y.-C. Using a Non-covalent Modification to Prepare a High Electromagnetic Interference Shielding Performance Graphene Nanosheet/water-borne Polyurethane Composite. Carbon 2013, 60, 57–66. doi: 10.1016/j.carbon.2013.03.056.
  • Hsiao, S.-T.; Ma, C.-C. M.; Liao, W.-H.; Wang, Y.-S.; Li, S.-M.; Huang, Y.-C.; Yang, R.-B.; Liang, W.-F. Lightweight and Flexible Reduced Graphene Oxide/Water-Borne Polyurethane Composites with High Electrical Conductivity and Excellent Electromagnetic Interference Shielding Performance. ACS Appl. Mater. Interfaces 2014, 6, 10667–10678. doi: 10.1021/am502412q.
  • Poothanari, M. A.; Abraham, J.; Kalarikkal, N.; Thomas, S. Excellent Electromagnetic Interference Shielding and High Electrical Conductivity of Compatibilized Polycarbonate/Polypropylene Carbon Nanotube Blend Nanocomposites. Ind. Eng. Chem. Res. 2018, 57, 4287–4297. doi: 10.1021/acs.iecr.7b05406.
  • Tian, K.; Su, Z.; Wang, H.; Tian, X.; Huang, W.; Xiao, C. N-doped Reduced Graphene Oxide/waterborne Polyurethane Composites Prepared by in Situ Chemical Reduction of Graphene Oxide. Compos. Part A 2017, 94, 41–49. doi: 10.1016/j.compositesa.2016.11.020.
  • Geng, H.-Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films. J. Am. Chem. Soc. 2007, 129, 7758–7759. doi: 10.1021/ja0722224.
  • Bhawal, P.; Ganguly, S.; Das, T. K.; Mondal, S.; Choudhury, S.; Das, N. C. Superior Electromagnetic Interference Shielding Effectiveness and Electro-mechanical Properties of EMA-IRGO Nanocomposites through the in-situ Reduction of GO from Melt Blended EMA-GO Composites. Compos. Part B. 2018, 134, 46–60. doi: 10.1016/j.compositesb.2017.09.046.
  • Wu, Z.; Gao, S.; Chen, L.; Jiang, D.; Shao, Q.; Zhang, B.; Zhai, Z.; Wang, C.; Zhao, M.; Ma, Y.; et al. Electrically Insulated Epoxy Nanocomposites Reinforced with Synergistic Core–Shell SiO2@MWCNTs and Montmorillonite Bifillers. Macromol. Chem. Phys. 2017, 218, 1700357. doi: 10.1002/macp.201700357.
  • Pan, Y.; Liu, X.; Hao, X.; Starý, Z.; Schubert, D. W. Enhancing the Electrical Conductivity of Carbon Black-Filled Immiscible Polymer Blends by Tuning the Morphology. Eur. Polym. J. 2016, 78, 106–115. doi: 10.1016/j.eurpolymj.2016.03.019.
  • Ding-Xiang, Y.; Huan, P.; Ling, X.; Yu, B.; Peng-Gang, R.; Jun, L.; Zhong-Ming, L. Electromagnetic Interference Shielding of Segregated Polymer Composite with an Ultralow Loading of in Situ Thermally Reduced Graphene Oxide. Nanotechnol. 2014, 25, 145705. doi: 10.1088/0957-4484/25/14/145705.
  • Yan, D.-X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P.-G.; Wang, J.-H.; Li, Z.-M. Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2015, 25, 559–566. doi: 10.1002/adfm.201403809.
  • Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled with Carbon Black. Polym. Bull. 1991, 25, 265–271. doi: 10.1007/BF00310802.
  • Shahzad, F.; Lee, S. H.; Hong, S. M.; Koo, C. M. Segregated Reduced Graphene Oxide Polymer Composite as a High Performance Electromagnetic Interference Shield. Res. Chem. Intermed. 2018, 44, 4707–4719. doi: 10.1007/s11164-018-3274-7.
  • Wu, H.-Y.; Jia, L.-C.; Yan, D.-X.; Gao, J-f.; Zhang, X.-P.; Ren, P.-G.; Li, Z.-M. Simultaneously Improved Electromagnetic Interference Shielding Andآmechanical Performance of Segregated Carbon Nanotube/polypropylene Composite via Solid Phase Molding. Compos. Sci. Technol. 2018, 156, 87–94. doi: 10.1016/j.compscitech.2017.12.027.
  • C, D. N.; K, C. T.; D, K.; A, C. Electromagnetic Interference Shielding Effectiveness of Conductive Carbon Black and Carbon Fiber-filled Composites Based on Rubber and Rubber Blends. Adv. Polym. Technol 2001, 20, 226–236.
  • Sumita, M.; Sakata, K.; Hayakawa, Y.; Asai, S.; Miyasaka, K.; Tanemura, M. Double Percolation Effect on the Electrical Conductivity of Conductive Particles Filled Polymer Blends. Colloid Polym. Sci. 1992, 270, 134–139. doi: 10.1007/BF00652179.
  • G, S. B.; F, C. L.; A, S. A.; Tamara, I.; O, B. G. M.; Sebastien, L. Conducting Melt Blending of Polystyrene and EVA Copolymer with Carbon Nanotube Assisted by Phosphonium-Based Ionic Liquid. J. Appl. Polym. Sci 2018, 135, 45564.
  • Fenouillot, F.; Cassagnau, P.; Majesté, J. C. Uneven Distribution of Nanoparticles in Immiscible Fluids: Morphology Development in Polymer Blends. Polym. 2009, 50, 1333–1350. doi: 10.1016/j.polymer.2008.12.029.
  • Wu, S. Polymer Interface and Adhesion; Marcel Dekker: New York; Basel, 1982.
  • Biswas, S.; Kar, G. P.; Bose, S. Engineering Nanostructured Polymer Blends with Controlled Nanoparticle Location for Excellent Microwave Absorption: a Compartmentalized Approach. Nanoscale 2015, 7, 11334–11351. doi: 10.1039/C5NR01785H.
  • Zhang, J.; Ravati, S.; Virgilio, N.; Favis, B. D. Ultralow Percolation Thresholds in Ternary Cocontinuous Polymer Blends. Macromol 2007, 40, 8817–8820. doi: 10.1021/ma0716480.
  • Jyotishkumar, P.; O¨Zdilek, C.; Moldenaers, P.; Sinturel, C.; Janke, A.; Pionteck, Jrgen.; Thomas, S. Dynamics of Phase Separation in Poly(acrylonitrile-butadiene-styrene)-Modified Epoxy/DDS System: Kinetics and Viscoelastic Effects. J. Phys. Chem. B. 2010, 114, 13271–13281. doi: 10.1021/jp101661t.
  • W, M. C. Morphology Development and Control in Immiscible Polymer Blends. Macromol. Symp. 2000, 149, 171–184.
  • Willemse, R. C.; Ramaker, E. J. J.; van Dam, J.; Posthuma de Boer, A. Morphology Development in Immiscible Polymer Blends: Initial Blend Morphology and Phase Dimensions. Polym. 1999, 40, 6651–6659. doi: 10.1016/S0032-3861(99)00038-5.
  • Sundararaj, U.; Macosko, C. W. Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization. Macromol 1995, 28, 2647–2657. doi: 10.1021/ma00112a009.
  • Pang, H.; Yan, D.-X.; Bao, Y.; Chen, J.-B.; Chen, C.; Li, Z.-M. Super-Tough Conducting Carbon Nanotube/Ultrahigh-Molecular-Weight Polyethylene Composites with Segregated and Double-Percolated Structure. J. Mater. Chem. 2012, 22, 23568–23575. doi: 10.1039/c2jm34793h.
  • Al-Saleh Mohammed, H.; Sundararaj, U. Microstructure, Electrical, and Electromagnetic Interference Shielding Properties of Carbon Nanotube/Acrylonitrile-Butadiene-Styrene Nanocomposites. J. Polym. Sci. B Polym. Phys. 2012, 50, 1356–1362. doi: 10.1002/polb.23129.
  • P, S. D.; I, S. T.; S, R. S. D. A.; O, B. G. M.; Alessandro, P.; G, S. B. Hybrid Composites of ABS with Carbonaceous Fillers for Electromagnetic Shielding Applications. J. Appl. Polym. Sci. 2018, 135, 46546.
  • Schmitz, D. P.; Ecco, L. G.; Dul, S.; Pereira, E. C. L.; Soares, B. G.; Barra, G. M. O.; Pegoretti, A. Electromagnetic Interference Shielding Effectiveness of ABS Carbon-based Composites Manufactured via Fused Deposition Modelling. Mater. Today Commun. 2018, 15, 70–80. doi: 10.1016/j.mtcomm.2018.02.034.
  • Ji, X.; Chen, D.; Wang, Q.; Shen, J.; Guo, S. Synergistic Effect of Flame Retardants and Carbon Nanotubes on Flame Retarding and Electromagnetic Shielding Properties of Thermoplastic Polyurethane. Compos. Sci. Technol. 2018, 163, 49–55. doi: 10.1016/j.compscitech.2018.05.007.
  • Xu, Y.; Tang, S.; Pan, J.; Bao, J.; Zhang, A. Reversibly Cross-linked SEBS/carbon Hybrid Composite with Excellent Solvent-proof and Electromagnetic Shielding Properties. Mater. Des 2018, 146, 1–11. doi: 10.1016/j.matdes.2018.02.071.
  • Lu, D.; Mo, Z.; Liang, B.; Yang, L.; He, Z.; Zhu, H.; Tang, Z.; Gui, X. Flexible, Lightweight Carbon Nanotube Sponges and Composites for High-performance Electromagnetic Interference Shielding. Carbon 2018, 133, 457–463. doi: 10.1016/j.carbon.2018.03.061.
  • Ma, X.; Shen, B.; Zhang, L.; Liu, Y.; Zhai, W.; Zheng, W. Porous Superhydrophobic Polymer/Carbon Composites for Lightweight and Self-cleaning EMI Shielding Application. Compos. Sci. Technol. 2018, 158, 86–93. doi: 10.1016/j.compscitech.2018.02.006.
  • Nimbalkar, P.; Korde, A.; Goyal, R. K. Electromagnetic Interference Shielding of Polycarbonate/GNP Nanocomposites in X-Band. Mater. Chem. Phys. 2018, 206, 251–258. doi: 10.1016/j.matchemphys.2017.12.027.
  • Bai, X.; Zhai, Y.; Zhang, Y. Green Approach to Prepare Graphene-Based Composites with High Microwave Absorption Capacity. J. Phys. Chem. C. 2011, 115, 11673–11677. doi: 10.1021/jp202475m.
  • Nasouri, K.; Shoushtari, A. M. Fabrication of Magnetite Nanoparticles/polyvinylpyrrolidone Composite Nanofibers and Their Application as Electromagnetic Interference Shielding Material. J. Thermoplast. Compos. Mater. 2018, 31, 431–446. doi: 10.1177/0892705717704488.
  • Chauhan Sampat, S.; Verma, P.; Malik Rajender, S.; Choudhary, V. Thermomechanically Stable Dielectric Composites Based on Poly(ether Ketone) and BaTiO3 with Improved Electromagnetic Shielding Properties in X-Band. J. Appl. Polym. Sci. 2018, 135, 46413. doi: 10.1002/app.46413.
  • Wang, H.; Zheng, K.; Zhang, X.; Wang, Y.; Xiao, C.; Chen, L.; Tian, X. Hollow Microsphere-Infused Porous Poly(vinylidene Fluoride)/Multiwall Carbon Nanotube Composites with Excellent Electromagnetic Shielding and Low Thermal Transport. J. Mater. Sci. 2018, 53, 6042–6052. doi: 10.1007/s10853-017-1964-y.
  • Wang, H.; Zheng, K.; Zhang, X.; Du, T.; Xiao, C.; Ding, X.; Bao, C.; Chen, L.; Tian, X. Segregated Poly(vinylidene Fluoride)/MWCNTs Composites for High-performance Electromagnetic Interference Shielding. Compos. Part A. 2016, 90, 606–613. doi: 10.1016/j.compositesa.2016.08.030.
  • Zhang, K.; Yu, H.-O.; Shi, Y.-D.; Chen, Y.-F.; Zeng, J.-B.; Guo, J.; Wang, B.; Guo, Z.; Wang, M. Morphological Regulation Improved Electrical Conductivity and Electromagnetic Interference Shielding in Poly(l-lactide)/Poly(ɛ-caprolactone)/Carbon Nanotube Nanocomposites via Constructing Stereocomplex Crystallites. J. Mater. Chem. C. 2017, 5, 2807–2817. doi: 10.1039/C7TC00389G.
  • Zhang, K.; Li, G.-H.; Feng, L.-M.; Wang, N.; Guo, J.; Sun, K.; Yu, K.-X.; Zeng, J.-B.; Li, T.; Guo, Z.; Wang, M. Ultralow Percolation Threshold and Enhanced Electromagnetic Interference Shielding in Poly(l-lactide)/Multi-walled Carbon Nanotube Nanocomposites with Electrically Conductive Segregated Networks. J. Mater. Chem. C. 2017, 5, 9359–9369. doi: 10.1039/C7TC02948A.
  • Liu, Y.-F.; Feng, L.-M.; Chen, Y.-F.; Shi, Y.-D.; Chen, X.-D.; Wang, M. Segregated Polypropylene/Cross-linked Poly(ethylene-co-1-octene)/Multi-walled Carbon Nanotube Nanocomposites with Low Percolation Threshold and Dominated Negative Temperature Coefficient Effect: Towards Electromagnetic Interference Shielding and Thermistors. Compos. Sci. Technol. 2018, 159, 152–161. doi: 10.1016/j.compscitech.2018.02.041.
  • Bizhani, H.; Nayyeri, V.; Katbab, A.; Jalali-Arani, A.; Nazockdast, H. Double Percolated MWCNTs Loaded PC/SAN Nanocomposites as an Absorbing Electromagnetic Shield. Eur. Polym. J. 2018, 100, 209–218. doi: 10.1016/j.eurpolymj.2018.01.016.
  • Yu, W.-C.; Xu, J.-Z.; Wang, Z.-G.; Huang, Y.-F.; Yin, H.-M.; Xu, L.; Chen, Y.-W.; Yan, D.-X.; Li, Z.-M. Constructing Highly Oriented Segregated Structure towards High-strength Carbon Nanotube/Ultrahigh-Molecular-Weight Polyethylene Composites for Electromagnetic Interference Shielding. Compos. Part A. 2018, 110, 237–245. doi: 10.1016/j.compositesa.2018.05.004.
  • Li, L-y.; Li, S-l.; Shao, Y.; Dou, R.; Yin, B.; Yang, M.-b. PVDF/PS/HDPE/MWCNTs/Fe3O4 Nanocomposites: Effective and Lightweight Electromagnetic Interference Shielding Material through the Synergetic Effect of MWCNTs and Fe3O4 Nanoparticles. Curr. Appl. Phys. 2018, 18, 388–396. doi: 10.1016/j.cap.2018.01.014.
  • Zha, X.-J.; Pu, J.-H.; Ma, L.-F.; Li, T.; Bao, R.-Y.; Bai, L.; Liu, Z.-Y.; Yang, M.-B.; Yang, W. A Particular Interfacial Strategy in PVDF/OBC/MWCNT Nanocomposites for High Dielectric Performance and Electromagnetic Interference Shielding. Compos. Part A. 2018, 105, 118–125. doi: 10.1016/j.compositesa.2017.11.011.
  • Shi, Y.-D.; Yu, H.-O.; Li, J.; Tan, Y.-J.; Chen, Y.-F.; Wang, M.; Wu, H.; Guo, S. Low Magnetic Field-induced Alignment of Nickel Particles in Segregated Poly(l-lactide)/Poly(ε-caprolactone)/Multi-walled Carbon Nanotube Nanocomposites: Towards Remarkable and Tunable Conductive Anisotropy. Chem. Eng. J. 2018, 347, 472–482. doi: 10.1016/j.cej.2018.04.147.
  • Mao, C.; Huang, J.; Zhu, Y.; Jiang, W.; Tang, Q.; Ma, X. Tailored Parallel Graphene Stripes in Plastic Film with Conductive Anisotropy by Shear-Induced Self-Assembly. J. Phys. Chem. Lett. 2013, 4, 43–47. doi: 10.1021/jz301811b.
  • Hashemi Seyyed, A.; Mousavi Seyyed, M.; Arjmand, M.; Yan, N.; Sundararaj, U. Electrified Single-walled Carbon Nanotube/epoxy Nanocomposite via Vacuum Shock Technique: Effect of Alignment on Electrical Conductivity and Electromagnetic Interference Shielding. Polym. Compos. 2018, 39, E1139–E1148. doi: 10.1002/pc.24632.
  • Yang, Y.; Gupta, M. C.; Dudley, K. L.; Lawrence, R. W. Conductive Carbon Nanofiber-Polymer Foam Structures. Adv. Mater. 2005, 17, 1999–2003. doi: 10.1002/adma.200500615.
  • Wang, C.; Wu, Y.; Li, Y.; Shao, Q.; Yan, X.; Han, C.; Wang, Z.; Liu, Z.; Guo, Z. Flame-retardant Rigid Polyurethane Foam with a Phosphorus-Nitrogen Single Intumescent Flame Retardant. Polym. Adv. Technol. 2018, 29, 668–676. doi: 10.1002/pat.4105.
  • Ghosh, S.; Remanan, S.; Mondal, S.; Ganguly, S.; Das, P.; Singha, N.; Das, N. C. An Approach to Prepare Mechanically Robust Full IPN Strengthened Conductive Cotton Fabric for High Strain Tolerant Electromagnetic Interference Shielding. Chem. Eng. J. 2018, 344, 138–154. doi: 10.1016/j.cej.2018.03.039.
  • Lu, Y.; Biswas, M. C.; Guo, Z.; Jeon, J.-W.; Wujcik, E. K. Recent Developments in Bio-monitoring via Advanced Polymer Nanocomposite-based Wearable Strain Sensors. Biosens. Bioelectron. 2018, 123, 167–177.
  • Ghosh, S.; Ganguly, S.; Remanan, S.; Mondal, S.; Jana, S.; Maji, P. K.; Singha, N.; Das, N. C. Ultra-light Weight, water Durable and Flexible Highly Electrical Conductive Polyurethane Foam for Superior Electromagnetic Interference Shielding Materials. J. Mater. Sci: Mater. Electron. 2018, 29, 10177–10189. doi: 10.1007/s10854-018-9068-2.
  • Eswaraiah, V.; Sankaranarayanan, V.; Ramaprabhu, S. Functionalized Graphene–PVDF Foam Composites for EMI Shielding. Macromol. Mater. Eng. 2011, 296, 894–898. doi: 10.1002/mame.201100035.
  • Thomassin, J.-M.; Vuluga, D.; Alexandre, M.; Jérôme, C.; Molenberg, I.; Huynen, I.; Detrembleur, C. A Convenient Route for the Dispersion of Carbon Nanotubes in Polymers: Application to the Preparation of Electromagnetic Interference (EMI) Absorbers. Polymer 2012, 53, 169–174. doi: 10.1016/j.polymer.2011.11.026.
  • Xu, X. B.; Li, Z. M.; Shi, L.; Bian, X. C.; Xiang, Z. D. Ultralight Conductive Carbon Nanotube-Polymer Composite. Small 2007, 3, 408–411. doi: 10.1002/smll.200600348.
  • Li, L.; Morris, J. E. Electrical Conduction Models for Isotropically Conductive Adhesive Joints. IEEE Trans. Comp, Packag, Manufact. Technol. A. 1997, 20, 3–8. doi: 10.1109/95.558537.
  • Gadenne, M.; Gadenne, P.; Martin, J. C.; Sella, C. Composition and Electrical Properties of Au@Al2O3 Cermet Thin Films: A Critical Study. Thin Solid Films 1992, 221, 183–190. doi: 10.1016/0040-6090(92)90812-P.
  • Kirkpatrick, S. Percolation and Conduction. Rev. Mod. Phys. 1973, 45, 574–588. doi: 10.1103/RevModPhys.45.574.
  • Wang, G.; Zhao, G.; Wang, S.; Zhang, L.; Park, C. B. Injection-Molded Microcellular PLA/Graphite Nanocomposites with Dramatically Enhanced Mechanical and Electrical Properties for Ultra-efficient EMI Shielding Applications. J. Mater. Chem. C. 2018, 6, 6847–6859. doi: 10.1039/C8TC01326H.
  • Yang, Y.; Gupta, M. C.; Dudley, K. L.; Lawrence, R. W. Novel Carbon Nanotube − Polystyrene Foam Composites for Electromagnetic Interference Shielding. Nano Lett. 2005, 5, 2131–2134. doi: 10.1021/nl051375r.
  • Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H.-M. Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 2013, 25, 1296–1300. doi: 10.1002/adma.201204196.
  • Xu, L.; Jia, L.-C.; Yan, D.-X.; Ren, P.-G.; Xu, J.-Z.; Li, Z.-M. Efficient Electromagnetic Interference Shielding of Lightweight Carbon Nanotube/Polyethylene Composites via Compression Molding plus Salt-Leaching. RSC Adv. 2018, 8, 8849–8855. doi: 10.1039/C7RA13453C.
  • Yan, D.-X.; Ren, P.-G.; Pang, H.; Fu, Q.; Yang, M.-B.; Li, Z.-M. Efficient Electromagnetic Interference Shielding of Lightweight Graphene/Polystyrene Composite. J. Mater. Chem. 2012, 22, 18772–18774. doi: 10.1039/c2jm32692b.
  • Zhang, H.-B.; Yan, Q.; Zheng, W.-G.; He, Z.; Yu, Z.-Z. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. doi: 10.1021/am200021v.
  • Shen, B.; Zhai, W.; Tao, M.; Ling, J.; Zheng, W. Lightweight, Multifunctional Polyetherimide/Graphene@Fe3O4 Composite Foams for Shielding of Electromagnetic Pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391. doi: 10.1021/am4036527.
  • Shen, B.; Li, Y.; Zhai, W.; Zheng, W. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057. doi: 10.1021/acsami.5b11715.
  • Ling, J.; Zhai, W.; Feng, W.; Shen, B.; Zhang, J.; Zheng, W. g. Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684. doi: 10.1021/am303289m.
  • Zeng, Z.; Jin, H.; Chen, M.; Li, W.; Zhou, L.; Zhang, Z. Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding. Adv. Funct. Mater. 2016, 26, 303–310. doi: 10.1002/adfm.201503579.
  • Yang, W.; Shao, B.; Liu, T.; Zhang, Y.; Huang, R.; Chen, F.; Fu, Q. Robust and Mechanically and Electrically Self-Healing Hydrogel for Efficient Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2018, 10, 8245–8257. doi: 10.1021/acsami.7b18700.
  • Xing, D.; Lu, L.; Teh, K. S.; Wan, Z.; Xie, Y.; Tang, Y. Highly Flexible and Ultra-thin Ni-plated Carbon-fabric/polycarbonate Film for Enhanced Electromagnetic Interference Shielding. Carbon 2018, 132, 32–41. doi: 10.1016/j.carbon.2018.02.001.
  • Na, R.; Liu, J.; Wang, G.; Zhang, S. Light Weight and Flexible Poly(ether Ether Ketone) Based Composite Film with Excellent Thermal Stability and Mechanical Properties for Wide-band Electromagnetic Interference Shielding. RSC Adv. 2018, 8, 3296–3303. doi: 10.1039/C7RA11675F.
  • Jia, L.-C.; Yan, D.-X.; Liu, X.; Ma, R.; Wu, H.-Y.; Li, Z.-M. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film. ACS Appl. Mater. Interfaces 2018, 10, 11941–11949. doi: 10.1021/acsami.8b00492.
  • Oh, H.-J.; Dao, V.-D.; Choi, H.-S. Electromagnetic Shielding Effectiveness of a Thin Silver Layer Deposited onto PET Film via Atmospheric Pressure Plasma Reduction. Appl. Surf. Sci 2018, 435, 7–15. doi: 10.1016/j.apsusc.2017.11.043.
  • Ozen, M. S.; Sancak, E.; Soin, N.; Shah, T. H.; Zarei, A.; Siores, E. Unprecedented Electromagnetic Shielding Effectiveness of Lightweight Nonwoven Ag/PA66 Fabrics. Fibers Polym. 2018, 19, 321–330. doi: 10.1007/s12221-018-7210-z.
  • Sabira, K.; Jayakrishnan, M. P.; Saheeda, P.; Jayalekshmi, S. On the Absorption Dominated EMI Shielding Effects in Free Standing and Flexible Films of Poly(vinylidene Fluoride)/Graphene Nanocomposite. Eur. Polym. J. 2018, 99, 437–444. doi: 10.1016/j.eurpolymj.2017.12.034.
  • Kim, H. M.; Kim, K.; Lee, C. Y.; Joo, J.; Cho, S. J.; Yoon, H. S.; Pejaković, D. A.; Yoo, J. W.; Epstein, A. J. Electrical Conductivity and Electromagnetic Interference Shielding of Multiwalled Carbon Nanotube Composites Containing Fe Catalyst. Appl. Phys. Lett. 2004, 84, 589–591. doi: 10.1063/1.1641167.
  • Xu, Y.; Yang, Y.; Duan, H.; Gao, J.; Yan, D.-X.; Zhao, G.; Liu, Y. Flexible and Highly Conductive Sandwich Nylon/nickel Film for Ultra-efficient Electromagnetic Interference Shielding. Appl. Surf. Sci. 2018, 455, 856–863. doi: 10.1016/j.apsusc.2018.06.061.
  • Duan, H.; Zhao, M.; Yang, Y.; Zhao, G.; Liu, Y. Flexible and Conductive PP/EPDM/Ni Coated Glass Fiber Composite for Efficient Electromagnetic Interference Shielding. J. Mater. Sci: Mater. Electron. 2018, 29, 10329–10336. doi: 10.1007/s10854-018-9089-x.
  • Wan, X.; Lu, H.; Kang, J.; Li, S.; Yue, Y. Preparation of Graphene-Glass Fiber-resin Composites and Its Electromagnetic Shielding Performance. Compos. Interfaces 2018, 25, 883–900. doi: 10.1080/09276440.2018.1439641.
  • Yang, H.; Yu, Z.; Wu, P.; Zou, H.; Liu, P. Electromagnetic Interference Shielding Effectiveness of Microcellular Polyimide/in Situ Thermally Reduced Graphene Oxide/Carbon Nanotubes Nanocomposites. Appl. Surf. Sci. 2018, 434, 318–325.
  • Baokang, D.; Yipeng, C.; Ning, Y.; Bo, C.; Qingfeng, S. Effect of Carbon Fiber Addition on the Electromagnetic Shielding Properties of Carbon Fiber/Polyacrylamide/Wood Based Fiberboards. Nanotechnol. 2018, 29, 195605.
  • Gupta, T. K.; Singh, B. P.; Dhakate, S. R.; Singh, V. N.; Mathur, R. B. Improved Nanoindentation and Microwave Shielding Properties of Modified MWCNT Reinforced Polyurethane Composites. J. Mater. Chem. A. 2013, 1, 9138–9149. doi: 10.1039/c3ta11611e.
  • Verma, P.; Saini, P.; Malik, R. S.; Choudhary, V. Excellent Electromagnetic Interference Shielding and Mechanical Properties of High Loading Carbon-Nanotubes/Polymer Composites Designed Using Melt Recirculation Equipped Twin-Screw Extruder. Carbon 2015, 89, 308–317. doi: 10.1016/j.carbon.2015.03.063.
  • Pawar, S. P.; Stephen, S.; Bose, S.; Mittal, V. Tailored Electrical Conductivity, Electromagnetic Shielding and Thermal Transport in Polymeric Blends with Graphene Sheets Decorated with Nickel Nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 14922–14930. doi: 10.1039/C5CP00899A.
  • Al-Saleh, M. H.; Sundararaj, U. Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites. Carbon 2009, 47, 1738–1746. doi: 10.1016/j.carbon.2009.02.030.
  • Duan, H.; Zhu, H.; Yang, Y.; Hou, T.; Zhao, G.; Liu, Y. Facile and Economical Fabrication of Conductive Polyamide 6 Composites with Segregated Expanded Graphite Networks for Efficient Electromagnetic Interference Shielding. J. Mater. Sci: Mater. Electron. 2018, 29, 1058–1064. doi: 10.1007/s10854-017-8006-z.
  • George, G.; Simon Sanu, M.; Prakashan, V. P.; Sajna, M. S.; Faisal, M.; Chandran, A.; Wilson, R.; Biju, P. R.; Joseph, C.; Unnikrishnan, N. V. Morphological, Dielectric, Tunable Electromagnetic Interference Shielding and Thermal Characteristics of Multiwalled Carbon Nanotube Incorporated Polymer Nanocomposites: A Facile, Environmentally Benign and Cost Effective Approach Realized via Polymer Latex/Waterborne Polymer as Matrix. Polym. Compos. 2017, 39, E1169–E1183. doi: 10.1002/pc.24689.
  • Li, Y.; Pei, X.; Shen, B.; Zhai, W.; Zhang, L.; Zheng, W. Polyimide/Graphene Composite Foam Sheets with Ultrahigh Thermostability for Electromagnetic Interference Shielding. RSC Adv. 2015, 5, 24342–24351. doi: 10.1039/C4RA16421K.
  • Zhao, B.; Wang, S.; Zhao, C.; Li, R.; Hamidinejad, S. M.; Kazemi, Y.; Park, C. B. Synergism between Carbon Materials and Ni Chains in Flexible Poly(vinylidene Fluoride) Composite Films with High Heat Dissipation to Improve Electromagnetic Shielding Properties. Carbon 2018, 127, 469–478. doi: 10.1016/j.carbon.2017.11.032.
  • Sambyal, P.; Dhawan, S. K.; Gairola, P.; Chauhan, S. S.; Gairola, S. P. Synergistic Effect of Polypyrrole/BST/RGO/Fe3O4 Composite for Enhanced Microwave Absorption and EMI Shielding in X-Band. Curr. Appl. Phys. 2018, 18, 611–618. doi: 10.1016/j.cap.2018.03.001.
  • Zhan, Y.; Wang, J.; Zhang, K.; Li, Y.; Meng, Y.; Yan, N.; Wei, W.; Peng, F.; Xia, H. Fabrication of a Flexible Electromagnetic Interference Shielding Fe3O4@reduced Graphene Oxide/Natural Rubber Composite with Segregated Network. Chem. Eng. J. 2018, 344, 184–193. doi: 10.1016/j.cej.2018.03.085.
  • Biswas, S.; Arief, I.; Panja, S. S.; Bose, S. Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon. ACS Appl. Mater. Interfaces 2017, 9, 3030–3039. doi: 10.1021/acsami.6b14853.
  • Biswas, S.; Panja, S. S.; Bose, S. Unique Multilayered Assembly Consisting of “Flower-Like” Ferrite Nanoclusters Conjugated with MWCNT as Millimeter Wave Absorbers. J. Phys. Chem. C. 2017, 121, 13998–14009. doi: 10.1021/acs.jpcc.7b02668.
  • Xu, Y.; Yang, Y.; Yan, D.-X.; Duan, H.; Zhao, G.; Liu, Y. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic. ACS Appl. Mater. Interfaces 2018, 10, 19143–19152. doi: 10.1021/acsami.8b05129.
  • Wang, C.; Guo, R.; Lan, J.; Tan, L.; Jiang, S.; Xiang, C. Preparation of Multi-functional Fabric via Silver/reduced Graphene Oxide Coating with Poly(diallyldimethylammonium Chloride) Modification. J. Mater. Sci: Mater. Electron. 2018, 29, 8010–8019. doi: 10.1007/s10854-018-8807-8.
  • Woo, H. J.; Majid, S. R.; Arof, A. K. Dielectric Properties and Morphology of Polymer Electrolyte Based on Poly(ɛ-caprolactone) and Ammonium Thiocyanate. Mater. Chem. Phys. 2012, 134, 755–761. doi: 10.1016/j.matchemphys.2012.03.064.
  • Jin, L.; Zhao, X.; Xu, J.; Luo, Y.; Chen, D.; Chen, G. The Synergistic Effect of a Graphene Nanoplate/Fe3O4@BaTiO3 Hybrid and MWCNTs on Enhancing Broadband Electromagnetic Interference Shielding Performance. RSC Adv. 2018, 8, 2065–2071. doi: 10.1039/C7RA12909B.
  • Zhang, X.-J.; Wang, G.-S.; Cao, W.-Q.; Wei, Y.-Z.; Liang, J.-F.; Guo, L.; Cao, M.-S. Enhanced Microwave Absorption Property of Reduced Graphene Oxide (RGO)-MnFe2O4 Nanocomposites and Polyvinylidene Fluoride. ACS Appl. Mater. Interfaces 2014, 6, 7471–7478. doi: 10.1021/am500862g.
  • Hua, J.; Li, Y.; Liu, X.; Li, X.; Lin, S.; Gu, J.; Cui, Z.-K.; Zhuang, Q. Graphene/MWNT/Poly(p-phenylenebenzobisoxazole) Multiphase Nanocomposite via Solution Prepolymerization with Superior Microwave Absorption Properties and Thermal Stability. J. Phys. Chem. C. 2017, 121, 1072–1081. doi: 10.1021/acs.jpcc.6b11925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.